SlideShare a Scribd company logo
1 of 28
I. Header
November 29, 2015
To: ProfessorJohn Harvey
University of California, Davis
One Shields Ave. Davis, CA 95616
From: Samuel Ray 999576030
Subject: Pavement Analysis and Design,
Bogota International Airport
I am submitting a report on the design of a newly reconstructed takeoff taxiway. The
taxiway will only carry the loads of the followingaircraft:
 Boeing 777-300 ER(B777)
 Airbus A350-900 (WV001) (A350)
II. Purpose:
The Bogota International Airport is considering expanding a terminal in order to
accommodate new flights by the above mentioned aircraft B777 and A350. The Mechanistic-
Empirical design method was used to create alternate pavement designs. Both asphalt concrete
and Portland cement concretewere used. The results were acquired by using both openpave and
EverFefor each new design. Openpave was used forthe design of the asphalt concrete (AC) and
EverFewas used for the design of the Portlandcement concrete(PCC).
III.Summary of Data:
Flexible:
It is expected that 3 B777 and 4 A350 will use the terminal every day. The main speed on the
taxiways is 25 km/hour. It will be used 365 days per year and will be evenly divided between
winter and summer, and between day and night. Expectedpavement temperatures at the site are
20ºC during summer days, 15ºC during summer nights and winter days, and 4ºC during winter
nights, all at 1/3 depth in the asphalt concrete.
The followingtwo tables were provided by Consultant John Harvey.
Table S1:ProposedPavementStructure:
Existing Layer Thickness Description
Asphalt Concrete 150 mm Dense graded AC, badly
cracked
Aggregate Base 300 mm Imported aggregate base,
compacted to 98 percent
modified Proctor
Subgrade Very thickfill. Original
design CBR values of 4-6
Table S2:Deflectionsof existing taxiways
Sensor location
(mm)
0 200 300 600 900 1200 1500
777 704 649 499 385 302 242
Table 1 specifies the existing layers (Asphalt Concrete, Aggregate base, and subgrade) and their
thicknesses. The shear strengths of the unbound layers are 100 kPafor the subgrade, and 420 kPa
or 350 kPafor the aggregate base. The design life for this pavement is 20 years. A Heavyweight
Deflectometerwas used to test the deflectionsin the existing runway.The load was 100kN on the
150 mm radius plate. The results are shown above in Table 2.
PCC Design:
For the alternative concretedesign we assumed a doweled (50 mm diameter) plain slab with
dimensions of 4m by 4m, with the PCC having a stiffness of 28 GPa and a MR of 5 MPa. The
nighttime temperature gradient is -5ºC forsummer and -3 ºC for winter, and daytime
temperature gradients of +4 ºC forboth seasons. The slab wouldalso have a constant equivalent
temperature of -2 ºC from moisture.
IV. Summary of Methods
Asphalt Concrete
Using the deflections in table 2, the stiffness of the subgrade and aggregate base were
obtained by back calculation in openpave. Given values of viscosity and penetration (Viscosity at
60 C is 18,000 poises and penetration at 25 C is 45 dmm) The Shell method was used to calculate
the Asphalt Stiffness. Intermediate steps of finding loading time, diameter at 1/3 depth, percent by
volume of aggregate and bitumen were needed to complete the shell method. Stiffness was found
for all 4 season conditions forboth air craft.
Given dimensions/positions of tires and their given loads and pressures were put into
openpave. Critical points were determined and analyzed to find max tensile strains and vertical
stresses. 4 open paves for each season condition were created. With the max tensile strains, for
each plane, for each season condition, fatigue life (Nf) was found foreach pass of each wheel.
Expected number of repetitions for each plane foreach season condition (n) was found with the
given information. Miner’s law was used to checkif the pavement failed due to fatigue. The
pavement does fail due to fatigue under the tires of both the B777 and the A350.
Simultaneously at the criticalpoints determined, vertical stress was obtained from each
openpave created. The thickness of the aggregate base (AB) was to be designed to protect the
subgrade (SG) from rutting. Iterations in open pave were used to find this thickness based on the
criteria of .4saturated shear strength >.5 verticalstress. The thickness foundthat satisfies this
criteria is 1225 mm. Same procedure was done for rutting of the AB but, it seems that the AB will
rut regardless of any changes made.
PCC
k-value was found using the funky chart and previously backcalculated subgrade stiffness
modulus. Overall temperature gradient was found for each season temperature. The dimensions of
the wheels were placed into EverFe along with the configurations of the wheel with its
corresponding loads.
Four iterations were made foreach plane and for each season temperature making a total of
12 iterations. The max tensile stresses and the deflections at the corners were recorded foreach
iteration. Flexural Strength (MR) was equal to 5 meaning the acceptable max tensile stress would
be 2.75.
The design thickness was found to be 605.5 mm with a deflection of 2.848 mm and a
maximum stress approximately 2.75 MPa. The criticalplane was A350 during summer/winter day
because this combination had the largest max stresses. Plots were then made to show the
relationship between thickness of PCC and deflection as wellas max tensile stress.
*All calculations, tables and figures are in the Attachments section with step by step methods.
V.Final Recommendation
Flexible
My final recommendation would be to design the AB to a thickness of 1225 mm to protect
the SB from rutting. Due to the large loads and the thin required AC thickness, the AB willrut
regardless of thickness. I’d recommend using the AB with a saturated shear strength of 420 kPa
because it will rut less than the alternative. The pavement also fatigues due to the large loads of the
tires and the slow velocity as well. Because minors law forthe max criticalpoint was around 6 the
pavement cannot be expected to last 20 years but around 6 times less than 20 years. The pavement
will fatigue after 3-4 years so preventive maintenance before these years could be an option. The
thin asphalt, heavy loads and slow speeds of the planes willcause the AB to rut and the AC to
fatigue. Changing one of those variables could greatly increase the life of this pavement.
Rigid
My final recommendation would be to design the PCC to a thickness of 605.5 mm to achieve
allowable tensile stresses. Rigid pavement design wouldbe better to handle the heavy loads of the
aircraft however,it is more expensive and a considerable large thickness would be required. If the
money is there I’d suggest using PCC instead of the thin asphalt.
VI. Closure
There are many issues withthe Asphalt pavement such as fatigue and rutting of the AB. The PC
howeverwhen designed correctly did not fail. The PCC however,costs more and more of it is
used. The PCC would be a better option because the AC will fail and a reliable expensive
pavement is better than a failing inexpensive one.
VII. Attachments
Part 1
Table 1
Sensor
location
(mm)
0 200 300 600 900 1200 1500
Deflectio 777 704 649 499 385 302 242
Using the sensor and deflectionmeasurements stiffness can be foundusing open pave.
Stiffness of asphalt concreteis given for this backcalculation as 10500 MPa. Thickness of
aggregate base (AB), radius and load were also given. When you enter in the load and radius
openpave calculates the pressure.
Table 2
Location X (mm) Y (mm)
Load
(kN)
Pressure
(kPa)
Radius
(mm)
1 0 0 100 1414.7106 150
Using the given information and iterations the stiffness of the AB and the subgrade (SG) can
be found.
Table 3
Layer
Thickness
(mm)
Elastic
Modulus
(MPa)
Poisson's
Ratio
Friction
1 150 10500 0.35 1
2 300 280 0.35 1
3 0 80 0.35 1
*Poisson’s ratio and Friction are assumed
Table 4
Point 1 2 3 4 5 6 7
X (mm) 0 200 300 600 900 1200 1500
Y (mm) 0 0 0 0 0 0 0
Z(mm) 0 0 0 0 0 0 0
Layer 1 1 1 1 1 1 1
Table 5
z
(mm) 0.7776996 0.7035079 0.6491723 0.4994464 0.3846662 0.301618 0.2421815
Therefore the elastic modulus of AB=280 MPa and SG=80 MPa
Step 2: Find stiffness of AC
We must find the Stiffness of the asphalt concrete(AC). First Plot
Viscosity at 60 C: 18,000 poises
Penetration at 25 C: 45 dmm
On the Bitumen Test Data Chart
Figure 1
from chart
Tr&b = 62°C
T1 = 25 °C
Penetration @ T1 = 45 dmm
PI calculation
20 − PI
10 + PI
=
log(800) − log(Penetration @T1)
Tr&b − T1
20 − PI
10 + PI
=
log(800) − log(45)
62 − 25
PI = 1.16
Find area of tire cross-section on the surface
LoadB777 = 288120 N
PressureB777 = 1520550 Pa
A =
Load
Pressure
=
288
1521
= .189 m2
Find the Diamter of tire cross-section on the surface
A =
dsurface
2
π
4
. 189 = dsurface
2
∗
π
4
dsurface = .49 m
Find Diameter at 1/3 depth
1
3
thickess = .058 m
d1
3
depth
= dsurface + 2 ∗
1
3
thickness
d1
3
depth
= .49 + 2 ∗ .058 = .608 m
Find loading time (t)
velocity (v) = 6.9
m
s
t =
d1
3
depth
v
t =
. 608
6.9
= .09 sec
Table 6
max tire Mass (kg) P/g (kg/m^2) Area (m^2) diameter (m) thickness (m)
B777 29370 155000 0.18948387 0.491180575 0.175
A350 34112.5 169381.9735 0.20139392 0.506381976 0.175
Table 7 (N) (Pa)
*same procedure is followedfor the A350. Loading times are very similar so we will use .09 sec
Use given temperatures, calculated loading times and PIto find stiffness of bitumen.
Plotthese values on nomograph fordetermining the stiffness modulus of bitumen.
Table 8
difference in temperature
© load time (s) PI
42 0.087530003 1.15
47 0.087530003
47 0.087530003
58 0.087530003
Figure 2
From nomograph
1/3 thickness (m) diameter @ 1/3 depth (m) V (m/s) Loading time (s) Load Pressure
0.058333333 0.607847242 6.944444444 0.087530003 288119.7 1520550 B777
0.058333333 0.623048643 6.944444444 0.089719005 334643.6 1661637.16 A350
Table 9
E1 (Pa)
9000000 day/summer
20000000 night/summer
20000000 day/winter
70000000 night/winter
Find percent volume of bitumen and aggregate
Figure 3
From Sample Calculations
Table 10
Vb % Vg %
10.7 84
With calculated values of stiffness modulus of bitumen, volume of bitumen and volume of aggregate
we can find stiffness modulus of bituminous mix.
Plotthese values on nomograph formixed stiffness.
Table 11
Vb % Vg %
0.107 0.84
E1 (Pa)
9000000 day/summer
20000000 night/summer
20000000 day/winter
70000000 night/winter
Figure 4
From nomograph
Table 12
Stiffness of AC (Pa)
day/summer 1900000000
night/summer 3200000000
day/winter 3200000000
night/winter 8000000000
Step 3: Find position of wheels on open pave
Determine verticalStress
Set up openpave withloads forB777 and A350
Only one side of the plane is needed to be evaluated due to symmetry.
Loads and Pressures were calculated before.
Table 13
Load (N)
Pressure
(Pa)
288119.7 1520550 B777
334643.6 1661637.16 A350
Positions of wheels and criticalpoints with loads were calculated and put in openpave for the A350
and B777
Table 14: Wheel Loads
A350
Location X (mm) Y (mm) Load (kN)
Pressure
(kPa)
Radius
(mm)
1 4432.5 0 335 1662 253.29811
2 4432.5 2040 335 1662 253.29811
3 6167.5 0 335 1662 253.29811
4 6167.5 2040 335 1662 253.29811
Table 15: Wheel Loads
B777
Location X (mm) Y (mm) Load (kN)
Pressure
(kPa)
Radius
(mm)
1 4790 0 288 1521 245.50294
2 4790 1450 288 1521 245.50294
3 4790 2930 288 1521 245.50294
4 6190 0 288 1521 245.50294
5 6190 1450 288 1521 245.50294
6 6190 2930 288 1521 245.50294
Table 16: Critical Points
Table 17: Critical Points
Figure 5
Step 4: Find Thickness of AB to protect SG from rutting.
*we only have to checkforrutting for Summer Day because that is the time that is most susceptible
to rutting.
find desired maxvalue for σzz (vertical stress)
A350
Point 1 2 3 4 5 6 7 8 9 10 11 12
X (mm) 4790 5490 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300
Y (mm) 0 0 0 0 0 0 1020 1020 0 0 1020 1020
Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175
Layer 1 1 1 1 2 2 2 2 2 2 2 2
B777
Point 1 2 3 4 5 6 7 8 9 10 11 12
X (mm) 4790 5490 4432.5 5300 4790 5490 4790 5490 4790 5490 4790 5490
Y (mm) 1450 1450 1450 1450 1450 1450 725 725 1450 1450 725 725
Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175
Layer 2 2 2 2 3 3 3 3 2 2 2 2
0
500
1000
1500
2000
2500
3000
3500
0 2000 4000 6000 8000
y(mm)
x (mm)
CoordinateAxis for B777 and A350
A350 load
B777 Load
Critical points fatigue
Critical Points Rutting
.4 ∗ shear strength > .5σzz
ssSG = 100 kPa
σzz < 80 kPa
Varying the depths wegot these values
*note through observation using openpave the B777 caused more verticalstress therefore this was
the plane used to determine if there will be rutting in the SG.
Table 18
Looking at AB 1200 mm and AB 1300mm we have just above and below 80 kPa respectively,when
looking at the max verticalstress.
Figure 6: AB thickness vs rutting in subgrade A350
SG SG SG SG AB AB AB AB
point 5 6 7 8 9 10 11 12
AB 300 mm szz (kPa) -224.96 -120.33 -106.76 -92.067 -733.281 -55.4613 -47.90628 -31.0746
AB 1200 mm szz (kPa) -77.337 -81.076 -71.932 -76.151 -799.741 -39.2644 -32.40267 -0.77226
AB 1300 mm szz (kPa) -72.208 -76.598 -67.948 -72.508 -799.998 -39.449 -32.64279 -0.94547
0
50
100
150
200
250
0 200 400 600 800 1000 1200
verticalStress(kPa)
Thickness of AB (mm)
A350 AB thickness to protect Subgrade
Stress vs Thickness
Design thickness
Figure 7: AB thickness vs rutting in subgrade B777
Through interpolation we get a design thickness of 1225 mm
Table 19
B) Determine if Subgrade ruts
Find desired σzz
same method as before
σzz < 336 kPa
By looking at point 9, on table 19, it shows a vertical stress of
800 kPa therefore, the AB will rut. Changing any thickness of the AB
will not protect the AB.
0
20
40
60
80
100
120
0 200 400 600 800 1000 1200 1400
(verticalstress)/2kPa
thickness of AB (mm)
B777 Actual Design Thickness
(vertical stress)/2 vs depth
Design thickness
SG SG SG SG AB AB AB AB
point 5 6 7 8 9 10 11 12
AB 1225 mm szz (kPa) -75.987 -79.928 -70.912 -75.237 -799.811 -39.3083 -32.46416 -0.80931
Figure 8: Rutting in AB vs Thickness of AB
C) Determine if the AC fails due to fatigue
Step 1: find the tensile strains due to passing of planes
Using open Pavethe followingmicro strains were calculated at the bottom of the
asphalt layer.
0
100
200
300
400
500
600
700
800
900
1000
0 200 400 600 800 1000 1200 1400
VerticalStress(kPa)
Thickness (mm)
Check for Rutting in AB1 & AB2
A-350
B777
Saturated Shear
Stress for AB1
Saturated Shear
Stress for AB2
Table 20
B777 wheel
A350
wheel
critcalpoint A B C D
A350 summer day (micro
strain) 358 124 797 125
A350 summer night (micro
strain) 327 90.4 659 95.9
A350 winter day (micro
strain) 327 90.4 659 95.9
A350 winter night (micro
strain) 244 102 421 83.9
B777 summer day (micro
strain) 677 168 269 137
B777 summer night (micro
strain) 568 76.9 479 125
B777 winter day (micro
strain) 568 76.9 479 125
B777 winter night (micro
strain) 370 88.2 364 116
Step 2: find allowed number of repetitions
for A350 summer day point A
ϵtension = 358 ∗ 10−6
Nfield = SF ∗ e−23.63−4.2913∗ln(ϵtension)
Nfield = 5 ∗ e−23.63−4.2913ln(358∗10−6)
= 167847 allowed repititions
Table 21
Step 3: find actual repetitions
nactual for each season for B777 = 365 ∗ 20 ∗ 3 ∗
3
2
2
= 16425
*n willonly change between the different planes
Table 22
n
(repetitions)
A350 14600
B777 16425
Step 3: use minors law tofind whether pavement fails due to fatigue
n
N
for A350 summer day at critical point A
n
N
=
14600
167847
= .087
*same process foreach minor law calculation
Table 23
Now sum up n/N at each criticalpoint
wheel B777 wheel A350
critcal point NA NB NC ND
A350 summer day (micro strain) 167846.8382 15881478.1 5412.06872 15343394.73
A350 summer night (micro strain) 247578.3282 61643290.2 12237.9428 47842427.57
A350 winter day (micro strain) 247578.3282 61643290.2 12237.9428 47842427.57
A350 winter night (micro strain) 869731.9717 36718546.4 83716.2255 84908602.8
B777 summer day (micro strain) 10901.4996 4314412.61 572262.698 10353386.51
B777 summer night (micro strain) 23155.6184 123400152 48113.5729 15343394.73
B777 winter day (micro strain) 23155.6184 123400152 48113.5729 15343394.73
B777 winter night (micro strain) 145702.6124 68517586.6 156292.101 21143789.56
wheel B777 wheel A350
critcal point minors A minors B minors C minors D
A350 summer day (micro strain) 0.086984063 0.00091931 2.69767454 0.00095155
A350 summer night (micro strain) 0.058971236 0.00023685 1.19301097 0.000305168
A350 winter day (micro strain) 0.058971236 0.00023685 1.19301097 0.000305168
A350 winter night (micro strain) 0.016786781 0.00039762 0.17439869 0.00017195
B777 summer day (micro strain) 1.506673449 0.00380701 0.02870185 0.001586437
B777 summer night (micro strain) 0.709331088 0.0001331 0.34137976 0.001070493
B777 winter day (micro strain) 0.709331088 0.0001331 0.34137976 0.001070493
B777 winter night (micro strain) 0.112729619 0.00023972 0.10509168 0.000776824
AC fails due to fatigue at A and C
Figure 9
Figure 10: Minors Law vs AB thickness
sum A sum B sum C sum D
3.259778561 0.006104 6.074648 0.006238
0
1
2
3
4
5
6
7
0 1 2 3 4 5
n/Nsum
Path
Minors Law for design thickness
Path A
Minors Law Failure line
Path B
Path C
Path D
0
2
4
6
8
10
12
0 500 1000 1500 2000 2500
Σn/N
Thickness (mm)
Minors Law vs AB thickness for A350 & B777
1225mm
300mm
2000mm
Max Strain before
Fatigue
As youcan see here the AC will rut no matter what even if youchange the thickness of the AB. It
levels off. AB cannot protect the AC.
Part 2
A) Find k-value
from funky chart
Figure 11: funky chart
@stiffness = 80 MPa
Bearing value = 42 psi
deflection = .2 in
k − value =
42
.2
= 210
psi
in
Using the funky chart and the back calculated stiffness modulus of SG, we can find the k-
value. K-value=210 psi/in
210
psi
in
= .0543
MPa
mm
= k − value
B) Find design thickness of asphalt
Step 1: Find wheel dimensions
Area B777 = .189m2
From B777 info website we found the width W of the wheel to be .53 m
L =
A
W
=.
189
.53
= .357 m
*same procedure forA350
Table 24:wheel dimentions
W (m) L (m)
B777 0.53 0.357516738
A350 0.53 0.379988533
Step 2: set up wheel configuration.
Figure 12:B777 configuration in EverFe
Figure13: A350 configurationin EverFe
Step 3:Find Changes of Temperature
Figure 14
Step 4: iterate to find design thickness
Do 4 iterations for each temperature gradient and for each plane.
Check the deflections and the max stress by using visualize for points
Here is a table of all the iterations of PCC thickness and corresponding
plane/season/thickness/deflection and Max tensile stress.
Table25:Thickness and respective stresses and deflections
Looking at chart we can see that the design thickness wouldbe forthe A350 summer day between
600 and 615
Step 5: find design thickness
Here is the criteria for Max stress
stress < .55 ∗ MR = .55 ∗ 5 MPa = 2.75 MPa
Through interpolation of A350 between 600 and 615 mmm.
Design thickness will be 605.5mm
Table 26 Design Thickness
thickness (mm) Max (Mpa) Displacement (mm)
B777 summerday 250 7.25 4.203
500 2.77 3.608
600 2.72 3.482
400 3.74 3.893
summernight 250 6.32 3.907
500 2.346 3.58
400 3.3469 3.665
450 2.787 3.618
winternight 250 6.468 4.055
500 2.4 3.651
400 3.425 3.753
450 2.84 3.713
A350 winternight 250 7.23 3.652
500 2.5454 3.057
400 3.63 3.231
450 3.01 3.134
Summernight 250 6.997 3.628
400 3.497 3.201
450 2.9 3.113
500 2.655 3.077
summerday 250 7.9565 3.868
500 3.1277 3.065
600 2.768 2.868
615 2.718 2.83
thickness (mm) Max (Mpa) Displacement (mm)
605.5 2.75 2.848
Figure 15: results for points
Figure 16: results for stresses
C) Plots of deflections and Max stress vs thickness for each season and each plane.
Figure 17
Figure 18
0
1
2
3
4
5
6
7
8
0 200 400 600 800
stress(MPa)
thickness (mm)
B777 Stress vs Thickness
B777 Max Stress Summer/Winter
Day
B777 Max Stress Summer Night
B777 Max Stress Winter Night
Max allowable stress
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0 100 200 300 400 500 600 700
Deflections(mm)
thickness (mm)
B777 Deflections vs Thickness
B777 Defliction Summer/Winter
Day
B777 Deflection Summer Night
B777 Deflection Winter Night
Figure 19
Figure 20
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0 100 200 300 400 500 600 700
Deflections(mm)
thickness (mm)
A350 Deflections vs Thickness
A350 Deflections Winter Night
A350 Deflections Summer Night
A350 Deflections Summer/Winter
Day
0
1
2
3
4
5
6
7
8
9
0 200 400 600 800 1000
MaxStress(MPa)
Thickess (mm)
A350 MaxStress vs Thickness
A350 Max Stress Winter Night
A350 Max Stress Summer Night
A350 Max Stresses Summer/Winter
Night
Max Allowable Stress
Full openpave
Table 26: B777 summer day 1225 mm AB
2 FALSE
Layer
Thickness
(mm)
Elastic
Modulus
(MPa)
Poisson's
Ratio
Friction
v1.2
2013/11/01
1 175 1900 0.35 1
2 1225 280 0.35 1
3 0 80 0.35 1
B777
Location X (mm) Y (mm) Load (kN)
Pressure
(kPa)
Radius
(mm)
1 4790 0 288 1521 245.50294
2 4790 1450 288 1521 245.50294
3 4790 2930 288 1521 245.50294
4 6190 0 288 1521 245.50294
5 6190 1450 288 1521 245.50294
6 6190 2930 288 1521 245.50294
Point 1 2 3 4 5 6 7 8 9 10 11 12
X (mm) 4790 5490 4432.5 5300 4790 5490 4790 5490 4790 5490 4790 5490
Y (mm) 1450 1450 1450 1450 1450 1450 725 725 1450 1450 725 725
Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175
Layer 1 1 1 1 3 3 3 3 2 2 2 2
dx (mm) 0.0460238 1.992E-18 -0.05336 0.0747688 -0.243002 -7.04E-18 -0.233207 4.198E-18 0.0460238 -6.8E-19 0.0452378 -1.14E-19
dy (mm) 0.0008441 0.000804 0.0007438 0.0008143 0.0004765 0.0005956 -0.153576 -0.163099 0.0008441 0.000804 0.0436325 0.0450907
dz (mm) 4.5261254 3.9575179 3.8190628 4.0204931 3.4648562 3.607807 3.3682408 3.5069249 4.5261254 3.9575179 3.6766042 3.7262018
sxx (kPa) 1545.6535 -819.3785 -541.8694 -842.018 -3.015868 -3.973741 -2.972402 -3.670139 -139.4201 -138.7973 -43.08247 -63.8778
syy (kPa) 1539.367 -208.9041 244.07669 -118.1604 -9.130115 -9.92306 -10.50235 -11.04529 -140.3465 -48.83269 -123.2224 -63.24715
szz (kPa) -799.8108 -39.30833 -222.9388 -83.07334 -75.98734 -79.92796 -70.91174 -75.23658 -799.8108 -39.30833 -32.46416 -0.809315
txy (kPa) 0.1603383 8.164E-17 0.5752276 -0.14223 0.0263584 5.117E-17 -1.569139 1.843E-18 0.0236288 1.77E-17 0.8342597 4.715E-16
txz (kPa) 19.51558 -1.91E-15 192.03055 -66.34295 14.867919 -2.21E-15 14.221205 8.036E-16 19.51558 -3.02E-15 18.359115 1.583E-15
tyz (kPa) -0.336668 -0.323698 -0.266036 -0.32895 -0.184633 -0.199808 7.1726342 7.7371278 -0.336668 -0.323698 8.2023736 8.9988087
exx (me) 677.26782 -385.5285 -289.0882 -406.098 334.69054 343.42644 319.03162 331.60642 677.26782 -385.5285 40.742224 -148.0644
eyy (me) 672.80109 48.229606 269.34713 108.22185 231.51262 243.03168 191.96381 207.15083 672.80109 48.229606 -345.6467 -145.0238
ezz (me) -989.2463 168.73189 -62.47965 133.15216 -896.7031 -938.301 -827.4448 -876.0773 -2506.759 94.150647 91.937646 156.01577
gxy (me) 0.2278492 1.16E-16 0.8174287 -0.202116 0.8895962 1.727E-15 -52.95845 6.221E-17 0.2278492 1.707E-16 8.044647 4.546E-15
gxz (me) 27.732666 -2.72E-15 272.88552 -94.27683 501.79225 -7.46E-14 479.96568 2.712E-14 188.18595 -2.91E-14 177.03432 1.526E-14
gyz (me) -0.478423 -0.459992 -0.37805 -0.467455 -6.231353 -6.743522 242.0764 261.12806 -3.24644 -3.121371 79.094317 86.774227
s1 (kPa) -799.9732 -819.3785 -632.0141 -847.7737 -78.90089 -79.92853 -74.60912 -76.15599 -800.3872 -138.7973 -123.9662 -64.51822
s2 (kPa) 1539.3632 -208.9048 -132.7946 -118.1628 -9.129628 -9.92249 -9.663307 -10.12588 -140.3465 -48.84368 -56.61721 -63.8778
s3 (kPa) 1545.8198 -39.30771 244.07715 -77.3152 -0.102813 -3.973741 -0.114068 -3.670139 -138.8437 -39.29734 -18.18561 0.4617567
t1 (kPa) 3.2282593 84.798523 188.43585 20.423816 4.5134076 2.9743746 4.7746194 3.2278705 0.7513613 4.7731706 19.215801 0.320209
t2 (kPa) 1169.6682 305.23687 249.60976 364.80544 34.885629 35.003019 32.472906 33.015053 330.02037 44.976827 33.674488 32.169778
t3 (kPa) 1172.8965 390.0354 438.04561 385.22926 39.399037 37.977393 37.247525 36.242923 330.77173 49.749998 52.890288 32.489987
e1 (me) -989.3617 -385.5285 -353.1384 -410.1876 -945.8692 -938.3106 -889.838 -891.5922 -2509.538 -385.5285 -349.2329 -151.1522
e2 (me) 672.7984 48.229167 1.5701941 108.22015 231.52084 243.0413 206.12261 222.6658 672.80132 48.176626 -24.51458 -148.0644
e3 (me) 677.38592 168.73233 269.34746 137.24347 383.84834 343.42644 367.26601 331.60642 680.04659 94.203628 160.78064 162.14415
g1 (me) 4.5875264 120.50316 267.77726 29.023317 152.32751 100.38514 161.1434 108.94063 7.2452694 46.027003 185.29522 3.08773
g2 (me) 1662.1601 433.75766 354.70861 518.40773 1177.39 1181.3519 1095.9606 1114.258 3182.3393 433.70512 324.71828 310.20858
g3 (me) 1666.7476 554.26083 622.48587 547.43105 1329.7175 1281.737 1257.104 1223.1987 3189.5846 479.73212 510.0135 313.29631
Vertical Deflection Only
Exact
Default
Fast
Quick and Dirty
Boussinesq MET
Numerical MET
Table 27:A350 summer day 1225mm AB
2 FALSE
Layer
Thickness
(mm)
Elastic
Modulus
(MPa)
Poisson's
Ratio
Friction
v1.2
2013/11/01
1 175 1900 0.35 1
2 1225 280 0.35 1
3 0 80 0.35 1
A350
Location X (mm) Y (mm) Load (kN)
Pressure
(kPa)
Radius
(mm)
1 4432.5 0 335 1662 253.29811
2 4432.5 2040 335 1662 253.29811
3 6167.5 0 335 1662 253.29811
4 6167.5 2040 335 1662 253.29811
Point 1 2 3 4 5 6 7 8 9 10 11 12
X (mm) 4790 5490 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300
Y (mm) 0 0 0 0 0 0 1020 1020 0 0 1020 1020
Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175
Layer 1 1 1 1 3 3 3 3 2 2 2 2
dx (mm) 0.1637382 -0.052345 0.0416707 -1.19E-16 -0.176907 2.092E-17 -0.190746 3.748E-17 0.0416707 -9.58E-17 0.0450648 -1.67E-17
dy (mm) 0.0491543 0.0499137 0.0476136 0.0500403 -0.175714 -0.189668 6.446E-17 5.971E-17 0.0476136 0.0500403 2.894E-18 8.202E-18
dz (mm) 3.2297521 2.8893916 3.7025542 2.8447482 2.5414658 2.6382765 2.6208574 2.7413959 3.7025542 2.8447482 2.7555075 2.8423382
sxx (kPa) -557.579 -619.7042 1820.4093 -557.0478 -2.545508 -7.449442 -3.095809 -5.9641 -146.1233 -86.831 -24.75767 -34.16275
syy (kPa) 393.59285 -120.7942 1830.7434 -150.3555 -2.397556 -2.884479 -10.55528 -10.33015 -144.6004 -26.8974 -58.14795 -36.85543
szz (kPa) -262.4988 -28.32028 -902.6045 -10.32378 -58.95866 -56.2899 -51.04972 -52.49747 -902.6045 -10.32378 -0.386484 3.3447316
txy (kPa) 4.7333056 -1.866369 7.279715 -8.85E-17 -1.923359 5.931E-17 2.327E-15 -5.82E-16 1.0728001 3.263E-17 -4.91E-15 1.606E-14
txz (kPa) -184.8637 36.822078 11.85226 8.32E-14 9.6219619 7.762E-16 10.136517 3.691E-16 11.85226 7.678E-14 12.600875 -3.37E-15
tyz (kPa) 10.750672 11.052177 10.029906 11.098495 8.5564156 9.313915 -4.22E-15 -6.99E-15 10.029906 11.098495 -6.01E-15 -7.89E-15
exx (me) -317.6115 -298.6917 787.13724 -263.5842 236.61457 165.7699 230.82428 200.31958 787.13724 -263.5842 -15.2522 -80.12146
eyy (me) 358.22108 55.797047 794.47985 25.381327 239.11126 242.80365 104.94571 126.64253 794.47985 25.381327 -176.2411 -93.104
ezz (me) -107.9493 121.5022 -1147.636 124.87757 -715.3573 -658.4129 -578.398 -584.931 -2860.183 105.28987 102.25173 100.71819
gxy (me) 6.7262764 -2.652209 10.344858 -1.26E-16 -64.91337 2.002E-15 7.853E-14 -1.97E-14 10.344858 3.147E-16 -4.73E-14 1.549E-13
gxz (me) -262.7011 52.32611 16.842685 1.182E-13 324.74121 2.62E-14 342.10745 1.246E-14 114.28965 7.404E-13 121.50843 -3.25E-14
gyz (me) 15.27727 15.705725 14.253025 15.771545 288.77903 314.34463 -1.42E-13 -2.36E-13 96.716955 107.0212 -5.8E-14 -7.61E-14
s1 (kPa) -646.6376 -622.0011 -902.6927 -557.0478 -61.84436 -57.86764 -53.10435 -52.49747 -902.9224 -86.831 -58.14795 -36.85543
s2 (kPa) -173.6195 -122.0225 1816.6622 -151.2297 -1.527025 -7.449442 -10.55528 -10.33015 -146.6354 -32.4615 -30.10122 -34.16275
s3 (kPa) 393.77219 -24.79513 1834.5787 -9.449599 -0.530331 -1.306741 -1.04118 -5.9641 -143.7705 -4.759673 4.9570618 3.3447316
t1 (kPa) 236.50901 48.61369 8.9582716 70.890054 0.4983466 3.0713505 4.7570496 2.1830237 1.4324286 13.850914 14.023368 1.3463369
t2 (kPa) 283.69586 249.98928 1359.6774 202.90905 30.158669 25.209099 21.274536 21.083662 378.14351 27.184748 17.529139 18.753742
t3 (kPa) 520.20487 298.60297 1368.6357 273.7991 30.657016 28.28045 26.031586 23.266685 379.57594 41.035662 31.552508 20.100079
e1 (me) -380.89 -300.3236 -1147.698 -263.5842 -764.0536 -685.0372 -613.0699 -584.931 -2861.715 -263.5842 -176.2411 -93.104
e2 (me) -44.79824 54.924295 784.47477 24.760201 253.80148 165.7699 104.94571 126.64253 784.6684 -1.445597 -41.01573 -80.12146
e3 (me) 358.34851 124.00691 797.20495 125.4987 270.62068 269.42797 265.49613 200.31958 798.4811 132.11679 128.01525 100.71819
g1 (me) 336.09176 69.082612 12.730175 100.7385 16.819199 103.65808 160.55043 73.67705 13.812704 133.56239 135.22534 12.982534
g2 (me) 403.14675 355.24793 1932.1732 288.34444 1017.8551 850.8071 718.01559 711.57358 3646.3839 262.13864 169.03098 180.83966
g3 (me) 739.2385 424.33054 1944.9034 389.08293 1034.6743 954.46518 878.56601 785.25063 3660.1966 395.70103 304.25632 193.82219
Vertical Deflection Only
Exact
Default
Fast
Quick and Dirty
Boussinesq MET
Numerical MET

More Related Content

What's hot

Design Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesDesign Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesKee H. Lee, P.Eng.
 
Timber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcs
Timber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcsTimber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcs
Timber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcsClearCalcs
 
Surface Structures, including SAP2000
Surface Structures, including SAP2000Surface Structures, including SAP2000
Surface Structures, including SAP2000Wolfgang Schueller
 
Finite Element Analysis Creo-Simulate Webinar
Finite Element Analysis Creo-Simulate WebinarFinite Element Analysis Creo-Simulate Webinar
Finite Element Analysis Creo-Simulate WebinarSanthosh N L
 
IRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridge
IRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridgeIRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridge
IRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridgeIRJET Journal
 
Hitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and up
Hitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and upHitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and up
Hitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and upfjsjjekdkme
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionFawad Najam
 
Ansys Workbench demo
Ansys Workbench demoAnsys Workbench demo
Ansys Workbench demoVasanth K
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculationJy Chong
 
STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYS
  STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYS  STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYS
STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYSIAEME Publication
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1propaul
 

What's hot (20)

Design Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesDesign Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating Machines
 
Modal mass
Modal massModal mass
Modal mass
 
Timber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcs
Timber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcsTimber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcs
Timber Design to AS1720.1 (+Amdt 3, 2010) Webinar - ClearCalcs
 
WIND ISSUES IN THE DESIGN OF TALL BUILDINGS
WIND ISSUES IN THE DESIGN OF TALL BUILDINGSWIND ISSUES IN THE DESIGN OF TALL BUILDINGS
WIND ISSUES IN THE DESIGN OF TALL BUILDINGS
 
Surface Structures, including SAP2000
Surface Structures, including SAP2000Surface Structures, including SAP2000
Surface Structures, including SAP2000
 
Aci 318 14
Aci 318 14Aci 318 14
Aci 318 14
 
Finite Element Analysis Creo-Simulate Webinar
Finite Element Analysis Creo-Simulate WebinarFinite Element Analysis Creo-Simulate Webinar
Finite Element Analysis Creo-Simulate Webinar
 
IRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridge
IRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridgeIRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridge
IRJET- Design of a Prestressed Concrete Bridge and Analysis by CSiBridge
 
Hitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and up
Hitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and upHitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and up
Hitachi zaxis 120, 130 h, 130k excavator operator manual sn062955 and up
 
Analysis of industrial shed
Analysis of industrial shedAnalysis of industrial shed
Analysis of industrial shed
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
 
Assembly modeling ppt
Assembly modeling pptAssembly modeling ppt
Assembly modeling ppt
 
Ansys Workbench demo
Ansys Workbench demoAnsys Workbench demo
Ansys Workbench demo
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculation
 
STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYS
  STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYS  STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYS
STRUCTURAL AND THERMAL ANALYSIS OF DISC BRAKE USING SOLIDWORKS AND ANSYS
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1
 
BAJA SAE INDIA 2015
BAJA SAE INDIA 2015BAJA SAE INDIA 2015
BAJA SAE INDIA 2015
 
8110-1-1997.pdf
8110-1-1997.pdf8110-1-1997.pdf
8110-1-1997.pdf
 
Etabs notes-pdf
Etabs notes-pdfEtabs notes-pdf
Etabs notes-pdf
 
ETABS BASIC DESIGN
 ETABS BASIC DESIGN ETABS BASIC DESIGN
ETABS BASIC DESIGN
 

Similar to PROJECT

Mechanics of materials
Mechanics of materialsMechanics of materials
Mechanics of materialsAnand Gadge
 
Presentation (Pagkratios Chitas)
Presentation (Pagkratios Chitas)Presentation (Pagkratios Chitas)
Presentation (Pagkratios Chitas)Pagkratios Chitas
 
Behavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic LoadsBehavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic Loadsirjes
 
Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcementshivam gautam
 
P07011_Gupta_et_al
P07011_Gupta_et_alP07011_Gupta_et_al
P07011_Gupta_et_alPankaj Gupta
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USDSadia Mahjabeen
 
Chapter 5 beams design
Chapter 5  beams designChapter 5  beams design
Chapter 5 beams designSimon Foo
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALOmar Latifi
 
COMPARISON BETWEEN CODES
COMPARISON BETWEEN CODESCOMPARISON BETWEEN CODES
COMPARISON BETWEEN CODESBahzad5
 
2016 optimisation a rear wing endplate in a rotating domain
2016 optimisation a rear wing endplate in a rotating domain2016 optimisation a rear wing endplate in a rotating domain
2016 optimisation a rear wing endplate in a rotating domainHashan Mendis
 

Similar to PROJECT (20)

6th Semester Civil Engineering (2013-December) Question Papers
6th Semester Civil Engineering (2013-December) Question Papers6th Semester Civil Engineering (2013-December) Question Papers
6th Semester Civil Engineering (2013-December) Question Papers
 
Civil-Paper-II.pdf
Civil-Paper-II.pdfCivil-Paper-II.pdf
Civil-Paper-II.pdf
 
Mechanics of materials
Mechanics of materialsMechanics of materials
Mechanics of materials
 
Presentation (Pagkratios Chitas)
Presentation (Pagkratios Chitas)Presentation (Pagkratios Chitas)
Presentation (Pagkratios Chitas)
 
Behavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic LoadsBehavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic Loads
 
Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcement
 
2008 - NOV.pdf
2008 - NOV.pdf2008 - NOV.pdf
2008 - NOV.pdf
 
8th Semester (June; July-2014) Civil Engineering Question Paper
8th Semester (June; July-2014) Civil Engineering Question Paper8th Semester (June; July-2014) Civil Engineering Question Paper
8th Semester (June; July-2014) Civil Engineering Question Paper
 
Ch 3-c.pdf
Ch 3-c.pdfCh 3-c.pdf
Ch 3-c.pdf
 
Shear lug verification example
Shear lug verification exampleShear lug verification example
Shear lug verification example
 
P07011_Gupta_et_al
P07011_Gupta_et_alP07011_Gupta_et_al
P07011_Gupta_et_al
 
Column math
Column mathColumn math
Column math
 
5th Semester (July-2016) Civil Engineering Question Paper
5th Semester (July-2016) Civil Engineering Question Paper5th Semester (July-2016) Civil Engineering Question Paper
5th Semester (July-2016) Civil Engineering Question Paper
 
Pavement eng re
Pavement eng rePavement eng re
Pavement eng re
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USD
 
Chapter 5 beams design
Chapter 5  beams designChapter 5  beams design
Chapter 5 beams design
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
 
COMPARISON BETWEEN CODES
COMPARISON BETWEEN CODESCOMPARISON BETWEEN CODES
COMPARISON BETWEEN CODES
 
8th Semester (June; July-2015) Civil Engineering Question Paper
8th Semester (June; July-2015) Civil Engineering Question Paper8th Semester (June; July-2015) Civil Engineering Question Paper
8th Semester (June; July-2015) Civil Engineering Question Paper
 
2016 optimisation a rear wing endplate in a rotating domain
2016 optimisation a rear wing endplate in a rotating domain2016 optimisation a rear wing endplate in a rotating domain
2016 optimisation a rear wing endplate in a rotating domain
 

PROJECT

  • 1. I. Header November 29, 2015 To: ProfessorJohn Harvey University of California, Davis One Shields Ave. Davis, CA 95616 From: Samuel Ray 999576030 Subject: Pavement Analysis and Design, Bogota International Airport I am submitting a report on the design of a newly reconstructed takeoff taxiway. The taxiway will only carry the loads of the followingaircraft:  Boeing 777-300 ER(B777)  Airbus A350-900 (WV001) (A350)
  • 2. II. Purpose: The Bogota International Airport is considering expanding a terminal in order to accommodate new flights by the above mentioned aircraft B777 and A350. The Mechanistic- Empirical design method was used to create alternate pavement designs. Both asphalt concrete and Portland cement concretewere used. The results were acquired by using both openpave and EverFefor each new design. Openpave was used forthe design of the asphalt concrete (AC) and EverFewas used for the design of the Portlandcement concrete(PCC). III.Summary of Data: Flexible: It is expected that 3 B777 and 4 A350 will use the terminal every day. The main speed on the taxiways is 25 km/hour. It will be used 365 days per year and will be evenly divided between winter and summer, and between day and night. Expectedpavement temperatures at the site are 20ºC during summer days, 15ºC during summer nights and winter days, and 4ºC during winter nights, all at 1/3 depth in the asphalt concrete. The followingtwo tables were provided by Consultant John Harvey. Table S1:ProposedPavementStructure: Existing Layer Thickness Description Asphalt Concrete 150 mm Dense graded AC, badly cracked Aggregate Base 300 mm Imported aggregate base, compacted to 98 percent modified Proctor Subgrade Very thickfill. Original design CBR values of 4-6 Table S2:Deflectionsof existing taxiways Sensor location (mm) 0 200 300 600 900 1200 1500 777 704 649 499 385 302 242 Table 1 specifies the existing layers (Asphalt Concrete, Aggregate base, and subgrade) and their thicknesses. The shear strengths of the unbound layers are 100 kPafor the subgrade, and 420 kPa or 350 kPafor the aggregate base. The design life for this pavement is 20 years. A Heavyweight Deflectometerwas used to test the deflectionsin the existing runway.The load was 100kN on the 150 mm radius plate. The results are shown above in Table 2. PCC Design:
  • 3. For the alternative concretedesign we assumed a doweled (50 mm diameter) plain slab with dimensions of 4m by 4m, with the PCC having a stiffness of 28 GPa and a MR of 5 MPa. The nighttime temperature gradient is -5ºC forsummer and -3 ºC for winter, and daytime temperature gradients of +4 ºC forboth seasons. The slab wouldalso have a constant equivalent temperature of -2 ºC from moisture. IV. Summary of Methods Asphalt Concrete Using the deflections in table 2, the stiffness of the subgrade and aggregate base were obtained by back calculation in openpave. Given values of viscosity and penetration (Viscosity at 60 C is 18,000 poises and penetration at 25 C is 45 dmm) The Shell method was used to calculate the Asphalt Stiffness. Intermediate steps of finding loading time, diameter at 1/3 depth, percent by volume of aggregate and bitumen were needed to complete the shell method. Stiffness was found for all 4 season conditions forboth air craft. Given dimensions/positions of tires and their given loads and pressures were put into openpave. Critical points were determined and analyzed to find max tensile strains and vertical stresses. 4 open paves for each season condition were created. With the max tensile strains, for each plane, for each season condition, fatigue life (Nf) was found foreach pass of each wheel. Expected number of repetitions for each plane foreach season condition (n) was found with the given information. Miner’s law was used to checkif the pavement failed due to fatigue. The pavement does fail due to fatigue under the tires of both the B777 and the A350. Simultaneously at the criticalpoints determined, vertical stress was obtained from each openpave created. The thickness of the aggregate base (AB) was to be designed to protect the subgrade (SG) from rutting. Iterations in open pave were used to find this thickness based on the criteria of .4saturated shear strength >.5 verticalstress. The thickness foundthat satisfies this criteria is 1225 mm. Same procedure was done for rutting of the AB but, it seems that the AB will rut regardless of any changes made. PCC k-value was found using the funky chart and previously backcalculated subgrade stiffness modulus. Overall temperature gradient was found for each season temperature. The dimensions of the wheels were placed into EverFe along with the configurations of the wheel with its corresponding loads. Four iterations were made foreach plane and for each season temperature making a total of 12 iterations. The max tensile stresses and the deflections at the corners were recorded foreach iteration. Flexural Strength (MR) was equal to 5 meaning the acceptable max tensile stress would be 2.75. The design thickness was found to be 605.5 mm with a deflection of 2.848 mm and a maximum stress approximately 2.75 MPa. The criticalplane was A350 during summer/winter day because this combination had the largest max stresses. Plots were then made to show the relationship between thickness of PCC and deflection as wellas max tensile stress. *All calculations, tables and figures are in the Attachments section with step by step methods.
  • 4. V.Final Recommendation Flexible My final recommendation would be to design the AB to a thickness of 1225 mm to protect the SB from rutting. Due to the large loads and the thin required AC thickness, the AB willrut regardless of thickness. I’d recommend using the AB with a saturated shear strength of 420 kPa because it will rut less than the alternative. The pavement also fatigues due to the large loads of the tires and the slow velocity as well. Because minors law forthe max criticalpoint was around 6 the pavement cannot be expected to last 20 years but around 6 times less than 20 years. The pavement will fatigue after 3-4 years so preventive maintenance before these years could be an option. The thin asphalt, heavy loads and slow speeds of the planes willcause the AB to rut and the AC to fatigue. Changing one of those variables could greatly increase the life of this pavement. Rigid My final recommendation would be to design the PCC to a thickness of 605.5 mm to achieve allowable tensile stresses. Rigid pavement design wouldbe better to handle the heavy loads of the aircraft however,it is more expensive and a considerable large thickness would be required. If the money is there I’d suggest using PCC instead of the thin asphalt. VI. Closure There are many issues withthe Asphalt pavement such as fatigue and rutting of the AB. The PC howeverwhen designed correctly did not fail. The PCC however,costs more and more of it is used. The PCC would be a better option because the AC will fail and a reliable expensive pavement is better than a failing inexpensive one.
  • 5. VII. Attachments Part 1 Table 1 Sensor location (mm) 0 200 300 600 900 1200 1500 Deflectio 777 704 649 499 385 302 242 Using the sensor and deflectionmeasurements stiffness can be foundusing open pave. Stiffness of asphalt concreteis given for this backcalculation as 10500 MPa. Thickness of aggregate base (AB), radius and load were also given. When you enter in the load and radius openpave calculates the pressure. Table 2 Location X (mm) Y (mm) Load (kN) Pressure (kPa) Radius (mm) 1 0 0 100 1414.7106 150 Using the given information and iterations the stiffness of the AB and the subgrade (SG) can be found. Table 3 Layer Thickness (mm) Elastic Modulus (MPa) Poisson's Ratio Friction 1 150 10500 0.35 1 2 300 280 0.35 1 3 0 80 0.35 1 *Poisson’s ratio and Friction are assumed Table 4 Point 1 2 3 4 5 6 7 X (mm) 0 200 300 600 900 1200 1500 Y (mm) 0 0 0 0 0 0 0 Z(mm) 0 0 0 0 0 0 0 Layer 1 1 1 1 1 1 1
  • 6. Table 5 z (mm) 0.7776996 0.7035079 0.6491723 0.4994464 0.3846662 0.301618 0.2421815 Therefore the elastic modulus of AB=280 MPa and SG=80 MPa Step 2: Find stiffness of AC We must find the Stiffness of the asphalt concrete(AC). First Plot Viscosity at 60 C: 18,000 poises Penetration at 25 C: 45 dmm On the Bitumen Test Data Chart Figure 1 from chart Tr&b = 62°C T1 = 25 °C Penetration @ T1 = 45 dmm PI calculation 20 − PI 10 + PI = log(800) − log(Penetration @T1) Tr&b − T1
  • 7. 20 − PI 10 + PI = log(800) − log(45) 62 − 25 PI = 1.16 Find area of tire cross-section on the surface LoadB777 = 288120 N PressureB777 = 1520550 Pa A = Load Pressure = 288 1521 = .189 m2 Find the Diamter of tire cross-section on the surface A = dsurface 2 π 4 . 189 = dsurface 2 ∗ π 4 dsurface = .49 m Find Diameter at 1/3 depth 1 3 thickess = .058 m d1 3 depth = dsurface + 2 ∗ 1 3 thickness d1 3 depth = .49 + 2 ∗ .058 = .608 m Find loading time (t) velocity (v) = 6.9 m s t = d1 3 depth v t = . 608 6.9 = .09 sec Table 6 max tire Mass (kg) P/g (kg/m^2) Area (m^2) diameter (m) thickness (m) B777 29370 155000 0.18948387 0.491180575 0.175 A350 34112.5 169381.9735 0.20139392 0.506381976 0.175
  • 8. Table 7 (N) (Pa) *same procedure is followedfor the A350. Loading times are very similar so we will use .09 sec Use given temperatures, calculated loading times and PIto find stiffness of bitumen. Plotthese values on nomograph fordetermining the stiffness modulus of bitumen. Table 8 difference in temperature © load time (s) PI 42 0.087530003 1.15 47 0.087530003 47 0.087530003 58 0.087530003 Figure 2 From nomograph 1/3 thickness (m) diameter @ 1/3 depth (m) V (m/s) Loading time (s) Load Pressure 0.058333333 0.607847242 6.944444444 0.087530003 288119.7 1520550 B777 0.058333333 0.623048643 6.944444444 0.089719005 334643.6 1661637.16 A350
  • 9. Table 9 E1 (Pa) 9000000 day/summer 20000000 night/summer 20000000 day/winter 70000000 night/winter Find percent volume of bitumen and aggregate Figure 3 From Sample Calculations Table 10 Vb % Vg % 10.7 84 With calculated values of stiffness modulus of bitumen, volume of bitumen and volume of aggregate we can find stiffness modulus of bituminous mix. Plotthese values on nomograph formixed stiffness.
  • 10. Table 11 Vb % Vg % 0.107 0.84 E1 (Pa) 9000000 day/summer 20000000 night/summer 20000000 day/winter 70000000 night/winter
  • 12. Table 12 Stiffness of AC (Pa) day/summer 1900000000 night/summer 3200000000 day/winter 3200000000 night/winter 8000000000 Step 3: Find position of wheels on open pave Determine verticalStress Set up openpave withloads forB777 and A350 Only one side of the plane is needed to be evaluated due to symmetry. Loads and Pressures were calculated before. Table 13 Load (N) Pressure (Pa) 288119.7 1520550 B777 334643.6 1661637.16 A350 Positions of wheels and criticalpoints with loads were calculated and put in openpave for the A350 and B777 Table 14: Wheel Loads A350 Location X (mm) Y (mm) Load (kN) Pressure (kPa) Radius (mm) 1 4432.5 0 335 1662 253.29811 2 4432.5 2040 335 1662 253.29811 3 6167.5 0 335 1662 253.29811 4 6167.5 2040 335 1662 253.29811
  • 13. Table 15: Wheel Loads B777 Location X (mm) Y (mm) Load (kN) Pressure (kPa) Radius (mm) 1 4790 0 288 1521 245.50294 2 4790 1450 288 1521 245.50294 3 4790 2930 288 1521 245.50294 4 6190 0 288 1521 245.50294 5 6190 1450 288 1521 245.50294 6 6190 2930 288 1521 245.50294 Table 16: Critical Points Table 17: Critical Points Figure 5 Step 4: Find Thickness of AB to protect SG from rutting. *we only have to checkforrutting for Summer Day because that is the time that is most susceptible to rutting. find desired maxvalue for σzz (vertical stress) A350 Point 1 2 3 4 5 6 7 8 9 10 11 12 X (mm) 4790 5490 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300 Y (mm) 0 0 0 0 0 0 1020 1020 0 0 1020 1020 Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175 Layer 1 1 1 1 2 2 2 2 2 2 2 2 B777 Point 1 2 3 4 5 6 7 8 9 10 11 12 X (mm) 4790 5490 4432.5 5300 4790 5490 4790 5490 4790 5490 4790 5490 Y (mm) 1450 1450 1450 1450 1450 1450 725 725 1450 1450 725 725 Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175 Layer 2 2 2 2 3 3 3 3 2 2 2 2 0 500 1000 1500 2000 2500 3000 3500 0 2000 4000 6000 8000 y(mm) x (mm) CoordinateAxis for B777 and A350 A350 load B777 Load Critical points fatigue Critical Points Rutting
  • 14. .4 ∗ shear strength > .5σzz ssSG = 100 kPa σzz < 80 kPa Varying the depths wegot these values *note through observation using openpave the B777 caused more verticalstress therefore this was the plane used to determine if there will be rutting in the SG. Table 18 Looking at AB 1200 mm and AB 1300mm we have just above and below 80 kPa respectively,when looking at the max verticalstress. Figure 6: AB thickness vs rutting in subgrade A350 SG SG SG SG AB AB AB AB point 5 6 7 8 9 10 11 12 AB 300 mm szz (kPa) -224.96 -120.33 -106.76 -92.067 -733.281 -55.4613 -47.90628 -31.0746 AB 1200 mm szz (kPa) -77.337 -81.076 -71.932 -76.151 -799.741 -39.2644 -32.40267 -0.77226 AB 1300 mm szz (kPa) -72.208 -76.598 -67.948 -72.508 -799.998 -39.449 -32.64279 -0.94547 0 50 100 150 200 250 0 200 400 600 800 1000 1200 verticalStress(kPa) Thickness of AB (mm) A350 AB thickness to protect Subgrade Stress vs Thickness Design thickness
  • 15. Figure 7: AB thickness vs rutting in subgrade B777 Through interpolation we get a design thickness of 1225 mm Table 19 B) Determine if Subgrade ruts Find desired σzz same method as before σzz < 336 kPa By looking at point 9, on table 19, it shows a vertical stress of 800 kPa therefore, the AB will rut. Changing any thickness of the AB will not protect the AB. 0 20 40 60 80 100 120 0 200 400 600 800 1000 1200 1400 (verticalstress)/2kPa thickness of AB (mm) B777 Actual Design Thickness (vertical stress)/2 vs depth Design thickness SG SG SG SG AB AB AB AB point 5 6 7 8 9 10 11 12 AB 1225 mm szz (kPa) -75.987 -79.928 -70.912 -75.237 -799.811 -39.3083 -32.46416 -0.80931
  • 16. Figure 8: Rutting in AB vs Thickness of AB C) Determine if the AC fails due to fatigue Step 1: find the tensile strains due to passing of planes Using open Pavethe followingmicro strains were calculated at the bottom of the asphalt layer. 0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 VerticalStress(kPa) Thickness (mm) Check for Rutting in AB1 & AB2 A-350 B777 Saturated Shear Stress for AB1 Saturated Shear Stress for AB2
  • 17. Table 20 B777 wheel A350 wheel critcalpoint A B C D A350 summer day (micro strain) 358 124 797 125 A350 summer night (micro strain) 327 90.4 659 95.9 A350 winter day (micro strain) 327 90.4 659 95.9 A350 winter night (micro strain) 244 102 421 83.9 B777 summer day (micro strain) 677 168 269 137 B777 summer night (micro strain) 568 76.9 479 125 B777 winter day (micro strain) 568 76.9 479 125 B777 winter night (micro strain) 370 88.2 364 116 Step 2: find allowed number of repetitions for A350 summer day point A ϵtension = 358 ∗ 10−6 Nfield = SF ∗ e−23.63−4.2913∗ln(ϵtension) Nfield = 5 ∗ e−23.63−4.2913ln(358∗10−6) = 167847 allowed repititions Table 21
  • 18. Step 3: find actual repetitions nactual for each season for B777 = 365 ∗ 20 ∗ 3 ∗ 3 2 2 = 16425 *n willonly change between the different planes Table 22 n (repetitions) A350 14600 B777 16425 Step 3: use minors law tofind whether pavement fails due to fatigue n N for A350 summer day at critical point A n N = 14600 167847 = .087 *same process foreach minor law calculation Table 23 Now sum up n/N at each criticalpoint wheel B777 wheel A350 critcal point NA NB NC ND A350 summer day (micro strain) 167846.8382 15881478.1 5412.06872 15343394.73 A350 summer night (micro strain) 247578.3282 61643290.2 12237.9428 47842427.57 A350 winter day (micro strain) 247578.3282 61643290.2 12237.9428 47842427.57 A350 winter night (micro strain) 869731.9717 36718546.4 83716.2255 84908602.8 B777 summer day (micro strain) 10901.4996 4314412.61 572262.698 10353386.51 B777 summer night (micro strain) 23155.6184 123400152 48113.5729 15343394.73 B777 winter day (micro strain) 23155.6184 123400152 48113.5729 15343394.73 B777 winter night (micro strain) 145702.6124 68517586.6 156292.101 21143789.56 wheel B777 wheel A350 critcal point minors A minors B minors C minors D A350 summer day (micro strain) 0.086984063 0.00091931 2.69767454 0.00095155 A350 summer night (micro strain) 0.058971236 0.00023685 1.19301097 0.000305168 A350 winter day (micro strain) 0.058971236 0.00023685 1.19301097 0.000305168 A350 winter night (micro strain) 0.016786781 0.00039762 0.17439869 0.00017195 B777 summer day (micro strain) 1.506673449 0.00380701 0.02870185 0.001586437 B777 summer night (micro strain) 0.709331088 0.0001331 0.34137976 0.001070493 B777 winter day (micro strain) 0.709331088 0.0001331 0.34137976 0.001070493 B777 winter night (micro strain) 0.112729619 0.00023972 0.10509168 0.000776824
  • 19. AC fails due to fatigue at A and C Figure 9 Figure 10: Minors Law vs AB thickness sum A sum B sum C sum D 3.259778561 0.006104 6.074648 0.006238 0 1 2 3 4 5 6 7 0 1 2 3 4 5 n/Nsum Path Minors Law for design thickness Path A Minors Law Failure line Path B Path C Path D 0 2 4 6 8 10 12 0 500 1000 1500 2000 2500 Σn/N Thickness (mm) Minors Law vs AB thickness for A350 & B777 1225mm 300mm 2000mm Max Strain before Fatigue
  • 20. As youcan see here the AC will rut no matter what even if youchange the thickness of the AB. It levels off. AB cannot protect the AC. Part 2 A) Find k-value from funky chart Figure 11: funky chart @stiffness = 80 MPa Bearing value = 42 psi deflection = .2 in k − value = 42 .2 = 210 psi in Using the funky chart and the back calculated stiffness modulus of SG, we can find the k- value. K-value=210 psi/in 210 psi in = .0543 MPa mm = k − value B) Find design thickness of asphalt Step 1: Find wheel dimensions Area B777 = .189m2 From B777 info website we found the width W of the wheel to be .53 m L = A W =. 189 .53 = .357 m *same procedure forA350 Table 24:wheel dimentions
  • 21. W (m) L (m) B777 0.53 0.357516738 A350 0.53 0.379988533 Step 2: set up wheel configuration. Figure 12:B777 configuration in EverFe Figure13: A350 configurationin EverFe Step 3:Find Changes of Temperature
  • 22. Figure 14 Step 4: iterate to find design thickness Do 4 iterations for each temperature gradient and for each plane. Check the deflections and the max stress by using visualize for points Here is a table of all the iterations of PCC thickness and corresponding plane/season/thickness/deflection and Max tensile stress.
  • 23. Table25:Thickness and respective stresses and deflections Looking at chart we can see that the design thickness wouldbe forthe A350 summer day between 600 and 615 Step 5: find design thickness Here is the criteria for Max stress stress < .55 ∗ MR = .55 ∗ 5 MPa = 2.75 MPa Through interpolation of A350 between 600 and 615 mmm. Design thickness will be 605.5mm Table 26 Design Thickness thickness (mm) Max (Mpa) Displacement (mm) B777 summerday 250 7.25 4.203 500 2.77 3.608 600 2.72 3.482 400 3.74 3.893 summernight 250 6.32 3.907 500 2.346 3.58 400 3.3469 3.665 450 2.787 3.618 winternight 250 6.468 4.055 500 2.4 3.651 400 3.425 3.753 450 2.84 3.713 A350 winternight 250 7.23 3.652 500 2.5454 3.057 400 3.63 3.231 450 3.01 3.134 Summernight 250 6.997 3.628 400 3.497 3.201 450 2.9 3.113 500 2.655 3.077 summerday 250 7.9565 3.868 500 3.1277 3.065 600 2.768 2.868 615 2.718 2.83 thickness (mm) Max (Mpa) Displacement (mm) 605.5 2.75 2.848
  • 24. Figure 15: results for points Figure 16: results for stresses C) Plots of deflections and Max stress vs thickness for each season and each plane.
  • 25. Figure 17 Figure 18 0 1 2 3 4 5 6 7 8 0 200 400 600 800 stress(MPa) thickness (mm) B777 Stress vs Thickness B777 Max Stress Summer/Winter Day B777 Max Stress Summer Night B777 Max Stress Winter Night Max allowable stress 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 100 200 300 400 500 600 700 Deflections(mm) thickness (mm) B777 Deflections vs Thickness B777 Defliction Summer/Winter Day B777 Deflection Summer Night B777 Deflection Winter Night
  • 26. Figure 19 Figure 20 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 100 200 300 400 500 600 700 Deflections(mm) thickness (mm) A350 Deflections vs Thickness A350 Deflections Winter Night A350 Deflections Summer Night A350 Deflections Summer/Winter Day 0 1 2 3 4 5 6 7 8 9 0 200 400 600 800 1000 MaxStress(MPa) Thickess (mm) A350 MaxStress vs Thickness A350 Max Stress Winter Night A350 Max Stress Summer Night A350 Max Stresses Summer/Winter Night Max Allowable Stress
  • 27. Full openpave Table 26: B777 summer day 1225 mm AB 2 FALSE Layer Thickness (mm) Elastic Modulus (MPa) Poisson's Ratio Friction v1.2 2013/11/01 1 175 1900 0.35 1 2 1225 280 0.35 1 3 0 80 0.35 1 B777 Location X (mm) Y (mm) Load (kN) Pressure (kPa) Radius (mm) 1 4790 0 288 1521 245.50294 2 4790 1450 288 1521 245.50294 3 4790 2930 288 1521 245.50294 4 6190 0 288 1521 245.50294 5 6190 1450 288 1521 245.50294 6 6190 2930 288 1521 245.50294 Point 1 2 3 4 5 6 7 8 9 10 11 12 X (mm) 4790 5490 4432.5 5300 4790 5490 4790 5490 4790 5490 4790 5490 Y (mm) 1450 1450 1450 1450 1450 1450 725 725 1450 1450 725 725 Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175 Layer 1 1 1 1 3 3 3 3 2 2 2 2 dx (mm) 0.0460238 1.992E-18 -0.05336 0.0747688 -0.243002 -7.04E-18 -0.233207 4.198E-18 0.0460238 -6.8E-19 0.0452378 -1.14E-19 dy (mm) 0.0008441 0.000804 0.0007438 0.0008143 0.0004765 0.0005956 -0.153576 -0.163099 0.0008441 0.000804 0.0436325 0.0450907 dz (mm) 4.5261254 3.9575179 3.8190628 4.0204931 3.4648562 3.607807 3.3682408 3.5069249 4.5261254 3.9575179 3.6766042 3.7262018 sxx (kPa) 1545.6535 -819.3785 -541.8694 -842.018 -3.015868 -3.973741 -2.972402 -3.670139 -139.4201 -138.7973 -43.08247 -63.8778 syy (kPa) 1539.367 -208.9041 244.07669 -118.1604 -9.130115 -9.92306 -10.50235 -11.04529 -140.3465 -48.83269 -123.2224 -63.24715 szz (kPa) -799.8108 -39.30833 -222.9388 -83.07334 -75.98734 -79.92796 -70.91174 -75.23658 -799.8108 -39.30833 -32.46416 -0.809315 txy (kPa) 0.1603383 8.164E-17 0.5752276 -0.14223 0.0263584 5.117E-17 -1.569139 1.843E-18 0.0236288 1.77E-17 0.8342597 4.715E-16 txz (kPa) 19.51558 -1.91E-15 192.03055 -66.34295 14.867919 -2.21E-15 14.221205 8.036E-16 19.51558 -3.02E-15 18.359115 1.583E-15 tyz (kPa) -0.336668 -0.323698 -0.266036 -0.32895 -0.184633 -0.199808 7.1726342 7.7371278 -0.336668 -0.323698 8.2023736 8.9988087 exx (me) 677.26782 -385.5285 -289.0882 -406.098 334.69054 343.42644 319.03162 331.60642 677.26782 -385.5285 40.742224 -148.0644 eyy (me) 672.80109 48.229606 269.34713 108.22185 231.51262 243.03168 191.96381 207.15083 672.80109 48.229606 -345.6467 -145.0238 ezz (me) -989.2463 168.73189 -62.47965 133.15216 -896.7031 -938.301 -827.4448 -876.0773 -2506.759 94.150647 91.937646 156.01577 gxy (me) 0.2278492 1.16E-16 0.8174287 -0.202116 0.8895962 1.727E-15 -52.95845 6.221E-17 0.2278492 1.707E-16 8.044647 4.546E-15 gxz (me) 27.732666 -2.72E-15 272.88552 -94.27683 501.79225 -7.46E-14 479.96568 2.712E-14 188.18595 -2.91E-14 177.03432 1.526E-14 gyz (me) -0.478423 -0.459992 -0.37805 -0.467455 -6.231353 -6.743522 242.0764 261.12806 -3.24644 -3.121371 79.094317 86.774227 s1 (kPa) -799.9732 -819.3785 -632.0141 -847.7737 -78.90089 -79.92853 -74.60912 -76.15599 -800.3872 -138.7973 -123.9662 -64.51822 s2 (kPa) 1539.3632 -208.9048 -132.7946 -118.1628 -9.129628 -9.92249 -9.663307 -10.12588 -140.3465 -48.84368 -56.61721 -63.8778 s3 (kPa) 1545.8198 -39.30771 244.07715 -77.3152 -0.102813 -3.973741 -0.114068 -3.670139 -138.8437 -39.29734 -18.18561 0.4617567 t1 (kPa) 3.2282593 84.798523 188.43585 20.423816 4.5134076 2.9743746 4.7746194 3.2278705 0.7513613 4.7731706 19.215801 0.320209 t2 (kPa) 1169.6682 305.23687 249.60976 364.80544 34.885629 35.003019 32.472906 33.015053 330.02037 44.976827 33.674488 32.169778 t3 (kPa) 1172.8965 390.0354 438.04561 385.22926 39.399037 37.977393 37.247525 36.242923 330.77173 49.749998 52.890288 32.489987 e1 (me) -989.3617 -385.5285 -353.1384 -410.1876 -945.8692 -938.3106 -889.838 -891.5922 -2509.538 -385.5285 -349.2329 -151.1522 e2 (me) 672.7984 48.229167 1.5701941 108.22015 231.52084 243.0413 206.12261 222.6658 672.80132 48.176626 -24.51458 -148.0644 e3 (me) 677.38592 168.73233 269.34746 137.24347 383.84834 343.42644 367.26601 331.60642 680.04659 94.203628 160.78064 162.14415 g1 (me) 4.5875264 120.50316 267.77726 29.023317 152.32751 100.38514 161.1434 108.94063 7.2452694 46.027003 185.29522 3.08773 g2 (me) 1662.1601 433.75766 354.70861 518.40773 1177.39 1181.3519 1095.9606 1114.258 3182.3393 433.70512 324.71828 310.20858 g3 (me) 1666.7476 554.26083 622.48587 547.43105 1329.7175 1281.737 1257.104 1223.1987 3189.5846 479.73212 510.0135 313.29631 Vertical Deflection Only Exact Default Fast Quick and Dirty Boussinesq MET Numerical MET
  • 28. Table 27:A350 summer day 1225mm AB 2 FALSE Layer Thickness (mm) Elastic Modulus (MPa) Poisson's Ratio Friction v1.2 2013/11/01 1 175 1900 0.35 1 2 1225 280 0.35 1 3 0 80 0.35 1 A350 Location X (mm) Y (mm) Load (kN) Pressure (kPa) Radius (mm) 1 4432.5 0 335 1662 253.29811 2 4432.5 2040 335 1662 253.29811 3 6167.5 0 335 1662 253.29811 4 6167.5 2040 335 1662 253.29811 Point 1 2 3 4 5 6 7 8 9 10 11 12 X (mm) 4790 5490 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300 4432.5 5300 Y (mm) 0 0 0 0 0 0 1020 1020 0 0 1020 1020 Z(mm) 175 175 175 175 1400 1400 1400 1400 175 175 175 175 Layer 1 1 1 1 3 3 3 3 2 2 2 2 dx (mm) 0.1637382 -0.052345 0.0416707 -1.19E-16 -0.176907 2.092E-17 -0.190746 3.748E-17 0.0416707 -9.58E-17 0.0450648 -1.67E-17 dy (mm) 0.0491543 0.0499137 0.0476136 0.0500403 -0.175714 -0.189668 6.446E-17 5.971E-17 0.0476136 0.0500403 2.894E-18 8.202E-18 dz (mm) 3.2297521 2.8893916 3.7025542 2.8447482 2.5414658 2.6382765 2.6208574 2.7413959 3.7025542 2.8447482 2.7555075 2.8423382 sxx (kPa) -557.579 -619.7042 1820.4093 -557.0478 -2.545508 -7.449442 -3.095809 -5.9641 -146.1233 -86.831 -24.75767 -34.16275 syy (kPa) 393.59285 -120.7942 1830.7434 -150.3555 -2.397556 -2.884479 -10.55528 -10.33015 -144.6004 -26.8974 -58.14795 -36.85543 szz (kPa) -262.4988 -28.32028 -902.6045 -10.32378 -58.95866 -56.2899 -51.04972 -52.49747 -902.6045 -10.32378 -0.386484 3.3447316 txy (kPa) 4.7333056 -1.866369 7.279715 -8.85E-17 -1.923359 5.931E-17 2.327E-15 -5.82E-16 1.0728001 3.263E-17 -4.91E-15 1.606E-14 txz (kPa) -184.8637 36.822078 11.85226 8.32E-14 9.6219619 7.762E-16 10.136517 3.691E-16 11.85226 7.678E-14 12.600875 -3.37E-15 tyz (kPa) 10.750672 11.052177 10.029906 11.098495 8.5564156 9.313915 -4.22E-15 -6.99E-15 10.029906 11.098495 -6.01E-15 -7.89E-15 exx (me) -317.6115 -298.6917 787.13724 -263.5842 236.61457 165.7699 230.82428 200.31958 787.13724 -263.5842 -15.2522 -80.12146 eyy (me) 358.22108 55.797047 794.47985 25.381327 239.11126 242.80365 104.94571 126.64253 794.47985 25.381327 -176.2411 -93.104 ezz (me) -107.9493 121.5022 -1147.636 124.87757 -715.3573 -658.4129 -578.398 -584.931 -2860.183 105.28987 102.25173 100.71819 gxy (me) 6.7262764 -2.652209 10.344858 -1.26E-16 -64.91337 2.002E-15 7.853E-14 -1.97E-14 10.344858 3.147E-16 -4.73E-14 1.549E-13 gxz (me) -262.7011 52.32611 16.842685 1.182E-13 324.74121 2.62E-14 342.10745 1.246E-14 114.28965 7.404E-13 121.50843 -3.25E-14 gyz (me) 15.27727 15.705725 14.253025 15.771545 288.77903 314.34463 -1.42E-13 -2.36E-13 96.716955 107.0212 -5.8E-14 -7.61E-14 s1 (kPa) -646.6376 -622.0011 -902.6927 -557.0478 -61.84436 -57.86764 -53.10435 -52.49747 -902.9224 -86.831 -58.14795 -36.85543 s2 (kPa) -173.6195 -122.0225 1816.6622 -151.2297 -1.527025 -7.449442 -10.55528 -10.33015 -146.6354 -32.4615 -30.10122 -34.16275 s3 (kPa) 393.77219 -24.79513 1834.5787 -9.449599 -0.530331 -1.306741 -1.04118 -5.9641 -143.7705 -4.759673 4.9570618 3.3447316 t1 (kPa) 236.50901 48.61369 8.9582716 70.890054 0.4983466 3.0713505 4.7570496 2.1830237 1.4324286 13.850914 14.023368 1.3463369 t2 (kPa) 283.69586 249.98928 1359.6774 202.90905 30.158669 25.209099 21.274536 21.083662 378.14351 27.184748 17.529139 18.753742 t3 (kPa) 520.20487 298.60297 1368.6357 273.7991 30.657016 28.28045 26.031586 23.266685 379.57594 41.035662 31.552508 20.100079 e1 (me) -380.89 -300.3236 -1147.698 -263.5842 -764.0536 -685.0372 -613.0699 -584.931 -2861.715 -263.5842 -176.2411 -93.104 e2 (me) -44.79824 54.924295 784.47477 24.760201 253.80148 165.7699 104.94571 126.64253 784.6684 -1.445597 -41.01573 -80.12146 e3 (me) 358.34851 124.00691 797.20495 125.4987 270.62068 269.42797 265.49613 200.31958 798.4811 132.11679 128.01525 100.71819 g1 (me) 336.09176 69.082612 12.730175 100.7385 16.819199 103.65808 160.55043 73.67705 13.812704 133.56239 135.22534 12.982534 g2 (me) 403.14675 355.24793 1932.1732 288.34444 1017.8551 850.8071 718.01559 711.57358 3646.3839 262.13864 169.03098 180.83966 g3 (me) 739.2385 424.33054 1944.9034 389.08293 1034.6743 954.46518 878.56601 785.25063 3660.1966 395.70103 304.25632 193.82219 Vertical Deflection Only Exact Default Fast Quick and Dirty Boussinesq MET Numerical MET