SlideShare a Scribd company logo
1 of 15
Download to read offline
  1	
  
Thermal	
  distortion	
  in	
  composites	
  
Author:	
  Roland	
  Papp	
  
Experiment	
  performed	
  on	
  3	
  and	
  6	
  November	
  2015	
  in	
  the	
  Department	
  of	
  Materials	
  
Science	
  and	
  Metallurgy	
  of	
  the	
  University	
  of	
  Cambridge.	
  
Abstract	
  
This	
  experiment	
  is	
  the	
  investigation	
  of	
  the	
  distortion	
  of	
  carbon	
  fibre	
  reinforced	
  Nylon	
  
6	
   composites	
   due	
   to	
   temperature	
   change.	
   We	
   produced	
   laminates	
   of	
   different	
  
stacking	
   sequences	
   (uniaxial,	
   simple	
   cross-­‐ply	
   and	
   symmetrical	
   cross-­‐ply)	
   by	
   hot	
  
pressing.	
   After	
   cooling	
   down	
   the	
   simple	
   cross-­‐ply	
   had	
   a	
   saddle	
   shape,	
   while	
   the	
  
others	
  with	
  symmetrical	
  stacking	
  were	
  (mostly)	
  flat.	
  	
  
We	
  performed	
  4-­‐point	
  bending	
  to	
  get	
  the	
  stiffness	
  of	
  the	
  uniaxial	
  laminate:	
  
𝐸!"#!$ = 86.3  GPa	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝐸!"#$%&'"%' = 8.57  GPa	
  
From	
  this	
  we	
  worked	
  out	
  the	
  stiffness	
  of	
  the	
  carbon	
  fibres	
  only:	
  
𝐸!!"#$% = 168  GPa	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝐸!!"#$%&'$& = 16.1  GPa	
  
In	
  the	
  next	
  part	
  of	
  the	
  experiment	
  we	
  put	
  a	
  cross-­‐ply	
  strip	
  into	
  liquid	
  nitrogen	
  to	
  
measure	
   the	
   curvature	
   after	
   bending.	
   It	
   bent	
   just	
   as	
   expected	
   from	
   a	
   bi-­‐material	
  
strip.	
  From	
  the	
  curvature	
  and	
  previous	
  data	
  we	
  calculated	
  the	
  thermal	
  expansivity	
  of	
  
the	
  Nylon	
  6	
  matrix	
  to	
  be:	
  
𝛼! = 30 ∙ 10!!
  K!!
	
  
Unlike	
   the	
   stiffness	
   data	
   this	
   did	
   not	
   happen	
   to	
   be	
   very	
   accurate,	
   however	
   this	
  
experiment	
  was	
  not	
  for	
  simply	
  measuring	
  the	
  thermal	
  expansion	
  coefficient	
  of	
  Nylon	
  
6	
   in	
   a	
   rather	
   complicated	
   way,	
   but	
   to	
   understand	
   composites’	
   reactions	
   to	
  
temperature	
  changes	
  and	
  these	
  reactions’	
  dependence	
  on	
  the	
  stacking	
  sequence.	
  
	
  	
  
1 Introduction	
  
This	
   report	
   is	
   about	
   an	
   experiment	
   performed	
   in	
   the	
   Department	
   of	
   Materials	
  
Science	
  and	
  Metallurgy	
  of	
  the	
  University	
  of	
  Cambridge.	
  	
  
We	
   produced	
   carbon	
   fibre	
   reinforced	
   composite	
   laminates	
   with	
   different	
   stacking	
  
sequences	
   (uniaxial,	
   simple	
   cross-­‐ply	
   and	
   symmetrical	
   cross-­‐ply)	
   and	
   investigated	
  
their	
   properties.	
   We	
   took	
   precise	
   computer	
   controlled	
   4-­‐point	
   bending	
  
measurements	
   to	
   work	
   out	
   the	
   stiffness	
   of	
   the	
   composite	
   in	
   axial	
   and	
   transverse	
  
directions.	
  Then	
  by	
  the	
  Voigt	
  and	
  Halpin-­‐Tsai	
  expressions	
  we	
  calculated	
  the	
  Young	
  
modulus	
  of	
  carbon	
  fibres	
  in	
  both	
  axial	
  and	
  transverse	
  directions.	
  	
  
  2	
  
In	
  the	
  next	
  part	
  of	
  the	
  experiment	
  we	
  measured	
  the	
  bending	
  of	
  a	
  simple	
  cross-­‐ply	
  
composite	
   due	
   to	
   great	
   temperature	
   change	
   by	
   putting	
   it	
   in	
   liquid	
   nitrogen.	
   We	
  
noted	
   the	
   curvature	
   and	
   by	
   using	
   data	
   from	
   the	
   previous	
   part	
   we	
   calculated	
   the	
  
thermal	
  expansion	
  coefficient	
  of	
  the	
  Nylon	
  6	
  matrix.	
  
At	
  the	
  end	
  we	
  investigated	
  the	
  composite	
  samples	
  under	
  microscope	
  to	
  search	
  for	
  
porosities	
  and	
  to	
  get	
  a	
  clear	
  view	
  of	
  the	
  distribution	
  of	
  carbon	
  fibres.	
  
2 Theoretical	
  Background1
	
  
2.1	
  Stiffness	
  
The	
  second	
  moment	
  of	
  area	
  of	
  a	
  section	
  of	
  a	
  beam	
  is	
  
𝐼 =
𝑤ℎ!
12
	
  
For	
  a	
  4-­‐point	
  bending	
  specified	
  in	
  Figure	
  2	
  the	
  central	
  deflection	
  is	
  	
  
𝛿 =
𝐹𝑠 3𝐿!
− 4𝑠!
48𝐸𝐼
	
  
Therefore	
  	
  
𝐸 =
𝑠 3𝐿!
− 4𝑠!
48𝐼 ∙
d𝛿
d𝐹
	
  
By	
   knowing	
   the	
   Young	
   modulus	
   of	
   the	
   matrix	
   𝐸!	
  and	
   the	
   fibres	
   𝐸!	
  and	
   the	
   fibre	
  
volume	
   fraction	
   𝑓 	
  we	
   can	
   work	
   out	
   the	
   stiffness	
   of	
   a	
   strip	
   in	
   axial	
   (1)	
   and	
  
perpendicular	
  (2)	
  directions	
  by	
  the	
  following	
  equations:	
  
Voigt	
  equation:	
  
𝐸! = 𝑓𝐸! + 1 − 𝑓 𝐸!	
  
Halpin-­‐Tsai	
  expression:	
  
𝐸! =
𝐸! 1 + 𝜂𝑓
1 − 𝜂𝑓
,      where                𝜂 =
𝐸!
𝐸!
− 1
𝐸!
𝐸!
+ 1
	
  
These	
  equations	
  can	
  be	
  rearranged	
  for	
  the	
  stiffness	
  of	
  the	
  fibres	
  in	
  two	
  directions:	
  
𝐸!! = 𝑓!!
𝐸! − 1 − 𝑓 𝐸! 	
  
𝐸!! = 𝐸! ∙
1 + 𝜂
1 − 𝜂
,      where                𝜂 = 𝑓!!
∙
𝐸! − 𝐸!
𝐸! + 𝐸!
	
  
2.2	
  Thermal	
  Contraction	
  
The	
  curvature	
  due	
  to	
  a	
  misfit	
  strain	
  Δ 𝜀	
  in	
  a	
  bi-­‐material	
  is	
  	
  
𝜅 =
6𝐸! 𝐸! ℎ! + ℎ! ℎ!ℎ!
𝐸!
!
ℎ!
!
+ 4𝐸! 𝐸!ℎ!
!
ℎ! + 6𝐸! 𝐸!ℎ!
!
ℎ!
!
+ 4𝐸! 𝐸!ℎ!ℎ!
!
+ 𝐸!
!
ℎ!
! Δ𝜀	
  
where	
   𝐸	
  and	
  ℎ	
  are	
  the	
  Young	
  modulus	
  and	
  thickness	
  of	
  the	
  strips.	
  
  3	
  
	
  
	
  
	
  
	
  
Figure	
  1	
  —	
  Geometry	
  and	
  equation	
  for	
  the	
  relationship	
  between	
  the	
  curvature,	
   𝜿,	
  
and	
  the	
  consequent	
  lateral	
  displacement,	
   𝜹	
  for	
  any	
  curved	
  piece	
  of	
  material.	
  
	
  
The	
  Poisson	
  ratio	
  of	
  the	
  composite	
  is	
  
𝜈!"! = 𝑓𝜈! + 1 − 𝑓 𝜈!	
  
where	
   𝜈!	
  and	
   𝜈!	
  are	
  that	
  of	
  the	
  fibre	
  and	
  the	
  matrix.	
  
The	
  predicted	
  values	
  for	
  the	
  axial	
  and	
  transverse	
  thermal	
  expansivities	
  for	
  a	
  single	
  
uniaxial	
  ply	
  of	
  composite	
  are	
  
𝛼!
!"
=
𝛼! 1 − 𝑓 𝐸! + 𝛼! 𝑓𝐸!
1 − 𝑓 𝐸! + 𝑓𝐸!
	
  
𝛼!
!"
= 𝛼! 1 − 𝑓 1 + 𝜈! + 𝛼! 𝑓 1 + 𝜈! − 𝛼!
!"
𝜈!"!	
  
By	
  definition	
  
Δ𝛼 =
Δ𝜀
Δ𝑇
	
  
	
   	
  
  4	
  
	
  
3 Method	
  
3.1 Production	
  
We	
  used	
  a	
  unidirectional	
  pre-­‐preg	
  tape	
  made	
  of	
  carbon	
  fibre	
  reinforced	
  Nylon	
  6	
  to	
  
cut	
  out	
  12	
  plies	
  for	
  each	
  of	
  the	
  three	
  laminate	
  samples.	
  We	
  stacked	
  the	
  12	
  plies	
  onto	
  
each	
  other	
  creating	
  the	
  following	
  sequences:	
  
i. Unidirectional	
  —	
  0°!"	
  
ii. Simple	
  cross-­‐ply	
  —	
  0°!/90°!	
  
iii. Symmetrical	
  cross-­‐ply	
  —	
  0°!/90°!/0°!	
  
We	
  put	
  these	
  stacks	
  into	
  a	
  hot	
  press	
  to	
  heat	
  them	
  up	
  to	
  280℃	
  under	
  a	
  pressure	
  of	
  
50	
  atmospheres	
  for	
  about	
  30	
  minutes	
  and	
  cool	
  them	
  down	
  slowly.	
  
3.2	
  After	
  cooling	
  
We	
   examined	
   the	
   laminates	
   qualitatively.	
   The	
   difference	
   in	
   thermal	
   distortion	
  
between	
  the	
  three	
  stacking	
  sequences	
  was	
  obvious	
  to	
  the	
  eye.	
  
3.3	
  Stiffness	
  measurement	
  
We	
   cut	
   out	
   two	
   strips	
   from	
   the	
   unidirectional	
   (i)	
   sample:	
   One	
   parallel	
   and	
   one	
  
perpendicular	
  to	
  the	
  fibres.	
  The	
  dimensions	
  of	
  the	
  strips	
  are	
  in	
  Table	
  1.	
  
We	
  used	
  a	
  scanning	
  laser	
  extensometer	
  to	
  perform	
  displacement	
  controlled	
  4-­‐point	
  
bending	
  tests	
  on	
  these.	
  The	
  data	
  was	
  captured	
  by	
  a	
  computer	
  and	
  put	
  in	
  an	
  Excel	
  
table	
  format.	
  The	
  loading	
  configuration	
  is	
  shown	
  on	
  Figure	
  2.	
  	
  
	
  
Figure	
  2	
  —	
  Loading	
  configuration	
  during	
  4-­‐point	
  bending,	
  showing	
  the	
  forces,	
  
dimensions	
  and	
  central	
  deflection	
  
3.4	
  Thermal	
  contraction	
  
We	
  also	
  cut	
  out	
  a	
  strip	
  from	
  the	
  simple	
  cross-­‐ply	
  laminate	
  (ii)	
  to	
  perform	
  a	
  thermal	
  
extension	
  experiment.	
  After	
  fixing	
  it	
  securely	
  in	
  a	
  tray	
  we	
  poured	
  liquid	
  nitrogen	
  into	
  
the	
  tray	
  to	
  cool	
  the	
  strip	
  down.	
  The	
  configuration	
  is	
  shown	
  below	
  on	
  Figure	
  3.	
  
	
  
  5	
  
	
  
Figure	
  3	
  
Generation	
  of	
  a	
  misfit	
  strain	
  and	
  hence	
  a	
  curvature	
  in	
  a	
  bi-­‐material	
  strip.	
  	
  
We	
  used	
  this	
  cooling	
  configuration	
  for	
  the	
  thermal	
  contraction	
  measurement.	
  
We	
  measured	
  the	
  deflection	
   𝛿	
  and	
  calculated	
  the	
  curvature	
   𝜅	
  in	
  the	
  way	
  explained	
  
in	
  Figure	
  1.	
  
3.5	
  Microscopic	
  examination	
  
As	
  the	
  microscopic	
  examination	
  destroyed	
  the	
  samples,	
  we	
  performed	
  it	
  at	
  the	
  end	
  
of	
  the	
  experiment.	
  We	
  mounted	
  and	
  polished	
  pieces	
  of	
  the	
  three	
  strips	
  to	
  look	
  for	
  
porosities	
   and	
   check	
   the	
   alignment	
   and	
   distribution	
   of	
   the	
   fibers	
   under	
   optical	
  
microscope.	
  
4 Results	
  
Some	
  data:	
  
𝐿 = 100  mm	
  
𝑠 = 25  mm	
  
	
  
Table	
  1	
  —	
  Book	
  values	
  of	
  a	
  few	
  physical	
  properties	
  
	
   𝐸 GPa 	
   𝜌   Mg/m!
   	
   𝛼   K!!
∙ 10!!
	
   𝜈	
  
Carbon	
   fibre	
  
(axial)	
  
-­‐	
   1.75	
   -­‐1	
   0.2	
  
Carbon	
   fibre	
  
(transverse)	
  
-­‐	
   1.75	
   10	
   0.2	
  
Nylon	
  6	
   5	
   1.1	
   -­‐	
   0.4	
  
	
  
	
  
  6	
  
Table	
  2	
  —	
  Measured	
  properties	
  of	
  the	
  strips	
  
	
  
𝑚  (g)	
   𝑙  (mm)	
   𝑤  (mm)   ℎ  (mm)   𝜌  (kg/m!
)   𝐼  (mm!
)  
Uniaxial	
  parallel	
  (1)	
   5.64	
   116.2	
   21.9	
   1.7	
   1304	
   8.97	
  
Uniaxial	
  transverse	
  (2)	
   5.34	
   119.8	
   18.14	
   1.72	
   1429	
   7.69	
  
Simple	
  cross-­‐ply	
   6.2	
   121.1	
   21.1	
   1.58	
   1536	
   6.94	
  
	
  
	
  
4.1	
  After	
  cooling	
  	
  
When	
   the	
   laminates	
   have	
   cooled	
   down	
   we	
   looked	
   at	
   them	
   and	
   found	
   clear	
  
differences:	
  
i. The	
  unidirectional	
  was	
  flat.	
  It	
  was	
  much	
  easier	
  to	
  bend	
  it	
  in	
  one	
  direction	
  
than	
  in	
  the	
  other	
  parallel	
  to	
  it.	
  
ii. The	
  simple	
  cross-­‐ply	
  was	
  saddle-­‐shaped	
  and	
  stiff	
  in	
  all	
  directions.	
  
iii. The	
  symmetrical	
  cross-­‐ply	
  was	
  also	
  slightly	
  saddle	
  shaped,	
  however	
  by	
  a	
  
gently	
  force	
  it	
  could	
  be	
  clicked	
  to	
  the	
  other	
  side,	
  giving	
  two	
  symmetrical	
  
stable	
  phases.	
  
4.2	
  Fibre	
  volume	
  fraction	
  
The	
  average	
  density	
  of	
  the	
  three	
  strips	
  is:	
  
𝜌 = 1423  kg/m!
	
  
The	
  fibre	
  volume	
  fraction	
  of	
  the	
  composite	
  is	
  therefore:	
  
𝑓 =
𝜌 − 𝜌!"!"#
𝜌!"#$%&'($#) − 𝜌!"#$%
= 49.7% ≈ 50%	
  
The	
  above	
  equation	
  holds	
  if	
  and	
  only	
  if	
  the	
  composite	
  is	
  free	
  of	
  porosities.	
  To	
  check	
  
this	
  we	
  took	
  micrographs	
  of	
  the	
  three	
  strips	
  (see	
  Micrograph	
  1-­‐3).	
  
I	
   do	
   not	
   see	
   porosity	
   anywhere	
   in	
   the	
   samples,	
   not	
   even	
   at	
   the	
   interface	
   of	
  
differently	
  oriented	
  plies.	
  The	
  fibre	
  volume	
  fraction	
  is	
  indeed	
  50%.	
  
	
  
  7	
  
	
  
Micrograph	
  1	
  —	
  Unidirectional	
  composite,	
  axial	
  view	
  
	
  
	
  
Micrograph	
  2	
  —	
  Unidirectional	
  composite,	
  transverse	
  view	
  
  8	
  
	
  
	
  
Micrograph	
  3	
  —	
  Cross-­‐ply	
  composite	
  
4.3	
  Stiffness	
  measurement	
  
The	
  gradients	
  of	
  the	
  plots	
  for	
  the	
  axial	
  (1)	
  and	
  transverse	
  (2)	
  loadings	
  (Figure	
  4	
  and	
  
Figure	
  5)	
  give	
  the	
  stiffness	
  in	
  these	
  directions:	
  
𝐸! =
𝑠 3𝐿!
− 4𝑠!
48 ∙ 𝐼! ∙
d𝛿
d𝐹 !
=
𝑠 3𝐿!
− 4𝑠!
48𝐼! ∙ −gradient!"#$%
= 86.3  GPa	
  
𝐸! =
𝑠 3𝐿!
− 4𝑠!
48 ∙ 𝐼! ∙
d𝛿
d𝐹 !
=
𝑠 3𝐿!
− 4𝑠!
48𝐼! ∙ −gradient!"#$%&'"%'
= 8.57  GPa	
  
	
  
  9	
  
	
  
Figure	
  4	
  —	
  Axial	
  loading	
  data	
  of	
  the	
  uniaxial	
  composite	
  strip	
  
	
  
	
  
Figure	
  5	
  —	
  Transverse	
  loading	
  data	
  of	
  the	
  uniaxial	
  composite	
  strip	
  
	
  
	
   	
  
y	
  =	
  -­‐0.0185x	
  +	
  22.501	
  
R²	
  =	
  0.99994	
  
2.05E+01	
  
2.10E+01	
  
2.15E+01	
  
2.20E+01	
  
2.25E+01	
  
2.30E+01	
  
0.00E+00	
   2.00E+01	
   4.00E+01	
   6.00E+01	
   8.00E+01	
   1.00E+02	
   1.20E+02	
  
δ0-­‐δ	
  
(mm)	
  	
  
F(N)	
  
Axial	
  
y	
  =	
  -­‐0.2174x	
  +	
  21.618	
  
R²	
  =	
  0.99989	
  
1.92E+01	
  
1.94E+01	
  
1.96E+01	
  
1.98E+01	
  
2.00E+01	
  
2.02E+01	
  
2.04E+01	
  
2.06E+01	
  
2.08E+01	
  
2.10E+01	
  
2.12E+01	
  
2.14E+01	
  
0.00E+00	
  2.00E+00	
  4.00E+00	
  6.00E+00	
  8.00E+00	
  1.00E+01	
  1.20E+01	
  
δ0-­‐δ	
  
(mm)	
  	
  
F(N)	
  
Transverse	
  
  10	
  
Using	
  the	
  rearranged	
  Voigt	
  and	
  Halpin-­‐Tsai	
  expressions	
  (see	
  Theoretical	
  Background)	
  
the	
  axial	
  and	
  transverse	
  stiffness	
  of	
  the	
  carbon	
  fibres	
  can	
  be	
  obtained:	
  
𝐸!!"#$% = 𝑓!!
𝐸! − 1 − 𝑓 𝐸! = 168  GPa 	
  
𝜂 = 𝑓!!
∙
𝐸! − 𝐸!
𝐸! + 𝐸!
= 0.526	
  
𝐸!!"#$%&'$& = 𝐸! ∙
1 + 𝜂
1 − 𝜂
= 16.1  GPa 	
  
4.4	
  Thermal	
  contraction	
  
4.4.1	
  Measurement	
  
	
  
Table	
  3	
  —	
  Directly	
  measured	
  data	
  after	
  cooling	
  
𝑥   mm 	
   𝛿   mm 	
   Δ𝑇  (K)	
   	
  
85	
   10	
   -­‐220	
   	
  
	
  
	
  The	
  curvature	
  follows	
  as	
  
𝜅 =
2 sin tan!! 𝛿
𝑥
𝑥! + 𝛿!
= 2.73  m!!
	
  
The	
  thickness	
  of	
  each	
  of	
  the	
  two	
  layers	
  (one	
  layer	
  is	
  made	
  of	
  six	
  plies)	
  is	
  
ℎ = ℎ! = ℎ! =
1
2
ℎ!"#$%&  !"#$$!!"# = 0.79  mm	
  
The	
   equation	
   in	
   section	
   2.2	
   giving	
   the	
   curvature	
   from	
   the	
   misfit	
   strain	
   can	
   be	
  
transformed	
   algebraically	
   to	
   give	
   the	
   misfit	
   strain	
   𝛥 𝜀	
  from	
   𝜅.	
   After	
   executing	
   the	
  
simplification	
  ℎ = ℎ! = ℎ!	
  and	
  the	
  substitutions	
   𝐸! = 𝐸!	
  and	
   𝐸! = 𝐸!	
  it	
  follows	
  as:	
  
Δ𝜀 = 𝜅
12 ∙ 𝐸! 𝐸!
𝐸!
!
+ 14𝐸! 𝐸! + 𝐸!
!
∙ ℎ
!!
= 4.34 ∙ 10!!
	
  
Therefore	
  the	
  difference	
  in	
  thermal	
  expansivities	
  between	
  the	
  layers	
  is	
  
Δ𝛼 =
Δ𝜀
Δ𝑇
= 2.0 ∙ 10!!
  K!!
	
  
4.4.2	
  Calculation	
  
Using	
  the	
  expressions	
  in	
  section	
  2.2	
  and	
  data	
  given	
  in	
  Table	
  1	
  we	
  get	
  the	
  following	
  
results:	
  
𝜈!"! = 0.3	
  
  11	
  
Δ𝛼 = 𝛼!
!"
− 𝛼!
!"
= 𝑎! 1 − 𝑓 1 + 𝜈! + 𝛼!
!"
∙ 𝑓 1 + 𝜈! − 𝜈!"! + 1 𝛼!
!"
= 𝛼! 1 − 𝑓 1 + 𝜈! − 𝜈!"! + 1
1 − 𝑓 𝐸!
1 − 𝑓 𝐸! + 𝑓𝐸!
!"
+ 𝛼!
!"
𝑓 1 + 𝜈! − 𝜈!"! + 1
𝛼!
!"
∙ 𝑓 ∙ 𝐸!
!"
1 − 𝑓 𝐸! + 𝑓𝐸!
!" ≡ 𝛼! 𝑋 + 𝑌	
  
By	
  rearranging	
  this	
  equation	
  we	
  can	
  work	
  out	
  the	
  expansivity	
  of	
  the	
  Nylon	
  matrix:	
  
𝛼! =
Δ𝛼 − 𝑌
𝑋
= 3.0 ∙ 10!!
  K!!
	
  
5 Discussion	
  
5.1	
  After	
  cooling	
  
The	
  qualitative	
  results	
  were	
  everywhere	
  in	
  line	
  with	
  our	
  expectations:	
  
i. The	
  unidirectional	
  laminate	
  does	
  not	
  have	
  a	
  misfit	
  strain	
  due	
  to	
  thermal	
  
contraction	
  and	
  is	
  therefore	
  flat.	
  As	
  the	
  fibres	
  are	
  much	
  stiffer	
  than	
  the	
  
matrix,	
   it	
   is	
   much	
   easier	
   to	
   bend	
   the	
   laminate	
   parallel	
   to	
   than	
  
perpendicular	
  to	
  the	
  fibres.	
  
ii. The	
   saddle	
   shape	
   of	
   the	
   simple	
   cross-­‐ply	
   laminate	
   is	
   due	
   to	
   different	
  
thermal	
  expansivity	
  in	
  axial	
  and	
  transverse	
  direction	
  in	
  every	
  layer.	
  As	
  the	
  
stacking	
  sequence	
  is	
  asymmetric,	
  this	
  creates	
  a	
  saddle	
  shape.	
  	
  
iii. As	
  the	
  stacking	
  sequence	
  is	
  symmetric	
  in	
  this	
  laminate,	
  in	
  theory	
  it	
  should	
  
have	
  been	
  flat.	
  As	
  all	
  plies	
  are	
  under	
  stress	
  due	
  to	
  each	
  other,	
  and	
  the	
  
preparation	
  was	
  not	
  fully	
  precise	
  is	
  reasonable	
  to	
  have	
  two	
  phases.	
  The	
  
symmetry	
  of	
  the	
  equilibrium	
  phases	
  show	
  the	
  symmetry	
  of	
  the	
  stacking.	
  
5.2	
  Stiffness	
  measurement	
  
The	
  micrographs	
  do	
  not	
  show	
  porosities,	
  so	
  we	
  can	
  use	
  the	
   𝑓 = 50%	
  value	
  for	
  the	
  
fibre	
  volume	
  fraction.	
  We	
  can	
  also	
  notice	
  that	
  the	
  fibres	
  are	
  very	
  well	
  aligned	
  and	
  
fairly	
   homogenously	
   distributed.	
   This	
   means	
   that	
   the	
   Voigt	
   and	
   Halpin-­‐Tsai	
  
expressions	
  give	
  a	
  good	
  accuracy	
  for	
  this	
  calculation.	
  
We	
   checked	
   the	
   samples	
   after	
   the	
   measurements	
   were	
   taken	
   and	
   found	
   no	
  
bentness.	
  This	
  proved	
  that	
  the	
  strips	
  were	
  elastic	
  throughout	
  the	
  whole	
  experiment.	
  
According	
  to	
  Vircon2
,	
  the	
  approximate	
  stiffness	
  of	
  standard	
  modulus	
  carbon	
  fibres	
  is	
  
220 − 241  GPa,	
  which	
  is	
  only	
  slightly	
  higher	
  than	
  the	
  168  GPa	
  we	
  got	
  for	
  the	
  axial	
  
stiffness.	
  Considering	
  that	
  it	
  depends	
  a	
  lot	
  on	
  the	
  certain	
  material	
  choice	
  we	
  can	
  take	
  
it	
  as	
  a	
  plausible	
  value.	
  
According	
   to	
   H.	
   Miyagawa’s	
   article,	
   Comparison	
   of	
   experimental	
   and	
   theoretical	
  
transverse	
  elastic	
  modulus	
  of	
  carbon	
  fibers,3
	
  different	
  experimental	
  and	
  theoretical	
  
techniques	
  give	
  a	
  broad	
  range	
  of	
  values	
  for	
  the	
  transverse	
  Young	
  modulus	
  of	
  the	
  
fibres	
   illustrated	
   by	
   Figure	
   6.	
   Our	
   obtained	
   value	
   of	
  16.1  GPa	
  is	
   very	
   close	
   to	
   the	
  
median	
  of	
  these	
  values,	
  therefore	
  our	
  value	
  is	
  reasonable.	
  
  12	
  
	
  
Figure	
  6	
  —	
  Comparison	
  of	
  the	
  transverse	
  elastic	
  modulus	
  of	
  carbon	
  fibers,	
  experimentally	
  
measured	
  by	
  Raman	
  spectroscopy	
  and	
  nanoindentation,	
  numerically	
  analyzed	
  by	
  FEM,	
  
and	
  calculated	
  from	
  Mori–Tanaka,	
  Halpin–Tsai,	
  and	
  Uemura	
  equations.3	
  
5.3	
  Thermal	
  contraction	
  
The	
   very	
   high	
   error	
   (>20%)	
   in	
   this	
   experiment	
   built	
   up	
   even	
   more	
   during	
   the	
  
following	
  calculation,	
  which	
  used	
  many	
  previously	
  determined	
  values	
  without	
  known	
  
exact	
  errors.	
  Perhaps	
  this	
  is	
  why	
  the	
  thermal	
  expansivity	
  of	
  Nylon	
  6	
  was	
  measured	
  to	
  
be	
   𝛼! = 30 ∙ 10!!
  K!!
,	
  about	
  the	
  third	
  of	
  the	
  book	
  value4
	
  of	
  80 − 85  ×10!!
  K!!
.	
  	
  
In	
  the	
  context	
  of	
  this	
  experiment	
  this	
  is	
  a	
  quite	
  good	
  value	
  as	
  it	
  gives	
  the	
  right	
  order	
  
of	
   magnitude.	
   This	
   confirms	
   that	
   the	
   other	
   values	
   measured	
   and	
   calculated	
  
throughout	
  the	
  experiment	
  were	
  right	
  as	
  well	
  or	
  at	
  least	
  they	
  were	
  in	
  the	
  right	
  order	
  
of	
  magnitude.	
  	
  
To	
   measure	
   the	
   thermal	
   expansion	
   coefficient	
   of	
   Nylon	
   6	
   there	
   are	
   many	
   ways,	
  
which	
  are	
  obviously	
  more	
  precise	
  and	
  accurate	
  than	
  cooling	
  a	
  cross-­‐ply	
  carbon	
  fibre	
  
reinforced	
  Nylon	
  strip.	
  Without	
  the	
  carbon	
  fibre	
  and	
  by	
  the	
  use	
  of	
  a	
  material	
  with	
  a	
  
known	
   𝛼	
  the	
  same	
  bi-­‐material	
  experiment	
  could	
  be	
  performed	
  for	
  example.	
  
	
   	
  
  13	
  
6 Conclusion	
  
Although	
  the	
  only	
  difference	
  was	
  in	
  their	
  stacking	
  sequences,	
  the	
  three	
  laminates	
  
looked	
   and	
   behaved	
   very	
   differently	
   after	
   having	
   been	
   cooled	
   down	
   to	
   room	
  
temperature.	
  The	
  symmetric	
  stackings	
  had	
  symmetric	
  (basically	
  flat)	
  shapes,	
  while	
  
the	
   simple	
   cross-­‐ply	
   laminate	
   ha	
   a	
   saddle	
   shape	
   due	
   to	
   the	
   different	
   thermal	
  
expansivity	
  in	
  axial	
  and	
  transverse	
  direction	
  in	
  every	
  layer.	
  
From	
  the	
  data	
  obtained	
  by	
  the	
  4-­‐point	
  bending	
  tests	
  we	
  calculated	
  the	
  stiffness	
  of	
  
the	
  uniaxial	
  laminate	
  in	
  the	
  two	
  directions:	
  
𝐸!"#!$ = 86.3  GPa	
  
𝐸!"#$%&'"%' = 8.57  GPa	
  
Using	
   these	
   values,	
   the	
   Halpin-­‐Tsai	
   and	
   Voigt	
   equations	
   gave	
   the	
   stiffness	
   of	
   the	
  
carbon	
  fibres	
  themselves:	
  
𝐸!!"#$% = 168  GPa	
  
𝐸!!"#$%&'$& = 16.1  GPa	
  
We	
  put	
  a	
  strip	
  cut	
  from	
  the	
  cross-­‐ply	
  laminate	
  into	
  liquid	
  nitrogen.	
  As	
  expected	
  it	
  
bended	
   due	
   to	
   the	
   bi-­‐material	
   effect.	
   From	
   the	
   curvature	
   and	
   previous	
   data	
   we	
  
calculated	
  the	
  thermal	
  expansivity	
  of	
  the	
  Nylon	
  matrix	
  to	
  be:	
  
𝛼! = 30 ∙ 10!!
  K!!
	
  
This	
  is	
  not	
  a	
  precise	
  technique,	
  however	
  the	
  obtained	
  value	
  is	
  still	
  within	
  a	
  plausible	
  
error	
  range.	
  
	
  
This	
  experiment	
  showed	
  and	
  quantified	
  the	
  bending	
  problems	
  of	
  composites	
  in	
  real	
  
world	
  applications	
  due	
  to	
  temperature	
  change	
  and	
  showed	
  that	
  these	
  are	
  mostly	
  
avoidable	
  by	
  using	
  symmetrical	
  stacking	
  sequences.	
  As	
  we	
  saw	
  for	
  the	
  symmetrical	
  
cross-­‐ply,	
   this	
   implies	
   stresses	
   in	
   the	
   material,	
   which	
   might	
   cause	
   a	
   problem.	
  
Therefore	
   it	
   may	
   not	
   be	
   desirable	
   to	
   use	
   composites	
   for	
   applications	
   where	
   the	
  
temperature	
  change	
  can	
  be	
  extreme.	
  
	
   	
  
  14	
  
7 Appendices	
  
Further	
  readings:	
  
	
  
Hiroaki	
  Miyagawa,	
  Thomas	
  Mase,	
  Chiaki	
  Sato,	
  Edward	
  Drown,	
  Lawrence	
  T.	
  Drzal,	
  
Kozo	
  Ikegami	
  
Comparison	
  of	
  experimental	
  and	
  theoretical	
  transverse	
  elastic	
  modulus	
  of	
  carbon	
  
fibers	
  
Carbon	
  44	
  (2006)	
  2002–2008	
  
http://www.sciencedirect.com/science/article/pii/S0008622306000819	
  
	
  
A.	
  Margossian,	
  S.	
  Bel,	
  R.	
  Hinterhoelzl	
  
Bending	
  characterisation	
  of	
  a	
  molten	
  unidirectional	
  carbon	
  fibre	
  reinforced	
  
thermoplastic	
  composite	
  using	
  a	
  Dynamic	
  Mechanical	
  Analysis	
  system	
  
Composites	
  Part	
  A:	
  Applied	
  Science	
  and	
  Manufacturing	
  
Volume	
  77,	
  October	
  2015,	
  Pages	
  154–163	
  
http://www.sciencedirect.com/science/article/pii/S1359835X15002146	
  
	
  
Chensong	
  Dong	
  
,	
  Heshan	
  A.	
  Ranaweera-­‐Jayawardena,	
  Ian	
  J.	
  Davies	
  
Flexural	
  properties	
  of	
  hybrid	
  composites	
  reinforced	
  by	
  S-­‐2	
  glass	
  and	
  T700S	
  carbon	
  
fibres	
  
Composites	
  Part	
  B:	
  Engineering	
  
Volume	
  43,	
  Issue	
  2,	
  March	
  2012,	
  Pages	
  573–581	
  
http://www.sciencedirect.com/science/article/pii/S1359836811004161	
  
	
  
Wolfgang	
  Grellmann,	
  Sabine	
  Seidler	
  
Testing	
  of	
  Composite	
  Materials	
  
Polymer	
  Testing	
  (Second	
  Edition)	
  
2013,	
  Pages	
  513–563	
  
http://www.sciencedirect.com/science/article/pii/B9781569905487500116	
  
	
  
L.J.	
  Hart-­‐Smith	
  	
  
Comparison	
  between	
  theories	
  and	
  test	
  data	
  concerning	
  the	
  strength	
  of	
  various	
  
fibre–polymer	
  composites	
  
Composites	
  Science	
  and	
  Technology	
  
Volume	
  62,	
  Issues	
  12–13,	
  September–October	
  2002,	
  Pages	
  1591–1618	
  
http://www.sciencedirect.com/science/article/pii/S0266353801002123	
  
	
  
Innocent	
  Kafodya,	
  Guijun	
  Xian,	
  Hui	
  Li	
  
Durability	
  study	
  of	
  pultruded	
  CFRP	
  plates	
  immersed	
  in	
  water	
  and	
  seawater	
  under	
  
sustained	
  bending:	
  Water	
  uptake	
  and	
  effects	
  on	
  the	
  mechanical	
  properties	
  
Composites	
  Part	
  B:	
  Engineering	
  
Volume	
  70,	
  1	
  March	
  2015,	
  Pages	
  138–148	
  
http://www.sciencedirect.com/science/article/pii/S1359836814004909	
  
	
  
J.	
  Deng,	
  J.	
  Eisenhauer	
  Tanner,	
  D.	
  Mukai,	
  H.	
  R.	
  Hamilton,	
  and	
  C.	
  W.	
  Dolan	
  
  15	
  
Durability	
   Performance	
   of	
   Carbon	
   Fiber-­‐Reinforced	
   Polymer	
   in	
  
Repair/Strengthening	
  of	
  Concrete	
  Beams	
  
Materials	
  Journal	
  
Volume:	
  112	
  Issue:	
  2	
  Pages(s):	
  247-­‐258	
  
https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?
m=details&i=51687104	
  
	
  
8 References	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1
	
  Part	
  II	
  Practical	
  Book	
  —	
  P1	
  
	
  
2
	
  http://www.vircon-­‐composites.com/3_1_2.asp	
  
	
  
3
	
  Hiroaki	
  Miyagawa,	
  Thomas	
  Mase,	
  Chiaki	
  Sato,	
  Edward	
  Drown,	
  Lawrence	
  T.	
  Drzal,	
  
Kozo	
  Ikegami	
  
Comparison	
  of	
  experimental	
  and	
  theoretical	
  transverse	
  elastic	
  modulus	
  of	
  carbon	
  
fibers	
  
Carbon	
  44	
  (2006)	
  2002–2008	
  
http://www.sciencedirect.com/science/article/pii/S0008622306000819	
  
	
  
4
	
  http://www.engineeringtoolbox.com/linear-­‐expansion-­‐coefficients-­‐d_95.html	
  
	
  

More Related Content

What's hot

Experimental and numerical analysis of elasto-plastic behaviour of notched sp...
Experimental and numerical analysis of elasto-plastic behaviour of notched sp...Experimental and numerical analysis of elasto-plastic behaviour of notched sp...
Experimental and numerical analysis of elasto-plastic behaviour of notched sp...IJERA Editor
 
D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.
D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.
D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.Duncan Gordon
 
Tensile Strength
Tensile StrengthTensile Strength
Tensile Strengthbeckydaw
 
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...Northwestern Polytechnical University
 
Analysis of stiffened isotropic and composite plate
Analysis of stiffened isotropic and composite plateAnalysis of stiffened isotropic and composite plate
Analysis of stiffened isotropic and composite plateIRJET Journal
 
Work hardening and Baushinger effect
Work hardening and Baushinger effectWork hardening and Baushinger effect
Work hardening and Baushinger effectJitender Madhesiya
 
Compression test verification_for_a_wood
Compression test verification_for_a_woodCompression test verification_for_a_wood
Compression test verification_for_a_woodSumitThakur755213
 
Higher Order Normal Shear Deformation Theory for Static FG Rectangular Plates
Higher Order Normal Shear Deformation Theory for Static FG Rectangular PlatesHigher Order Normal Shear Deformation Theory for Static FG Rectangular Plates
Higher Order Normal Shear Deformation Theory for Static FG Rectangular PlatesIRJET Journal
 
A review of constitutive models for plastic deformation
A review of constitutive models for plastic deformationA review of constitutive models for plastic deformation
A review of constitutive models for plastic deformationSamir More
 
Mechanical properties
Mechanical propertiesMechanical properties
Mechanical propertiesSelf-employed
 
Characterization and evaluation of polymer
Characterization and evaluation of polymerCharacterization and evaluation of polymer
Characterization and evaluation of polymerChandresh Patel
 
Presentation on Higher Order Analysis of Steel Space Frames
Presentation on Higher Order Analysis of Steel Space FramesPresentation on Higher Order Analysis of Steel Space Frames
Presentation on Higher Order Analysis of Steel Space Framesonkar vaidya
 
Finite Element Analysis and Natural Modes Investigation
Finite Element Analysis and Natural Modes InvestigationFinite Element Analysis and Natural Modes Investigation
Finite Element Analysis and Natural Modes InvestigationStasik Nemirovsky
 
Standard_Test_Method_for_Microindentatio.pdf
Standard_Test_Method_for_Microindentatio.pdfStandard_Test_Method_for_Microindentatio.pdf
Standard_Test_Method_for_Microindentatio.pdfCharitha Ranwala ,CSWP
 
Evaluation of fracture toughness of sintered silica nickel nanocomposites
Evaluation of fracture toughness of sintered silica nickel nanocompositesEvaluation of fracture toughness of sintered silica nickel nanocomposites
Evaluation of fracture toughness of sintered silica nickel nanocompositeseSAT Journals
 
Dr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tensionDr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tensionDr.Ramaswamy Narayanasamy
 
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITESSLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITESIAEME Publication
 

What's hot (20)

Experimental and numerical analysis of elasto-plastic behaviour of notched sp...
Experimental and numerical analysis of elasto-plastic behaviour of notched sp...Experimental and numerical analysis of elasto-plastic behaviour of notched sp...
Experimental and numerical analysis of elasto-plastic behaviour of notched sp...
 
D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.
D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.
D.H. Gordon et al., Polymer, 35, (1994) 2554 - 2559.
 
Tensile Strength
Tensile StrengthTensile Strength
Tensile Strength
 
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
 
Dma
DmaDma
Dma
 
Analysis of stiffened isotropic and composite plate
Analysis of stiffened isotropic and composite plateAnalysis of stiffened isotropic and composite plate
Analysis of stiffened isotropic and composite plate
 
Work hardening and Baushinger effect
Work hardening and Baushinger effectWork hardening and Baushinger effect
Work hardening and Baushinger effect
 
Compression test verification_for_a_wood
Compression test verification_for_a_woodCompression test verification_for_a_wood
Compression test verification_for_a_wood
 
Ch04
Ch04Ch04
Ch04
 
Higher Order Normal Shear Deformation Theory for Static FG Rectangular Plates
Higher Order Normal Shear Deformation Theory for Static FG Rectangular PlatesHigher Order Normal Shear Deformation Theory for Static FG Rectangular Plates
Higher Order Normal Shear Deformation Theory for Static FG Rectangular Plates
 
A review of constitutive models for plastic deformation
A review of constitutive models for plastic deformationA review of constitutive models for plastic deformation
A review of constitutive models for plastic deformation
 
Mechanical properties
Mechanical propertiesMechanical properties
Mechanical properties
 
Characterization and evaluation of polymer
Characterization and evaluation of polymerCharacterization and evaluation of polymer
Characterization and evaluation of polymer
 
Presentation on Higher Order Analysis of Steel Space Frames
Presentation on Higher Order Analysis of Steel Space FramesPresentation on Higher Order Analysis of Steel Space Frames
Presentation on Higher Order Analysis of Steel Space Frames
 
F1135359
F1135359F1135359
F1135359
 
Finite Element Analysis and Natural Modes Investigation
Finite Element Analysis and Natural Modes InvestigationFinite Element Analysis and Natural Modes Investigation
Finite Element Analysis and Natural Modes Investigation
 
Standard_Test_Method_for_Microindentatio.pdf
Standard_Test_Method_for_Microindentatio.pdfStandard_Test_Method_for_Microindentatio.pdf
Standard_Test_Method_for_Microindentatio.pdf
 
Evaluation of fracture toughness of sintered silica nickel nanocomposites
Evaluation of fracture toughness of sintered silica nickel nanocompositesEvaluation of fracture toughness of sintered silica nickel nanocomposites
Evaluation of fracture toughness of sintered silica nickel nanocomposites
 
Dr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tensionDr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tension
 
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITESSLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
 

Viewers also liked

Metal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant BawiskarMetal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant BawiskarNishikant Bawiskar
 
METAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEMETAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEkedarisantosh
 
Composites manufacturing technology
Composites manufacturing technologyComposites manufacturing technology
Composites manufacturing technologySukhdev Tudu
 
Study of Round Central Hole in Buckling Analysis of Cross Ply Laminates
Study of Round Central Hole in Buckling Analysis of Cross Ply LaminatesStudy of Round Central Hole in Buckling Analysis of Cross Ply Laminates
Study of Round Central Hole in Buckling Analysis of Cross Ply LaminatesAM Publications
 

Viewers also liked (7)

Metal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant BawiskarMetal matrix composite by Nishikant Bawiskar
Metal matrix composite by Nishikant Bawiskar
 
Veneers and laminates
Veneers and laminatesVeneers and laminates
Veneers and laminates
 
laminates
 laminates laminates
laminates
 
METAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEMETAL MATRIX COMPOSITE
METAL MATRIX COMPOSITE
 
Composites manufacturing technology
Composites manufacturing technologyComposites manufacturing technology
Composites manufacturing technology
 
Study of Round Central Hole in Buckling Analysis of Cross Ply Laminates
Study of Round Central Hole in Buckling Analysis of Cross Ply LaminatesStudy of Round Central Hole in Buckling Analysis of Cross Ply Laminates
Study of Round Central Hole in Buckling Analysis of Cross Ply Laminates
 
Thermal analysis
Thermal analysisThermal analysis
Thermal analysis
 

Similar to Thermal Distortion in Composites Experiment

MMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft WingMMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft WingLI HE
 
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...IOSR Journals
 
Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...
Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...
Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...Angelos Mintzas
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...IAEME Publication
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...iaemedu
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...IAEME Publication
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...iaemedu
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...IAEME Publication
 
Thermo mechanical characterization and damage of polymer materials:Applicatio...
Thermo mechanical characterization and damage of polymer materials:Applicatio...Thermo mechanical characterization and damage of polymer materials:Applicatio...
Thermo mechanical characterization and damage of polymer materials:Applicatio...IJERD Editor
 
Sectionclassificationforcold formedchannelsteel
Sectionclassificationforcold formedchannelsteelSectionclassificationforcold formedchannelsteel
Sectionclassificationforcold formedchannelsteelnarasimharaodvl
 
Design, Strength and Failure of Paleobiology Plaster Jackets
Design, Strength and Failure of Paleobiology Plaster JacketsDesign, Strength and Failure of Paleobiology Plaster Jackets
Design, Strength and Failure of Paleobiology Plaster JacketsKeshav Swarup
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Me 1999-mar4 - predicting durability
Me 1999-mar4 - predicting durabilityMe 1999-mar4 - predicting durability
Me 1999-mar4 - predicting durabilitySandeep (Sandy) Muju
 
THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...
THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...
THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...IAEME Publication
 
Mechanical behavior of tubular welded T-joints with circular and elliptical c...
Mechanical behavior of tubular welded T-joints with circular and elliptical c...Mechanical behavior of tubular welded T-joints with circular and elliptical c...
Mechanical behavior of tubular welded T-joints with circular and elliptical c...IOSR Journals
 

Similar to Thermal Distortion in Composites Experiment (20)

MMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft WingMMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft Wing
 
Project_RP496
Project_RP496Project_RP496
Project_RP496
 
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
 
Research Paper on Nacre
Research Paper on NacreResearch Paper on Nacre
Research Paper on Nacre
 
Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...
Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...
Magma-Global-An-integrated-approach-to-the-design-of-high-performance-carbon-...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...Investigation of heat transfer through cnt composites focusing on conduction ...
Investigation of heat transfer through cnt composites focusing on conduction ...
 
Thermo mechanical characterization and damage of polymer materials:Applicatio...
Thermo mechanical characterization and damage of polymer materials:Applicatio...Thermo mechanical characterization and damage of polymer materials:Applicatio...
Thermo mechanical characterization and damage of polymer materials:Applicatio...
 
Sectionclassificationforcold formedchannelsteel
Sectionclassificationforcold formedchannelsteelSectionclassificationforcold formedchannelsteel
Sectionclassificationforcold formedchannelsteel
 
Design, Strength and Failure of Paleobiology Plaster Jackets
Design, Strength and Failure of Paleobiology Plaster JacketsDesign, Strength and Failure of Paleobiology Plaster Jackets
Design, Strength and Failure of Paleobiology Plaster Jackets
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
H1075262
H1075262H1075262
H1075262
 
G012414347
G012414347G012414347
G012414347
 
Me 1999-mar4 - predicting durability
Me 1999-mar4 - predicting durabilityMe 1999-mar4 - predicting durability
Me 1999-mar4 - predicting durability
 
THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...
THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...
THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THE...
 
Kronfeld asc2009-li
Kronfeld asc2009-liKronfeld asc2009-li
Kronfeld asc2009-li
 
Mechanical behavior of tubular welded T-joints with circular and elliptical c...
Mechanical behavior of tubular welded T-joints with circular and elliptical c...Mechanical behavior of tubular welded T-joints with circular and elliptical c...
Mechanical behavior of tubular welded T-joints with circular and elliptical c...
 

Thermal Distortion in Composites Experiment

  • 1.   1   Thermal  distortion  in  composites   Author:  Roland  Papp   Experiment  performed  on  3  and  6  November  2015  in  the  Department  of  Materials   Science  and  Metallurgy  of  the  University  of  Cambridge.   Abstract   This  experiment  is  the  investigation  of  the  distortion  of  carbon  fibre  reinforced  Nylon   6   composites   due   to   temperature   change.   We   produced   laminates   of   different   stacking   sequences   (uniaxial,   simple   cross-­‐ply   and   symmetrical   cross-­‐ply)   by   hot   pressing.   After   cooling   down   the   simple   cross-­‐ply   had   a   saddle   shape,   while   the   others  with  symmetrical  stacking  were  (mostly)  flat.     We  performed  4-­‐point  bending  to  get  the  stiffness  of  the  uniaxial  laminate:   𝐸!"#!$ = 86.3  GPa                           𝐸!"#$%&'"%' = 8.57  GPa   From  this  we  worked  out  the  stiffness  of  the  carbon  fibres  only:   𝐸!!"#$% = 168  GPa                           𝐸!!"#$%&'$& = 16.1  GPa   In  the  next  part  of  the  experiment  we  put  a  cross-­‐ply  strip  into  liquid  nitrogen  to   measure   the   curvature   after   bending.   It   bent   just   as   expected   from   a   bi-­‐material   strip.  From  the  curvature  and  previous  data  we  calculated  the  thermal  expansivity  of   the  Nylon  6  matrix  to  be:   𝛼! = 30 ∙ 10!!  K!!   Unlike   the   stiffness   data   this   did   not   happen   to   be   very   accurate,   however   this   experiment  was  not  for  simply  measuring  the  thermal  expansion  coefficient  of  Nylon   6   in   a   rather   complicated   way,   but   to   understand   composites’   reactions   to   temperature  changes  and  these  reactions’  dependence  on  the  stacking  sequence.       1 Introduction   This   report   is   about   an   experiment   performed   in   the   Department   of   Materials   Science  and  Metallurgy  of  the  University  of  Cambridge.     We   produced   carbon   fibre   reinforced   composite   laminates   with   different   stacking   sequences   (uniaxial,   simple   cross-­‐ply   and   symmetrical   cross-­‐ply)   and   investigated   their   properties.   We   took   precise   computer   controlled   4-­‐point   bending   measurements   to   work   out   the   stiffness   of   the   composite   in   axial   and   transverse   directions.  Then  by  the  Voigt  and  Halpin-­‐Tsai  expressions  we  calculated  the  Young   modulus  of  carbon  fibres  in  both  axial  and  transverse  directions.    
  • 2.   2   In  the  next  part  of  the  experiment  we  measured  the  bending  of  a  simple  cross-­‐ply   composite   due   to   great   temperature   change   by   putting   it   in   liquid   nitrogen.   We   noted   the   curvature   and   by   using   data   from   the   previous   part   we   calculated   the   thermal  expansion  coefficient  of  the  Nylon  6  matrix.   At  the  end  we  investigated  the  composite  samples  under  microscope  to  search  for   porosities  and  to  get  a  clear  view  of  the  distribution  of  carbon  fibres.   2 Theoretical  Background1   2.1  Stiffness   The  second  moment  of  area  of  a  section  of  a  beam  is   𝐼 = 𝑤ℎ! 12   For  a  4-­‐point  bending  specified  in  Figure  2  the  central  deflection  is     𝛿 = 𝐹𝑠 3𝐿! − 4𝑠! 48𝐸𝐼   Therefore     𝐸 = 𝑠 3𝐿! − 4𝑠! 48𝐼 ∙ d𝛿 d𝐹   By   knowing   the   Young   modulus   of   the   matrix   𝐸!  and   the   fibres   𝐸!  and   the   fibre   volume   fraction   𝑓  we   can   work   out   the   stiffness   of   a   strip   in   axial   (1)   and   perpendicular  (2)  directions  by  the  following  equations:   Voigt  equation:   𝐸! = 𝑓𝐸! + 1 − 𝑓 𝐸!   Halpin-­‐Tsai  expression:   𝐸! = 𝐸! 1 + 𝜂𝑓 1 − 𝜂𝑓 ,      where                𝜂 = 𝐸! 𝐸! − 1 𝐸! 𝐸! + 1   These  equations  can  be  rearranged  for  the  stiffness  of  the  fibres  in  two  directions:   𝐸!! = 𝑓!! 𝐸! − 1 − 𝑓 𝐸!   𝐸!! = 𝐸! ∙ 1 + 𝜂 1 − 𝜂 ,      where                𝜂 = 𝑓!! ∙ 𝐸! − 𝐸! 𝐸! + 𝐸!   2.2  Thermal  Contraction   The  curvature  due  to  a  misfit  strain  Δ 𝜀  in  a  bi-­‐material  is     𝜅 = 6𝐸! 𝐸! ℎ! + ℎ! ℎ!ℎ! 𝐸! ! ℎ! ! + 4𝐸! 𝐸!ℎ! ! ℎ! + 6𝐸! 𝐸!ℎ! ! ℎ! ! + 4𝐸! 𝐸!ℎ!ℎ! ! + 𝐸! ! ℎ! ! Δ𝜀   where   𝐸  and  ℎ  are  the  Young  modulus  and  thickness  of  the  strips.  
  • 3.   3           Figure  1  —  Geometry  and  equation  for  the  relationship  between  the  curvature,   𝜿,   and  the  consequent  lateral  displacement,   𝜹  for  any  curved  piece  of  material.     The  Poisson  ratio  of  the  composite  is   𝜈!"! = 𝑓𝜈! + 1 − 𝑓 𝜈!   where   𝜈!  and   𝜈!  are  that  of  the  fibre  and  the  matrix.   The  predicted  values  for  the  axial  and  transverse  thermal  expansivities  for  a  single   uniaxial  ply  of  composite  are   𝛼! !" = 𝛼! 1 − 𝑓 𝐸! + 𝛼! 𝑓𝐸! 1 − 𝑓 𝐸! + 𝑓𝐸!   𝛼! !" = 𝛼! 1 − 𝑓 1 + 𝜈! + 𝛼! 𝑓 1 + 𝜈! − 𝛼! !" 𝜈!"!   By  definition   Δ𝛼 = Δ𝜀 Δ𝑇      
  • 4.   4     3 Method   3.1 Production   We  used  a  unidirectional  pre-­‐preg  tape  made  of  carbon  fibre  reinforced  Nylon  6  to   cut  out  12  plies  for  each  of  the  three  laminate  samples.  We  stacked  the  12  plies  onto   each  other  creating  the  following  sequences:   i. Unidirectional  —  0°!"   ii. Simple  cross-­‐ply  —  0°!/90°!   iii. Symmetrical  cross-­‐ply  —  0°!/90°!/0°!   We  put  these  stacks  into  a  hot  press  to  heat  them  up  to  280℃  under  a  pressure  of   50  atmospheres  for  about  30  minutes  and  cool  them  down  slowly.   3.2  After  cooling   We   examined   the   laminates   qualitatively.   The   difference   in   thermal   distortion   between  the  three  stacking  sequences  was  obvious  to  the  eye.   3.3  Stiffness  measurement   We   cut   out   two   strips   from   the   unidirectional   (i)   sample:   One   parallel   and   one   perpendicular  to  the  fibres.  The  dimensions  of  the  strips  are  in  Table  1.   We  used  a  scanning  laser  extensometer  to  perform  displacement  controlled  4-­‐point   bending  tests  on  these.  The  data  was  captured  by  a  computer  and  put  in  an  Excel   table  format.  The  loading  configuration  is  shown  on  Figure  2.       Figure  2  —  Loading  configuration  during  4-­‐point  bending,  showing  the  forces,   dimensions  and  central  deflection   3.4  Thermal  contraction   We  also  cut  out  a  strip  from  the  simple  cross-­‐ply  laminate  (ii)  to  perform  a  thermal   extension  experiment.  After  fixing  it  securely  in  a  tray  we  poured  liquid  nitrogen  into   the  tray  to  cool  the  strip  down.  The  configuration  is  shown  below  on  Figure  3.    
  • 5.   5     Figure  3   Generation  of  a  misfit  strain  and  hence  a  curvature  in  a  bi-­‐material  strip.     We  used  this  cooling  configuration  for  the  thermal  contraction  measurement.   We  measured  the  deflection   𝛿  and  calculated  the  curvature   𝜅  in  the  way  explained   in  Figure  1.   3.5  Microscopic  examination   As  the  microscopic  examination  destroyed  the  samples,  we  performed  it  at  the  end   of  the  experiment.  We  mounted  and  polished  pieces  of  the  three  strips  to  look  for   porosities   and   check   the   alignment   and   distribution   of   the   fibers   under   optical   microscope.   4 Results   Some  data:   𝐿 = 100  mm   𝑠 = 25  mm     Table  1  —  Book  values  of  a  few  physical  properties     𝐸 GPa   𝜌   Mg/m!     𝛼   K!! ∙ 10!!   𝜈   Carbon   fibre   (axial)   -­‐   1.75   -­‐1   0.2   Carbon   fibre   (transverse)   -­‐   1.75   10   0.2   Nylon  6   5   1.1   -­‐   0.4      
  • 6.   6   Table  2  —  Measured  properties  of  the  strips     𝑚  (g)   𝑙  (mm)   𝑤  (mm)   ℎ  (mm)   𝜌  (kg/m! )   𝐼  (mm! )   Uniaxial  parallel  (1)   5.64   116.2   21.9   1.7   1304   8.97   Uniaxial  transverse  (2)   5.34   119.8   18.14   1.72   1429   7.69   Simple  cross-­‐ply   6.2   121.1   21.1   1.58   1536   6.94       4.1  After  cooling     When   the   laminates   have   cooled   down   we   looked   at   them   and   found   clear   differences:   i. The  unidirectional  was  flat.  It  was  much  easier  to  bend  it  in  one  direction   than  in  the  other  parallel  to  it.   ii. The  simple  cross-­‐ply  was  saddle-­‐shaped  and  stiff  in  all  directions.   iii. The  symmetrical  cross-­‐ply  was  also  slightly  saddle  shaped,  however  by  a   gently  force  it  could  be  clicked  to  the  other  side,  giving  two  symmetrical   stable  phases.   4.2  Fibre  volume  fraction   The  average  density  of  the  three  strips  is:   𝜌 = 1423  kg/m!   The  fibre  volume  fraction  of  the  composite  is  therefore:   𝑓 = 𝜌 − 𝜌!"!"# 𝜌!"#$%&'($#) − 𝜌!"#$% = 49.7% ≈ 50%   The  above  equation  holds  if  and  only  if  the  composite  is  free  of  porosities.  To  check   this  we  took  micrographs  of  the  three  strips  (see  Micrograph  1-­‐3).   I   do   not   see   porosity   anywhere   in   the   samples,   not   even   at   the   interface   of   differently  oriented  plies.  The  fibre  volume  fraction  is  indeed  50%.    
  • 7.   7     Micrograph  1  —  Unidirectional  composite,  axial  view       Micrograph  2  —  Unidirectional  composite,  transverse  view  
  • 8.   8       Micrograph  3  —  Cross-­‐ply  composite   4.3  Stiffness  measurement   The  gradients  of  the  plots  for  the  axial  (1)  and  transverse  (2)  loadings  (Figure  4  and   Figure  5)  give  the  stiffness  in  these  directions:   𝐸! = 𝑠 3𝐿! − 4𝑠! 48 ∙ 𝐼! ∙ d𝛿 d𝐹 ! = 𝑠 3𝐿! − 4𝑠! 48𝐼! ∙ −gradient!"#$% = 86.3  GPa   𝐸! = 𝑠 3𝐿! − 4𝑠! 48 ∙ 𝐼! ∙ d𝛿 d𝐹 ! = 𝑠 3𝐿! − 4𝑠! 48𝐼! ∙ −gradient!"#$%&'"%' = 8.57  GPa    
  • 9.   9     Figure  4  —  Axial  loading  data  of  the  uniaxial  composite  strip       Figure  5  —  Transverse  loading  data  of  the  uniaxial  composite  strip         y  =  -­‐0.0185x  +  22.501   R²  =  0.99994   2.05E+01   2.10E+01   2.15E+01   2.20E+01   2.25E+01   2.30E+01   0.00E+00   2.00E+01   4.00E+01   6.00E+01   8.00E+01   1.00E+02   1.20E+02   δ0-­‐δ   (mm)     F(N)   Axial   y  =  -­‐0.2174x  +  21.618   R²  =  0.99989   1.92E+01   1.94E+01   1.96E+01   1.98E+01   2.00E+01   2.02E+01   2.04E+01   2.06E+01   2.08E+01   2.10E+01   2.12E+01   2.14E+01   0.00E+00  2.00E+00  4.00E+00  6.00E+00  8.00E+00  1.00E+01  1.20E+01   δ0-­‐δ   (mm)     F(N)   Transverse  
  • 10.   10   Using  the  rearranged  Voigt  and  Halpin-­‐Tsai  expressions  (see  Theoretical  Background)   the  axial  and  transverse  stiffness  of  the  carbon  fibres  can  be  obtained:   𝐸!!"#$% = 𝑓!! 𝐸! − 1 − 𝑓 𝐸! = 168  GPa   𝜂 = 𝑓!! ∙ 𝐸! − 𝐸! 𝐸! + 𝐸! = 0.526   𝐸!!"#$%&'$& = 𝐸! ∙ 1 + 𝜂 1 − 𝜂 = 16.1  GPa   4.4  Thermal  contraction   4.4.1  Measurement     Table  3  —  Directly  measured  data  after  cooling   𝑥   mm   𝛿   mm   Δ𝑇  (K)     85   10   -­‐220        The  curvature  follows  as   𝜅 = 2 sin tan!! 𝛿 𝑥 𝑥! + 𝛿! = 2.73  m!!   The  thickness  of  each  of  the  two  layers  (one  layer  is  made  of  six  plies)  is   ℎ = ℎ! = ℎ! = 1 2 ℎ!"#$%&  !"#$$!!"# = 0.79  mm   The   equation   in   section   2.2   giving   the   curvature   from   the   misfit   strain   can   be   transformed   algebraically   to   give   the   misfit   strain   𝛥 𝜀  from   𝜅.   After   executing   the   simplification  ℎ = ℎ! = ℎ!  and  the  substitutions   𝐸! = 𝐸!  and   𝐸! = 𝐸!  it  follows  as:   Δ𝜀 = 𝜅 12 ∙ 𝐸! 𝐸! 𝐸! ! + 14𝐸! 𝐸! + 𝐸! ! ∙ ℎ !! = 4.34 ∙ 10!!   Therefore  the  difference  in  thermal  expansivities  between  the  layers  is   Δ𝛼 = Δ𝜀 Δ𝑇 = 2.0 ∙ 10!!  K!!   4.4.2  Calculation   Using  the  expressions  in  section  2.2  and  data  given  in  Table  1  we  get  the  following   results:   𝜈!"! = 0.3  
  • 11.   11   Δ𝛼 = 𝛼! !" − 𝛼! !" = 𝑎! 1 − 𝑓 1 + 𝜈! + 𝛼! !" ∙ 𝑓 1 + 𝜈! − 𝜈!"! + 1 𝛼! !" = 𝛼! 1 − 𝑓 1 + 𝜈! − 𝜈!"! + 1 1 − 𝑓 𝐸! 1 − 𝑓 𝐸! + 𝑓𝐸! !" + 𝛼! !" 𝑓 1 + 𝜈! − 𝜈!"! + 1 𝛼! !" ∙ 𝑓 ∙ 𝐸! !" 1 − 𝑓 𝐸! + 𝑓𝐸! !" ≡ 𝛼! 𝑋 + 𝑌   By  rearranging  this  equation  we  can  work  out  the  expansivity  of  the  Nylon  matrix:   𝛼! = Δ𝛼 − 𝑌 𝑋 = 3.0 ∙ 10!!  K!!   5 Discussion   5.1  After  cooling   The  qualitative  results  were  everywhere  in  line  with  our  expectations:   i. The  unidirectional  laminate  does  not  have  a  misfit  strain  due  to  thermal   contraction  and  is  therefore  flat.  As  the  fibres  are  much  stiffer  than  the   matrix,   it   is   much   easier   to   bend   the   laminate   parallel   to   than   perpendicular  to  the  fibres.   ii. The   saddle   shape   of   the   simple   cross-­‐ply   laminate   is   due   to   different   thermal  expansivity  in  axial  and  transverse  direction  in  every  layer.  As  the   stacking  sequence  is  asymmetric,  this  creates  a  saddle  shape.     iii. As  the  stacking  sequence  is  symmetric  in  this  laminate,  in  theory  it  should   have  been  flat.  As  all  plies  are  under  stress  due  to  each  other,  and  the   preparation  was  not  fully  precise  is  reasonable  to  have  two  phases.  The   symmetry  of  the  equilibrium  phases  show  the  symmetry  of  the  stacking.   5.2  Stiffness  measurement   The  micrographs  do  not  show  porosities,  so  we  can  use  the   𝑓 = 50%  value  for  the   fibre  volume  fraction.  We  can  also  notice  that  the  fibres  are  very  well  aligned  and   fairly   homogenously   distributed.   This   means   that   the   Voigt   and   Halpin-­‐Tsai   expressions  give  a  good  accuracy  for  this  calculation.   We   checked   the   samples   after   the   measurements   were   taken   and   found   no   bentness.  This  proved  that  the  strips  were  elastic  throughout  the  whole  experiment.   According  to  Vircon2 ,  the  approximate  stiffness  of  standard  modulus  carbon  fibres  is   220 − 241  GPa,  which  is  only  slightly  higher  than  the  168  GPa  we  got  for  the  axial   stiffness.  Considering  that  it  depends  a  lot  on  the  certain  material  choice  we  can  take   it  as  a  plausible  value.   According   to   H.   Miyagawa’s   article,   Comparison   of   experimental   and   theoretical   transverse  elastic  modulus  of  carbon  fibers,3  different  experimental  and  theoretical   techniques  give  a  broad  range  of  values  for  the  transverse  Young  modulus  of  the   fibres   illustrated   by   Figure   6.   Our   obtained   value   of  16.1  GPa  is   very   close   to   the   median  of  these  values,  therefore  our  value  is  reasonable.  
  • 12.   12     Figure  6  —  Comparison  of  the  transverse  elastic  modulus  of  carbon  fibers,  experimentally   measured  by  Raman  spectroscopy  and  nanoindentation,  numerically  analyzed  by  FEM,   and  calculated  from  Mori–Tanaka,  Halpin–Tsai,  and  Uemura  equations.3   5.3  Thermal  contraction   The   very   high   error   (>20%)   in   this   experiment   built   up   even   more   during   the   following  calculation,  which  used  many  previously  determined  values  without  known   exact  errors.  Perhaps  this  is  why  the  thermal  expansivity  of  Nylon  6  was  measured  to   be   𝛼! = 30 ∙ 10!!  K!! ,  about  the  third  of  the  book  value4  of  80 − 85  ×10!!  K!! .     In  the  context  of  this  experiment  this  is  a  quite  good  value  as  it  gives  the  right  order   of   magnitude.   This   confirms   that   the   other   values   measured   and   calculated   throughout  the  experiment  were  right  as  well  or  at  least  they  were  in  the  right  order   of  magnitude.     To   measure   the   thermal   expansion   coefficient   of   Nylon   6   there   are   many   ways,   which  are  obviously  more  precise  and  accurate  than  cooling  a  cross-­‐ply  carbon  fibre   reinforced  Nylon  strip.  Without  the  carbon  fibre  and  by  the  use  of  a  material  with  a   known   𝛼  the  same  bi-­‐material  experiment  could  be  performed  for  example.      
  • 13.   13   6 Conclusion   Although  the  only  difference  was  in  their  stacking  sequences,  the  three  laminates   looked   and   behaved   very   differently   after   having   been   cooled   down   to   room   temperature.  The  symmetric  stackings  had  symmetric  (basically  flat)  shapes,  while   the   simple   cross-­‐ply   laminate   ha   a   saddle   shape   due   to   the   different   thermal   expansivity  in  axial  and  transverse  direction  in  every  layer.   From  the  data  obtained  by  the  4-­‐point  bending  tests  we  calculated  the  stiffness  of   the  uniaxial  laminate  in  the  two  directions:   𝐸!"#!$ = 86.3  GPa   𝐸!"#$%&'"%' = 8.57  GPa   Using   these   values,   the   Halpin-­‐Tsai   and   Voigt   equations   gave   the   stiffness   of   the   carbon  fibres  themselves:   𝐸!!"#$% = 168  GPa   𝐸!!"#$%&'$& = 16.1  GPa   We  put  a  strip  cut  from  the  cross-­‐ply  laminate  into  liquid  nitrogen.  As  expected  it   bended   due   to   the   bi-­‐material   effect.   From   the   curvature   and   previous   data   we   calculated  the  thermal  expansivity  of  the  Nylon  matrix  to  be:   𝛼! = 30 ∙ 10!!  K!!   This  is  not  a  precise  technique,  however  the  obtained  value  is  still  within  a  plausible   error  range.     This  experiment  showed  and  quantified  the  bending  problems  of  composites  in  real   world  applications  due  to  temperature  change  and  showed  that  these  are  mostly   avoidable  by  using  symmetrical  stacking  sequences.  As  we  saw  for  the  symmetrical   cross-­‐ply,   this   implies   stresses   in   the   material,   which   might   cause   a   problem.   Therefore   it   may   not   be   desirable   to   use   composites   for   applications   where   the   temperature  change  can  be  extreme.      
  • 14.   14   7 Appendices   Further  readings:     Hiroaki  Miyagawa,  Thomas  Mase,  Chiaki  Sato,  Edward  Drown,  Lawrence  T.  Drzal,   Kozo  Ikegami   Comparison  of  experimental  and  theoretical  transverse  elastic  modulus  of  carbon   fibers   Carbon  44  (2006)  2002–2008   http://www.sciencedirect.com/science/article/pii/S0008622306000819     A.  Margossian,  S.  Bel,  R.  Hinterhoelzl   Bending  characterisation  of  a  molten  unidirectional  carbon  fibre  reinforced   thermoplastic  composite  using  a  Dynamic  Mechanical  Analysis  system   Composites  Part  A:  Applied  Science  and  Manufacturing   Volume  77,  October  2015,  Pages  154–163   http://www.sciencedirect.com/science/article/pii/S1359835X15002146     Chensong  Dong   ,  Heshan  A.  Ranaweera-­‐Jayawardena,  Ian  J.  Davies   Flexural  properties  of  hybrid  composites  reinforced  by  S-­‐2  glass  and  T700S  carbon   fibres   Composites  Part  B:  Engineering   Volume  43,  Issue  2,  March  2012,  Pages  573–581   http://www.sciencedirect.com/science/article/pii/S1359836811004161     Wolfgang  Grellmann,  Sabine  Seidler   Testing  of  Composite  Materials   Polymer  Testing  (Second  Edition)   2013,  Pages  513–563   http://www.sciencedirect.com/science/article/pii/B9781569905487500116     L.J.  Hart-­‐Smith     Comparison  between  theories  and  test  data  concerning  the  strength  of  various   fibre–polymer  composites   Composites  Science  and  Technology   Volume  62,  Issues  12–13,  September–October  2002,  Pages  1591–1618   http://www.sciencedirect.com/science/article/pii/S0266353801002123     Innocent  Kafodya,  Guijun  Xian,  Hui  Li   Durability  study  of  pultruded  CFRP  plates  immersed  in  water  and  seawater  under   sustained  bending:  Water  uptake  and  effects  on  the  mechanical  properties   Composites  Part  B:  Engineering   Volume  70,  1  March  2015,  Pages  138–148   http://www.sciencedirect.com/science/article/pii/S1359836814004909     J.  Deng,  J.  Eisenhauer  Tanner,  D.  Mukai,  H.  R.  Hamilton,  and  C.  W.  Dolan  
  • 15.   15   Durability   Performance   of   Carbon   Fiber-­‐Reinforced   Polymer   in   Repair/Strengthening  of  Concrete  Beams   Materials  Journal   Volume:  112  Issue:  2  Pages(s):  247-­‐258   https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx? m=details&i=51687104     8 References                                                                                                                       1  Part  II  Practical  Book  —  P1     2  http://www.vircon-­‐composites.com/3_1_2.asp     3  Hiroaki  Miyagawa,  Thomas  Mase,  Chiaki  Sato,  Edward  Drown,  Lawrence  T.  Drzal,   Kozo  Ikegami   Comparison  of  experimental  and  theoretical  transverse  elastic  modulus  of  carbon   fibers   Carbon  44  (2006)  2002–2008   http://www.sciencedirect.com/science/article/pii/S0008622306000819     4  http://www.engineeringtoolbox.com/linear-­‐expansion-­‐coefficients-­‐d_95.html