SlideShare a Scribd company logo
1 of 18
Download to read offline
  1	
  
Materials in a low-end hairdryer
	
  
Roland	
  Papp	
  
Trinity	
  College,	
  rp496	
  
Experiment	
   performed	
   in	
   the	
   IB	
   laboratory	
   of	
   the	
   Department	
   of	
   Materials	
   Science	
   and	
  
Metallurgy	
  in	
  the	
  University	
  of	
  Cambridge.	
  
Abstract
	
  
I	
   investigated	
   seven	
   parts	
   of	
   a	
   low-­‐end	
   hairdryer	
   in	
   a	
   Materials	
   Science	
   point	
   of	
   view.	
   The	
  
heating	
  wire	
  was	
  made	
  of	
  Kanthal,	
  which	
  is	
  widely	
  used	
  for	
  heating	
  purposes.	
  The	
  back	
  part	
  of	
  
the	
  case	
  was	
  made	
  of	
  ABS	
  by	
  injection	
  moulding.	
  The	
  wire	
  insulators	
  were	
  made	
  of	
  PVC,	
  which	
  
is	
  an	
  environmentally	
  unfriendly,	
  however	
  rather	
  cheap	
  material.	
  There	
  is	
  also	
  a	
  bimetallic	
  strip,	
  
which	
  acts	
  as	
  a	
  high	
  temperature	
  emergency	
  switch.	
  It	
  is	
  made	
  of	
  copper	
  and	
  steel	
  pieces	
  cut	
  
out	
  from	
  rolled	
  metal	
  sheets.	
  There	
  are	
  two	
  magnets	
  and	
  two	
  carbon	
  brushes	
  in	
  the	
  electric	
  
motor.	
  The	
  former	
  is	
  a	
  ceramic	
  magnet	
  made	
  of	
  Strontium	
  hexaferrite,	
  and	
  the	
  latter	
  is	
  simply	
  
graphite.	
  
	
  
1 Introduction
	
  
I	
  took	
  apart	
  a	
  low-­‐end	
  Argos	
  hairdryer	
  and	
  investigated	
  the	
  properties	
  of	
  the	
  materials	
  some	
  of	
  
its	
   parts	
   were	
   made	
   of.	
   I	
   tried	
   to	
   work	
   out	
   what	
   materials	
   were	
   used,	
   how	
   they	
   were	
  
manufactured	
  and	
  why	
  they	
  were	
  good	
  choices.	
  Photos	
  of	
  the	
  investigated	
  parts	
  are	
  shown	
  on	
  
the	
  exploded	
  diagram	
  (Photo	
  1).	
  
	
  
2 Method
	
  
I	
   used	
   various	
   techniques	
   such	
   as	
   measurement	
   of	
   density	
   by	
   achieving	
   critical	
   buoyancy,	
  
Vickers	
  hardness	
  testing,	
  measurement	
  of	
  resistance	
  and	
  dimensions	
  (by	
  a	
  calliper),	
  chemical	
  
tests	
   (MEK-­‐reaction,	
   chlorine	
   test),	
   optical	
   and	
   scanning	
   electron	
   microscopy,	
   and	
   infrared	
  
spectroscopy.	
  	
  
	
  
Then	
  I	
  compared	
  the	
  measured	
  results	
  to	
  values	
  and	
  graphs	
  from	
  references	
  such	
  as	
  the	
  IB	
  Data	
  
Book1
,	
   websites	
   of	
   materials	
   manufacturing	
   related	
   companies,	
   online	
   databases	
   and	
   the	
  
Wikipedia.	
  
  2	
  
	
  
	
  
Photo	
  1	
  —	
  Exploded	
  diagram	
  
  3	
  
	
  
	
  
3 Experiments
1,	
  Heating	
  wire	
  
I	
   cut	
   off	
   a	
   1	
   m	
   long	
   piece	
   from	
   the	
   heating	
   wire	
   (Photo	
   2),	
   straightened	
   it	
   by	
   pulling	
   and	
  
measured	
  the	
  diameter,	
  length,	
  mass	
  and	
  resistance	
  to	
  obtain	
  its	
  density	
  and	
  conductivity:	
  
𝜌 =
𝑚
𝑑! 𝜋
4
∙ 𝑙
= 7141  kg/m!
	
  
𝜎 =
𝑙
𝑅 ∙
𝑑! 𝜋
4
= 6.60 ∙ 10!
  1/𝛺m	
  
	
  
	
  
Photo	
  2	
  —	
  Heating	
  wire	
  
	
  
I	
  found	
  it	
  to	
  be	
  ferromagnetic.	
  
	
  
I	
   mounted,	
   grinded	
   and	
   polished	
   a	
   sample	
   for	
   hardness	
   (0.5	
   kg)	
   and	
   metallographic	
  
examination.	
  	
  
𝐻! = 238.3	
  
The	
  most	
  widely	
  used	
  materials	
  for	
  heating	
  elements	
  are	
  Nichrome	
  and	
  Kanthal.	
  Nichrome	
  is	
  
not	
  ferromagnetic	
  and	
  its	
  density	
  is	
  8400  kg/m!
,	
  which	
  is	
  out	
  of	
  error	
  range.	
  Steel	
  has	
  double	
  
the	
  conductivity,	
  which	
  is	
  also	
  out	
  of	
  error	
  range.	
  Kanthal,	
  which	
  is	
  ferromagnetic,	
  matches	
  the	
  
values	
  above	
  very	
  well.	
  Official	
  data	
  of	
  Kanthal:2
	
  
𝜌 = 7150  kg/m!
	
  	
  	
  	
  	
  	
   𝜎 = 7.2 ∙ 10!
1/𝛺m	
  	
  	
  	
  	
  	
   𝐻! = 230	
  
After	
  the	
  hardness	
  measurement	
  I	
  etched	
  the	
  sample	
  with	
  Nital	
  but	
  it	
  did	
  not	
  react.	
  Then	
  I	
  
performed	
  electrolytic	
  etching,	
  which	
  gave	
  rise	
  to	
  a	
  nice	
  microstructure	
  shown	
  on	
  Micrograph	
  1.	
  
	
  
  4	
  
	
  
Micrograph	
  1	
  —	
  Heating	
  wire	
  grains	
  
	
  
Even	
   though	
   the	
   etching	
   did	
   not	
   reveal	
   elongated	
   grains,	
   the	
   wire	
   had	
   to	
   be	
   produced	
   by	
  
stretching	
  a	
  thicker	
  wire	
  and	
  then	
  coiling	
  it	
  up.	
  	
  
	
  
	
   	
  
  5	
  
2,	
  Case	
  (black	
  part)	
  
I	
  cut	
  the	
  black	
  part	
  of	
  the	
  case	
  into	
  pieces	
  and	
  did	
  different	
  experiments	
  on	
  them:	
  
-­‐ Inspection:	
  It	
  was	
  clearly	
  injection-­‐moulded	
  (Photo	
  3).	
  
-­‐ When	
  compressed	
  in	
  a	
  vice	
  it	
  first	
  deformed	
  elastically	
  but	
  then	
  a	
  fracture	
  propagated	
  
in	
  a	
  brittle	
  manner.	
  
-­‐ Using	
  the	
  golden	
  syrup	
  method	
  I	
  measured	
  the	
  density	
  to	
  be	
   𝜌 = 1070  kg/m!
.	
  
-­‐ Thermoplastic	
  
-­‐ Negative	
  chlorine	
  test	
  
-­‐ Positive	
  MEK	
  test	
  	
  ⟹	
  	
  Contains	
  aromatic	
  rings	
  
-­‐ Hardness	
  with	
  1	
  kg:	
   𝐻! = 13.5	
  
	
  
Photo	
  3	
  —	
  Case	
  showing	
  signs	
  of	
  injection	
  moulding	
  
	
  
High	
  impact	
  polystyrene	
  (HIPS)	
  matches	
  these	
  data	
  very	
  well	
  (𝜌 = 1080  kg/m!
,	
   𝐻! = 13.2)3,4
	
  
and	
  is	
  widely	
  used	
  as	
  product	
  cases.	
  	
  
Acrylonitrile	
   butadiene	
   styrene	
   (ABS)	
   also	
   matches	
   these	
   data	
   very	
   well	
   ( 𝜌 = 1060 −
1080  kg/m!
,	
   𝐻! = 5.6 − 15.3)5,6
	
  and	
  it	
  is	
  also	
  frequently	
  used	
  in	
  everyday	
  products.	
  
	
  
I	
   used	
   infrared	
   spectroscopy	
   to	
   distinguish	
   between	
   these	
   guesses.	
   Graph	
   1	
   shows	
   that	
   the	
  
spectrum	
  is	
  exactly	
  similar	
  to	
  that	
  of	
  ABS7
	
  over	
  2000	
  and	
  between	
  696	
  and	
  757	
  cm-­‐1
	
  with	
  some	
  
  6	
  
differences	
   in	
   the	
   fingerprint	
   region	
   which	
   can	
   be	
   due	
   to	
   the	
   presence	
   of	
   additives	
   and	
  
colorants.	
  Polystyrene	
  has	
  a	
  very	
  different	
  spectrum;8
	
  therefore	
  I	
  conclude	
  that	
  the	
  case	
  is	
  most	
  
probably	
  die-­‐casted	
  ABS	
  with	
  some	
  additives,	
  e.g.	
  colorants.	
  
	
  
ABS	
  is	
  a	
  widely	
  used,	
  relatively	
  cheap	
  and	
  high	
  impact	
  resistance	
  polymer	
  capable	
  of	
  injection	
  
moulding	
  with	
  heat	
  resistance	
  up	
  to	
  80℃.	
  These	
  make	
  it	
  a	
  very	
  sensible	
  choice	
  for	
  the	
  case.	
  
	
  
	
  
	
  
Graph	
  1	
  —	
  IR-­‐spectrum	
  of	
  the	
  case	
  
	
  
I	
  also	
  performed	
  a	
  density	
  measurement	
  on	
  the	
  front	
  (grey)	
  part	
  of	
  the	
  case.	
  	
  
𝜌!"#$% = 1122  
kg
m!
	
  
This	
   means	
   that	
   it	
   is	
   a	
   clearly	
   different	
   material,	
   possibly	
   with	
   higher	
   heat	
   resistance.	
   The	
  
experiment	
  could	
  be	
  improved	
  by	
  analysing	
  this	
  part	
  as	
  well.	
  
  7	
  
	
  
Photo	
  4	
  —	
  Wire	
  insulators	
  
3,	
  Wire	
  insulators	
  
I	
  cut	
  off	
  the	
  plastic	
  insulator	
  (Photo	
  4)	
  from	
  the	
  wires	
  running	
  in	
  the	
  hairdryer.	
  It	
  is	
  ductile	
  and	
  
deformable	
  without	
  damage.	
  It	
  is	
  a	
  thermoplastic	
  with	
  positive	
  chlorine	
  but	
  negative	
  MEK	
  test.	
  
According	
  to	
  these	
  measurements	
  PVC	
  is	
  the	
  only	
  reasonable	
  material	
  choice.	
  To	
  prove	
  it	
  I	
  also	
  
performed	
   IR	
   spectroscopy	
   (Graph	
   2),	
   which	
   shows	
   very	
   similar	
   peaks	
   with	
   the	
   reference	
  
spectrum9
.	
  70%	
  of	
  the	
  peaks	
  can	
  be	
  found	
  with	
  an	
  accuracy	
  of	
  ±10	
  cm-­‐1
.	
  The	
  differences	
  all	
  
come	
  in	
  the	
  fingerprint	
  region,	
  which	
  are	
  due	
  to	
  bending	
  vibrations	
  in	
  the	
  molecules.	
  These	
  
differences	
  possibly	
  come	
  from	
  additives,	
  colorants	
  and	
  variations	
  of	
  manufacturing	
  methods.	
  
	
  
PVC	
  is	
  a	
  very	
  cheap	
  —	
  though	
  environmentally	
  unfriendly	
  —	
  ductile	
  insulator,	
  optimal	
  for	
  use	
  in	
  
low-­‐end	
  electrical	
  devices	
  such	
  as	
  this	
  hairdryer.	
  
	
  
I	
   can	
   conclude	
   that	
   the	
   electric	
   wire	
   insulators	
   were	
   made	
   of	
   coloured	
   PVC,	
   which	
   is	
   the	
  
polymerised	
  form	
  of	
  VCM.	
  
	
  
  8	
  
	
  
Graph	
  2	
  —	
  IR	
  spectrum	
  of	
  the	
  wire	
  insulator	
  sample	
  
	
  
4	
  –	
  5,	
  Bimetallic	
  strip	
  
	
  
There	
  is	
  a	
  bimetallic	
  strip	
  in	
  the	
  heated	
  area	
  of	
  the	
  hairdryer,	
  which	
  acts	
  as	
  a	
  high	
  temperature	
  
emergency	
   switch.	
   It	
   consists	
   of	
   two	
   flat	
   metal	
   pieces	
   with	
   different	
   thermal	
   expansion	
  
coefficients.	
  When	
  the	
  temperature	
  rises,	
  the	
  bottom	
  one	
  expands	
  more	
  than	
  the	
  top,	
  breaking	
  
the	
  circuit	
  as	
  shown	
  on	
  Photo	
  5.	
  The	
  bottom	
  picture	
  was	
  taken	
  after	
  heating	
  it	
  up	
  on	
  a	
  cooking	
  
plate,	
   which	
   proves	
   that	
   the	
   top	
   sheet	
   (b)	
   has	
   the	
   lower	
   thermal	
   expansion	
   coefficient.	
  
According	
  to	
  Wikipedia10
	
  the	
  two	
  metals	
  are	
  usually	
  copper	
  and	
  steel	
  or	
  brass	
  and	
  steel.	
  
	
  
  9	
  
	
  
Photo	
  5	
  —	
  Bimetallic	
  strip	
  
Top	
  and	
  middle	
  photos	
  were	
  taken	
  at	
  room	
  temperature,	
  	
  
bottom	
  one	
  at	
  high	
  temperature.	
  
  10	
  
a) Red-­‐pinkish	
  piece	
  on	
  the	
  bottom:	
  14  mm  ×  5.0  mm  ×  0.15  mm;	
  	
  0.10  g	
  
b) Greyish	
  piece	
  on	
  the	
  top:	
  9  mm  ×  5.6  mm  ×  0.10  mm;	
  	
  0.03  g	
  
	
  
	
  
Photo	
  6	
  —	
  The	
  two	
  metal	
  pieces	
  
a)	
  on	
  the	
  left	
  and	
  b)	
  on	
  the	
  right	
  on	
  both	
  photos	
  
	
  
Both	
  pieces	
  (Photo	
  6)	
  have	
  very	
  low	
  resistances	
  (0.0  𝛺 < 𝑅 < 0.05  𝛺),	
  which	
  give	
  conductivity	
  
values	
  of	
   𝜎! > 2×10!
  1/Ωm	
  and	
   𝜎! > 3×10!
  1/Ωm.	
  	
  
The	
  densities	
  are	
  
𝜌! ≈ 9.5  g/cm!
                          𝜌! ≈ 6  g/cm!
	
  
I	
  prepared	
  samples	
  for	
  metallographic	
  examination.	
  
	
  
a)	
  
As	
  sample	
  a)	
  had	
  the	
  same	
  copper-­‐like	
  colour	
  after	
  grinding,	
  I	
  supposed	
  it	
  to	
  be	
  copper	
  and	
  
etched	
  with	
  ferric	
  chloride.	
  The	
  microstructure	
  is	
  shown	
  on	
  Micrograph	
  2.	
  It	
  looks	
  very	
  similar	
  
to	
  Micrograph	
  39	
  in	
  the	
  DoITPoMS	
  library11
,	
  which	
  shows	
  a	
  nearly	
  pure	
  copper	
  alloy:	
  	
  
	
  
Description:	
  Cu	
  98,	
  Be	
  2	
  (wt%),	
  Solution	
  treated,	
  quenched	
  and	
  aged	
  -­‐	
  annealing	
  twins.	
  	
  
	
  
Neither	
  copper,	
  nor	
  sample	
  a)	
  are	
  ferromagnetic.	
  Copper	
  has	
  a	
  density	
  of	
  9  g/cm!
,	
  which	
  is	
  
within	
   error	
   range	
   of	
   the	
   measured	
   value	
   and	
   its	
   conductivity	
   is	
   much	
   higher	
   than	
   the	
  
measured	
  minimum.	
  Therefore	
  I	
  am	
  convinced	
  that	
  sample	
  a)	
  is	
  a	
  nearly	
  pure	
  copper	
  alloy	
  with	
  
some	
  additives.	
  The	
  process	
  possibly	
  included	
  solution	
  treating,	
  quenching	
  and	
  aging,	
  which	
  
gave	
  rise	
  to	
  annealing	
  twins	
  in	
  the	
  microstructure.	
  
	
  
  11	
  
	
  
Micrograph	
  2	
  —	
  Grains	
  of	
  sample	
  a)	
  from	
  the	
  bimetallic	
  strip	
  
	
  
b)	
  
Sample	
  b)	
  is	
  ferromagnetic	
  and	
  its	
  density	
  (~6  g/cm!
)	
  is	
  within	
  error	
  range	
  of	
  the	
  density	
  of	
  
iron	
  and	
  steels	
  (~8  g/cm!
)	
  because	
  it	
  was	
  too	
  small	
  to	
  measure	
  the	
  weight	
  precisely	
  and	
  it	
  also	
  
had	
  holes	
  on	
  itself,	
  which	
  imply	
  a	
  slightly	
  higher	
  density	
  than	
  the	
  measured	
  value.	
  The	
  grains	
  of	
  
the	
  etched	
  sample	
  are	
  shown	
  on	
  Micrograph	
  3.	
  	
  
	
  
Conclusion	
  
The	
  thermal	
  expansion	
  coefficients	
  of	
  copper	
  and	
  steel	
  are	
  
𝛼!" = 17×10!!
  K!!
	
  
𝛼!"##$ = 12×10!!
  K!!
	
  
Sample	
  a)	
  has	
  the	
  higher	
   𝛼	
  and	
  the	
  difference	
   𝛥 𝛼 = 5×10!
  K!!
	
  is	
  sufficient	
  to	
  open	
  the	
  switch	
  
at	
  a	
  too	
  high	
  temperature.	
  
	
  
  12	
  
Both	
  of	
  the	
  metals	
  used	
  are	
  very	
  cheap	
  and	
  easy	
  to	
  work	
  with.	
  As	
  both	
  are	
  flat	
  pieces,	
  I	
  assume	
  
they	
  were	
  processed	
  by	
  continuous	
  casting	
  and	
  made	
  thin	
  by	
  rolling.	
  The	
  pieces	
  were	
  cut	
  out	
  
from	
  metal	
  sheets	
  and	
  the	
  waste	
  was	
  recycled	
  back	
  into	
  the	
  mould.	
  
	
  
	
  
	
  
Micrograph	
  3	
  —	
  Grains	
  of	
  sample	
  b)	
  from	
  the	
  bimetallic	
  strip	
  
	
  
	
   	
  
  13	
  
6,	
  Magnet	
  in	
  DC-­‐motor	
  
The	
   dark	
   grey	
   coloured	
   magnets	
   used	
   in	
   the	
   electric	
   motor	
   are	
   extremely	
   hard	
   (𝐻! = 701),	
  
though	
   brittle.	
   They	
   are	
   electrically	
   non-­‐conductive	
   (𝜎 ≈ 10!!
  1/Ωm)	
   and	
   have	
   a	
   density	
   of	
  
𝜌 ≈ 5.1  g/cm!
,	
  measured	
  by	
  recording	
  its	
  weight	
  and	
  dimensions.	
  These	
  features	
  suggested	
  a	
  
ceramic	
  material,	
  so	
  I	
  used	
  the	
  SEM	
  for	
  analysing	
  the	
  composition.	
  The	
  image	
  and	
  spectrum	
  are	
  
shown	
  on	
  Micrograph	
  4.	
  	
  
The	
  atomic%	
  ratio	
  of	
  Oxygen	
  to	
  Iron	
  and	
  Oxygen	
  to	
  Strontium	
  are	
  
𝑛 𝑂
𝑛 𝐹𝑒
= 1.60                      
𝑛 𝑂
𝑛 𝑆𝑟
= 19.8	
  
This	
  suggests	
  large	
  Fe2O3	
  content	
  with	
  some	
  added	
  Sr-­‐compound.	
  Strontium	
  hexaferrite	
  (SrO-­‐
6(Fe2O3))	
  has	
  very	
  close	
  values	
  to	
  these	
  ratios,	
  1.58	
  and	
  19	
  respectively.	
  According	
  to	
  ferrite-­‐
info.com,12
	
  the	
   density	
   and	
   hardness	
   of	
   Strontium	
   hexaferrite	
   is	
  4.9 − 5.1  g/cm!
	
  and	
  𝐻! =
400 − 700.	
  The	
  measured	
  value	
  is	
  within	
  this	
  range.	
  	
  
Ferrite	
   magnets	
   are	
   ferrimagnetic.	
   It	
   has	
   very	
   high	
   intrinsic	
   coercivity	
   making	
   very	
   good	
   at	
  
resisting	
  demagnetisation	
  from	
  an	
  external	
  field	
  or	
  at	
  high	
  temperature.	
  Ferrite	
  magnets	
  are	
  
therefore	
  extremely	
  popular	
  in	
  electric	
  motor	
  and	
  generator	
  manufacturing.	
  The	
  version	
  with	
  
the	
  strongest	
  magnetic	
  properties	
  is	
  Strontium	
  hexaferrite.	
  	
  It	
  is	
  also	
  cheap	
  because	
  the	
  raw	
  
materials	
  used	
  are	
  strontium	
  carbonate	
  and	
  iron	
  oxide	
  both	
  of	
  which	
  are	
  readily	
  available.	
  
	
  
To	
  conclude,	
  Strontium	
  hexaferrite	
  is	
  the	
  far	
  most	
  likely	
  material	
  used	
  for	
  the	
  magnets	
  in	
  the	
  
DC-­‐motor.	
  
	
  
Manufacturing13
:	
  
Ferrite	
  Magnets	
  (Ceramic	
  Magnets)	
  are	
  produced	
  by	
  calcining	
  (at	
  1000 − 1350℃)	
  a	
  mixture	
  of	
  
iron	
  oxide	
  (Fe2O3)	
  and	
  strontium	
  carbonate	
  (SrCO3)	
  to	
  form	
  a	
  metallic	
  oxide.	
  This	
  metallic	
  oxide	
  
is	
  then	
  milled	
  to	
  a	
  small	
  particle	
  size.	
  The	
  process	
  involves	
  the	
  following	
  reaction:	
  
𝑆𝑟𝐶𝑂!   +   𝐹𝑒! 𝑂! →   𝑆𝑟𝑂𝐹𝑒! 𝑂!   +   𝐶𝑂!  
𝑆𝑟𝑂𝐹𝑒! 𝑂!   +   5𝐹𝑒! 𝑂! →   𝑆𝑟𝑂. 6(𝐹𝑒! 𝑂!)	
  
Then	
   the	
   fine	
   powder	
   is	
   sintered,	
   which	
   results	
   in	
   a	
   slightly	
   porous	
   structure	
   that	
   can	
   be	
  
observed	
  in	
  the	
  low-­‐mag	
  optical	
  micrograph	
  of	
  our	
  sample	
  (Micrograph	
  5).	
  	
  
	
  
	
  
	
  
  14	
  
	
  
Micrograph	
  4	
  —	
  SEM	
  image	
  of	
  the	
  ceramic	
  magnet	
  
  15	
  
	
  
Micrograph	
  5	
  —	
  Optical	
  micrograph	
  of	
  the	
  magnet	
  showing	
  porosity	
  
	
  
  16	
  
	
  
Photo	
  7	
  —	
  Top	
  of	
  the	
  motor	
  with	
  two	
  carbon	
  brushes	
  
	
  
7,	
  Carbon	
  brush	
  
The	
  DC-­‐motor	
  also	
  uses	
  tiny	
  carbon	
  brushes	
  (Photo	
  7).	
  These	
  transfer	
  current	
  onto	
  a	
  rotating	
  
shaft.	
  They	
  leave	
  mark	
  on	
  paper,	
  and	
  are	
  particularly	
  soft	
  (𝐻! = 33).	
  I	
  measured	
  the	
  electrical	
  
conductivity	
  to	
  be	
   𝜎 = 1×10!
  1/Ωm	
  by	
  recording	
  its	
  dimensions	
  and	
  the	
  resistance	
  between	
  
opposite	
  faces.	
  
	
  
Graphite	
   has	
   a	
   conductivity	
   of	
  𝜎!"#$!!"# = 3.3×10!
− 3×10!
	
  depending	
   on	
   the	
   angle	
   with	
  
respect	
   to	
   the	
   basal	
   plane.	
   The	
   only	
   other	
   material	
   I	
   found	
   with	
   matching	
   conductivity	
   was	
  
amorphous	
   carbon,	
   which	
   is	
   clearly	
   not	
   convenient	
   for	
   use.	
   The	
   hardness	
   of	
   graphite	
   is	
  
𝐻! = 7 − 11,	
  which	
  is	
  three	
  times	
  lower	
  than	
  the	
  measured	
  value,	
  therefore	
  I	
  suppose	
  it	
  was	
  
possibly	
  hardened	
  by	
  additives.	
  The	
  Micrograph	
  6	
  also	
  reveals	
  a	
  graphite-­‐like	
  structure	
  with	
  
shiny,	
  reflecting	
  areas.	
  Graphite	
  is	
  a	
  cheap	
  and	
  environmentally	
  friendly	
  material,	
  ideal	
  for	
  use	
  
as	
  a	
  carbon	
  brush.	
  It	
  is	
  made	
  from	
  petroleum	
  coke	
  after	
  it	
  is	
  mixed	
  with	
  coal	
  tar	
  pitch.	
  It	
  is	
  then	
  
  17	
  
extruded	
  and	
  shaped,	
  baked	
  to	
  carbonize	
  the	
  binder,	
  and	
  finally	
  graphitized	
  by	
  heating	
  it	
  to	
  
temperatures	
  approaching	
  3000°C,	
  where	
  the	
  atoms	
  arrange	
  into	
  graphite.14
	
  	
  
	
  
	
  
Micrograph	
  6	
  —	
  Low-­‐mag	
  micrograph	
  of	
  the	
  carbon	
  brush	
  
	
  
4 Conclusion
	
  
In	
  every	
  case	
  I	
  could	
  find	
  out	
  what	
  kind	
  of	
  materials	
  the	
  parts	
  were	
  made	
  of,	
  which	
  were	
  cheap	
  
used	
   in	
   simple	
   ways.	
   Sadly	
   the	
   manufacturer	
   did	
   not	
   pay	
   much	
   attention	
   on	
   making	
   it	
  
environmentally	
  friendly.	
  
	
  
	
  
  18	
  
References
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  IB	
  Data	
  Book	
  by	
  the	
  DMSM,	
  Univeristy	
  of	
  Cambridge	
  
2
	
  Website	
  of	
  Kanthal	
  Corporation:	
  http://kanthal.com/en/products/material-­‐
datasheets/wire/resistance-­‐heating-­‐wire-­‐and-­‐resistance-­‐wire/kanthal-­‐af/	
  
3
	
  AZO	
  Materials	
  website:	
  http://www.azom.com/article.aspx?ArticleID=424	
  
4
	
  Robert	
  F.	
  Landel,	
  Lawrence	
  E.	
  Nielsen:	
  Mechanical	
  Properties	
  of	
  Polymers	
  and	
  Composites,	
  
Second	
  Edition,	
  page	
  366	
  
5http://engr.bd.psu.edu/rxm61/METBD470/Lectures/PolymerProperties%20from%20CE
S.pdf	
  
6	
  http://www.matbase.com/material-­‐categories/natural-­‐and-­‐synthetic-­‐
polymers/commodity-­‐polymers/material-­‐properties-­‐of-­‐acrylonitrile-­‐butadiene-­‐styrene-­‐
general-­‐purpose-­‐gp-­‐abs.html#properties	
  
7	
  DoITPoMS	
  Reference	
  IR	
  Spectra:	
  
http://www.doitpoms.ac.uk/tlplib/artefact/flash/infrared.swf	
  
8	
  http://www.chemanalytical.com/ft-­‐ir-­‐spectra	
  
9	
  DoITPoMS	
  Reference	
  IR	
  Spectra:	
  
http://www.doitpoms.ac.uk/tlplib/artefact/flash/infrared.swf	
  
10	
  Wikipedia	
  page	
  for	
  bimetallic	
  strip:	
  http://en.wikipedia.org/wiki/Bimetallic_strip	
  
11	
  DoITPoMS	
  Micrograph	
  library:	
  www.doitpoms.ac.uk	
  
12	
  http://www.ferrite-­‐info.com/characteristics.aspx	
  
13	
  http://www.ferrite-­‐info.com/ferrite_magnets_made.aspx	
  
14	
  Wikipedia	
  page	
  of	
  graphite:	
  http://en.wikipedia.org/wiki/Graphite	
  

More Related Content

What's hot

TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...
TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...
TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...IAEME Publication
 
Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...
Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...
Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...Oussama Elbouadi
 
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...IJMER
 
Graphene_Introduction_History_Preparation_Applications_Challenges Explained
Graphene_Introduction_History_Preparation_Applications_Challenges ExplainedGraphene_Introduction_History_Preparation_Applications_Challenges Explained
Graphene_Introduction_History_Preparation_Applications_Challenges ExplainedMuhammadKashifHanif1
 
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...Anis Rahman
 
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn NanoferriteDielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn NanoferriteIOSRJAP
 
New method for production of graphene referred to mit
New method for production of graphene referred to mitNew method for production of graphene referred to mit
New method for production of graphene referred to mitravi bhivra
 
SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...
SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...
SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...ijrap
 
Graphene - Properties & Applications
Graphene - Properties & ApplicationsGraphene - Properties & Applications
Graphene - Properties & ApplicationsAlfa Chemistry
 
Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)
Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)
Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)Yutong Liu
 
Characterisation of MCT using hall effect
Characterisation of MCT using hall effectCharacterisation of MCT using hall effect
Characterisation of MCT using hall effectMahesh Negi
 
Functional Coatings on Steel in the Built Environment -Current and Future Tec...
Functional Coatings on Steel in the Built Environment -Current and Future Tec...Functional Coatings on Steel in the Built Environment -Current and Future Tec...
Functional Coatings on Steel in the Built Environment -Current and Future Tec...Sanjay Ghosh
 

What's hot (17)

TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...
TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...
TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSIO...
 
Graphene coating
 Graphene coating Graphene coating
Graphene coating
 
Esinpaper
EsinpaperEsinpaper
Esinpaper
 
Graphene
GrapheneGraphene
Graphene
 
Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...
Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...
Space charge and dielectric behavior of epoxy composite with si o2 al2o3 nano...
 
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s)  Reinforced Ep...
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
 
Graphene_Introduction_History_Preparation_Applications_Challenges Explained
Graphene_Introduction_History_Preparation_Applications_Challenges ExplainedGraphene_Introduction_History_Preparation_Applications_Challenges Explained
Graphene_Introduction_History_Preparation_Applications_Challenges Explained
 
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
 
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn NanoferriteDielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
 
New method for production of graphene referred to mit
New method for production of graphene referred to mitNew method for production of graphene referred to mit
New method for production of graphene referred to mit
 
SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...
SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...
SYNTHESIS AND DIELECTRIC CHARACTERIZATION OF BARIUM SUBSTITUTED STRONTIUM BIS...
 
Graphene and GO by bhargava
Graphene and GO by bhargavaGraphene and GO by bhargava
Graphene and GO by bhargava
 
Graphene - Properties & Applications
Graphene - Properties & ApplicationsGraphene - Properties & Applications
Graphene - Properties & Applications
 
Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)
Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)
Yutong Liu - Final Report - Anodized Aluminium Oxide (AAO)
 
Characterisation of MCT using hall effect
Characterisation of MCT using hall effectCharacterisation of MCT using hall effect
Characterisation of MCT using hall effect
 
Al03402180221
Al03402180221Al03402180221
Al03402180221
 
Functional Coatings on Steel in the Built Environment -Current and Future Tec...
Functional Coatings on Steel in the Built Environment -Current and Future Tec...Functional Coatings on Steel in the Built Environment -Current and Future Tec...
Functional Coatings on Steel in the Built Environment -Current and Future Tec...
 

Similar to Project_RP496

Potential enhancement of thermoelectric energy conversion in cobaltite superl...
Potential enhancement of thermoelectric energy conversion in cobaltite superl...Potential enhancement of thermoelectric energy conversion in cobaltite superl...
Potential enhancement of thermoelectric energy conversion in cobaltite superl...Anastasios Englezos
 
Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage
Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage
Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage IJECEIAES
 
Improving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionImproving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionIRJET Journal
 
Production and characterization of nano copper powder using electric explosio...
Production and characterization of nano copper powder using electric explosio...Production and characterization of nano copper powder using electric explosio...
Production and characterization of nano copper powder using electric explosio...eSAT Publishing House
 
Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...
Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...
Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...IJMER
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Dielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave FrequenciesDielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave Frequenciestheijes
 
Manindra's Paper - Effect of Silver coating on electrical properties of sisal...
Manindra's Paper - Effect of Silver coating on electrical properties of sisal...Manindra's Paper - Effect of Silver coating on electrical properties of sisal...
Manindra's Paper - Effect of Silver coating on electrical properties of sisal...manindra trihotri
 
2015NNINreuRA_King
2015NNINreuRA_King2015NNINreuRA_King
2015NNINreuRA_KingAndrew King
 
Impact of selective surface on perfarmance of solar
Impact of selective surface on perfarmance of solarImpact of selective surface on perfarmance of solar
Impact of selective surface on perfarmance of solarnaga rajan
 
Ijmer 46064044
Ijmer 46064044Ijmer 46064044
Ijmer 46064044IJMER
 
Synthesis of nano materials by sputtering
Synthesis of nano materials by sputteringSynthesis of nano materials by sputtering
Synthesis of nano materials by sputteringIJMER
 
Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...
Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...
Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...IJERD Editor
 
227_finalpaper_rev14
227_finalpaper_rev14227_finalpaper_rev14
227_finalpaper_rev14Mark Guadagni
 
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...IJARIDEA Journal
 

Similar to Project_RP496 (20)

Potential enhancement of thermoelectric energy conversion in cobaltite superl...
Potential enhancement of thermoelectric energy conversion in cobaltite superl...Potential enhancement of thermoelectric energy conversion in cobaltite superl...
Potential enhancement of thermoelectric energy conversion in cobaltite superl...
 
Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage
Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage
Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage
 
Carbon fibres(snigdha)
Carbon fibres(snigdha)Carbon fibres(snigdha)
Carbon fibres(snigdha)
 
Improving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionImproving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co Addition
 
Production and characterization of nano copper powder using electric explosio...
Production and characterization of nano copper powder using electric explosio...Production and characterization of nano copper powder using electric explosio...
Production and characterization of nano copper powder using electric explosio...
 
Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...
Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...
Improving Mechanical Properties of AL 7075 alloy by Equal Channel Angular Ext...
 
Sub1596
Sub1596Sub1596
Sub1596
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
applications of nanotubes.pptx
applications of nanotubes.pptxapplications of nanotubes.pptx
applications of nanotubes.pptx
 
Dielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave FrequenciesDielectric Behaviour of Pzt Ceramics at Microwave Frequencies
Dielectric Behaviour of Pzt Ceramics at Microwave Frequencies
 
Manindra's Paper - Effect of Silver coating on electrical properties of sisal...
Manindra's Paper - Effect of Silver coating on electrical properties of sisal...Manindra's Paper - Effect of Silver coating on electrical properties of sisal...
Manindra's Paper - Effect of Silver coating on electrical properties of sisal...
 
2015NNINreuRA_King
2015NNINreuRA_King2015NNINreuRA_King
2015NNINreuRA_King
 
Impact of selective surface on perfarmance of solar
Impact of selective surface on perfarmance of solarImpact of selective surface on perfarmance of solar
Impact of selective surface on perfarmance of solar
 
Ijmer 46064044
Ijmer 46064044Ijmer 46064044
Ijmer 46064044
 
Synthesis of nano materials by sputtering
Synthesis of nano materials by sputteringSynthesis of nano materials by sputtering
Synthesis of nano materials by sputtering
 
Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...
Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...
Effect of Temperature and Nickel Concentration on the Electrical and Dielectr...
 
227_finalpaper_rev14
227_finalpaper_rev14227_finalpaper_rev14
227_finalpaper_rev14
 
Wedn. cnt ppt
Wedn. cnt pptWedn. cnt ppt
Wedn. cnt ppt
 
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...
 
E012423034
E012423034E012423034
E012423034
 

Project_RP496

  • 1.   1   Materials in a low-end hairdryer   Roland  Papp   Trinity  College,  rp496   Experiment   performed   in   the   IB   laboratory   of   the   Department   of   Materials   Science   and   Metallurgy  in  the  University  of  Cambridge.   Abstract   I   investigated   seven   parts   of   a   low-­‐end   hairdryer   in   a   Materials   Science   point   of   view.   The   heating  wire  was  made  of  Kanthal,  which  is  widely  used  for  heating  purposes.  The  back  part  of   the  case  was  made  of  ABS  by  injection  moulding.  The  wire  insulators  were  made  of  PVC,  which   is  an  environmentally  unfriendly,  however  rather  cheap  material.  There  is  also  a  bimetallic  strip,   which  acts  as  a  high  temperature  emergency  switch.  It  is  made  of  copper  and  steel  pieces  cut   out  from  rolled  metal  sheets.  There  are  two  magnets  and  two  carbon  brushes  in  the  electric   motor.  The  former  is  a  ceramic  magnet  made  of  Strontium  hexaferrite,  and  the  latter  is  simply   graphite.     1 Introduction   I  took  apart  a  low-­‐end  Argos  hairdryer  and  investigated  the  properties  of  the  materials  some  of   its   parts   were   made   of.   I   tried   to   work   out   what   materials   were   used,   how   they   were   manufactured  and  why  they  were  good  choices.  Photos  of  the  investigated  parts  are  shown  on   the  exploded  diagram  (Photo  1).     2 Method   I   used   various   techniques   such   as   measurement   of   density   by   achieving   critical   buoyancy,   Vickers  hardness  testing,  measurement  of  resistance  and  dimensions  (by  a  calliper),  chemical   tests   (MEK-­‐reaction,   chlorine   test),   optical   and   scanning   electron   microscopy,   and   infrared   spectroscopy.       Then  I  compared  the  measured  results  to  values  and  graphs  from  references  such  as  the  IB  Data   Book1 ,   websites   of   materials   manufacturing   related   companies,   online   databases   and   the   Wikipedia.  
  • 2.   2       Photo  1  —  Exploded  diagram  
  • 3.   3       3 Experiments 1,  Heating  wire   I   cut   off   a   1   m   long   piece   from   the   heating   wire   (Photo   2),   straightened   it   by   pulling   and   measured  the  diameter,  length,  mass  and  resistance  to  obtain  its  density  and  conductivity:   𝜌 = 𝑚 𝑑! 𝜋 4 ∙ 𝑙 = 7141  kg/m!   𝜎 = 𝑙 𝑅 ∙ 𝑑! 𝜋 4 = 6.60 ∙ 10!  1/𝛺m       Photo  2  —  Heating  wire     I  found  it  to  be  ferromagnetic.     I   mounted,   grinded   and   polished   a   sample   for   hardness   (0.5   kg)   and   metallographic   examination.     𝐻! = 238.3   The  most  widely  used  materials  for  heating  elements  are  Nichrome  and  Kanthal.  Nichrome  is   not  ferromagnetic  and  its  density  is  8400  kg/m! ,  which  is  out  of  error  range.  Steel  has  double   the  conductivity,  which  is  also  out  of  error  range.  Kanthal,  which  is  ferromagnetic,  matches  the   values  above  very  well.  Official  data  of  Kanthal:2   𝜌 = 7150  kg/m!             𝜎 = 7.2 ∙ 10! 1/𝛺m             𝐻! = 230   After  the  hardness  measurement  I  etched  the  sample  with  Nital  but  it  did  not  react.  Then  I   performed  electrolytic  etching,  which  gave  rise  to  a  nice  microstructure  shown  on  Micrograph  1.    
  • 4.   4     Micrograph  1  —  Heating  wire  grains     Even   though   the   etching   did   not   reveal   elongated   grains,   the   wire   had   to   be   produced   by   stretching  a  thicker  wire  and  then  coiling  it  up.          
  • 5.   5   2,  Case  (black  part)   I  cut  the  black  part  of  the  case  into  pieces  and  did  different  experiments  on  them:   -­‐ Inspection:  It  was  clearly  injection-­‐moulded  (Photo  3).   -­‐ When  compressed  in  a  vice  it  first  deformed  elastically  but  then  a  fracture  propagated   in  a  brittle  manner.   -­‐ Using  the  golden  syrup  method  I  measured  the  density  to  be   𝜌 = 1070  kg/m! .   -­‐ Thermoplastic   -­‐ Negative  chlorine  test   -­‐ Positive  MEK  test    ⟹    Contains  aromatic  rings   -­‐ Hardness  with  1  kg:   𝐻! = 13.5     Photo  3  —  Case  showing  signs  of  injection  moulding     High  impact  polystyrene  (HIPS)  matches  these  data  very  well  (𝜌 = 1080  kg/m! ,   𝐻! = 13.2)3,4   and  is  widely  used  as  product  cases.     Acrylonitrile   butadiene   styrene   (ABS)   also   matches   these   data   very   well   ( 𝜌 = 1060 − 1080  kg/m! ,   𝐻! = 5.6 − 15.3)5,6  and  it  is  also  frequently  used  in  everyday  products.     I   used   infrared   spectroscopy   to   distinguish   between   these   guesses.   Graph   1   shows   that   the   spectrum  is  exactly  similar  to  that  of  ABS7  over  2000  and  between  696  and  757  cm-­‐1  with  some  
  • 6.   6   differences   in   the   fingerprint   region   which   can   be   due   to   the   presence   of   additives   and   colorants.  Polystyrene  has  a  very  different  spectrum;8  therefore  I  conclude  that  the  case  is  most   probably  die-­‐casted  ABS  with  some  additives,  e.g.  colorants.     ABS  is  a  widely  used,  relatively  cheap  and  high  impact  resistance  polymer  capable  of  injection   moulding  with  heat  resistance  up  to  80℃.  These  make  it  a  very  sensible  choice  for  the  case.         Graph  1  —  IR-­‐spectrum  of  the  case     I  also  performed  a  density  measurement  on  the  front  (grey)  part  of  the  case.     𝜌!"#$% = 1122   kg m!   This   means   that   it   is   a   clearly   different   material,   possibly   with   higher   heat   resistance.   The   experiment  could  be  improved  by  analysing  this  part  as  well.  
  • 7.   7     Photo  4  —  Wire  insulators   3,  Wire  insulators   I  cut  off  the  plastic  insulator  (Photo  4)  from  the  wires  running  in  the  hairdryer.  It  is  ductile  and   deformable  without  damage.  It  is  a  thermoplastic  with  positive  chlorine  but  negative  MEK  test.   According  to  these  measurements  PVC  is  the  only  reasonable  material  choice.  To  prove  it  I  also   performed   IR   spectroscopy   (Graph   2),   which   shows   very   similar   peaks   with   the   reference   spectrum9 .  70%  of  the  peaks  can  be  found  with  an  accuracy  of  ±10  cm-­‐1 .  The  differences  all   come  in  the  fingerprint  region,  which  are  due  to  bending  vibrations  in  the  molecules.  These   differences  possibly  come  from  additives,  colorants  and  variations  of  manufacturing  methods.     PVC  is  a  very  cheap  —  though  environmentally  unfriendly  —  ductile  insulator,  optimal  for  use  in   low-­‐end  electrical  devices  such  as  this  hairdryer.     I   can   conclude   that   the   electric   wire   insulators   were   made   of   coloured   PVC,   which   is   the   polymerised  form  of  VCM.    
  • 8.   8     Graph  2  —  IR  spectrum  of  the  wire  insulator  sample     4  –  5,  Bimetallic  strip     There  is  a  bimetallic  strip  in  the  heated  area  of  the  hairdryer,  which  acts  as  a  high  temperature   emergency   switch.   It   consists   of   two   flat   metal   pieces   with   different   thermal   expansion   coefficients.  When  the  temperature  rises,  the  bottom  one  expands  more  than  the  top,  breaking   the  circuit  as  shown  on  Photo  5.  The  bottom  picture  was  taken  after  heating  it  up  on  a  cooking   plate,   which   proves   that   the   top   sheet   (b)   has   the   lower   thermal   expansion   coefficient.   According  to  Wikipedia10  the  two  metals  are  usually  copper  and  steel  or  brass  and  steel.    
  • 9.   9     Photo  5  —  Bimetallic  strip   Top  and  middle  photos  were  taken  at  room  temperature,     bottom  one  at  high  temperature.  
  • 10.   10   a) Red-­‐pinkish  piece  on  the  bottom:  14  mm  ×  5.0  mm  ×  0.15  mm;    0.10  g   b) Greyish  piece  on  the  top:  9  mm  ×  5.6  mm  ×  0.10  mm;    0.03  g       Photo  6  —  The  two  metal  pieces   a)  on  the  left  and  b)  on  the  right  on  both  photos     Both  pieces  (Photo  6)  have  very  low  resistances  (0.0  𝛺 < 𝑅 < 0.05  𝛺),  which  give  conductivity   values  of   𝜎! > 2×10!  1/Ωm  and   𝜎! > 3×10!  1/Ωm.     The  densities  are   𝜌! ≈ 9.5  g/cm!                          𝜌! ≈ 6  g/cm!   I  prepared  samples  for  metallographic  examination.     a)   As  sample  a)  had  the  same  copper-­‐like  colour  after  grinding,  I  supposed  it  to  be  copper  and   etched  with  ferric  chloride.  The  microstructure  is  shown  on  Micrograph  2.  It  looks  very  similar   to  Micrograph  39  in  the  DoITPoMS  library11 ,  which  shows  a  nearly  pure  copper  alloy:       Description:  Cu  98,  Be  2  (wt%),  Solution  treated,  quenched  and  aged  -­‐  annealing  twins.       Neither  copper,  nor  sample  a)  are  ferromagnetic.  Copper  has  a  density  of  9  g/cm! ,  which  is   within   error   range   of   the   measured   value   and   its   conductivity   is   much   higher   than   the   measured  minimum.  Therefore  I  am  convinced  that  sample  a)  is  a  nearly  pure  copper  alloy  with   some  additives.  The  process  possibly  included  solution  treating,  quenching  and  aging,  which   gave  rise  to  annealing  twins  in  the  microstructure.    
  • 11.   11     Micrograph  2  —  Grains  of  sample  a)  from  the  bimetallic  strip     b)   Sample  b)  is  ferromagnetic  and  its  density  (~6  g/cm! )  is  within  error  range  of  the  density  of   iron  and  steels  (~8  g/cm! )  because  it  was  too  small  to  measure  the  weight  precisely  and  it  also   had  holes  on  itself,  which  imply  a  slightly  higher  density  than  the  measured  value.  The  grains  of   the  etched  sample  are  shown  on  Micrograph  3.       Conclusion   The  thermal  expansion  coefficients  of  copper  and  steel  are   𝛼!" = 17×10!!  K!!   𝛼!"##$ = 12×10!!  K!!   Sample  a)  has  the  higher   𝛼  and  the  difference   𝛥 𝛼 = 5×10!  K!!  is  sufficient  to  open  the  switch   at  a  too  high  temperature.    
  • 12.   12   Both  of  the  metals  used  are  very  cheap  and  easy  to  work  with.  As  both  are  flat  pieces,  I  assume   they  were  processed  by  continuous  casting  and  made  thin  by  rolling.  The  pieces  were  cut  out   from  metal  sheets  and  the  waste  was  recycled  back  into  the  mould.         Micrograph  3  —  Grains  of  sample  b)  from  the  bimetallic  strip        
  • 13.   13   6,  Magnet  in  DC-­‐motor   The   dark   grey   coloured   magnets   used   in   the   electric   motor   are   extremely   hard   (𝐻! = 701),   though   brittle.   They   are   electrically   non-­‐conductive   (𝜎 ≈ 10!!  1/Ωm)   and   have   a   density   of   𝜌 ≈ 5.1  g/cm! ,  measured  by  recording  its  weight  and  dimensions.  These  features  suggested  a   ceramic  material,  so  I  used  the  SEM  for  analysing  the  composition.  The  image  and  spectrum  are   shown  on  Micrograph  4.     The  atomic%  ratio  of  Oxygen  to  Iron  and  Oxygen  to  Strontium  are   𝑛 𝑂 𝑛 𝐹𝑒 = 1.60                       𝑛 𝑂 𝑛 𝑆𝑟 = 19.8   This  suggests  large  Fe2O3  content  with  some  added  Sr-­‐compound.  Strontium  hexaferrite  (SrO-­‐ 6(Fe2O3))  has  very  close  values  to  these  ratios,  1.58  and  19  respectively.  According  to  ferrite-­‐ info.com,12  the   density   and   hardness   of   Strontium   hexaferrite   is  4.9 − 5.1  g/cm!  and  𝐻! = 400 − 700.  The  measured  value  is  within  this  range.     Ferrite   magnets   are   ferrimagnetic.   It   has   very   high   intrinsic   coercivity   making   very   good   at   resisting  demagnetisation  from  an  external  field  or  at  high  temperature.  Ferrite  magnets  are   therefore  extremely  popular  in  electric  motor  and  generator  manufacturing.  The  version  with   the  strongest  magnetic  properties  is  Strontium  hexaferrite.    It  is  also  cheap  because  the  raw   materials  used  are  strontium  carbonate  and  iron  oxide  both  of  which  are  readily  available.     To  conclude,  Strontium  hexaferrite  is  the  far  most  likely  material  used  for  the  magnets  in  the   DC-­‐motor.     Manufacturing13 :   Ferrite  Magnets  (Ceramic  Magnets)  are  produced  by  calcining  (at  1000 − 1350℃)  a  mixture  of   iron  oxide  (Fe2O3)  and  strontium  carbonate  (SrCO3)  to  form  a  metallic  oxide.  This  metallic  oxide   is  then  milled  to  a  small  particle  size.  The  process  involves  the  following  reaction:   𝑆𝑟𝐶𝑂!  +  𝐹𝑒! 𝑂! →  𝑆𝑟𝑂𝐹𝑒! 𝑂!  +  𝐶𝑂!   𝑆𝑟𝑂𝐹𝑒! 𝑂!  +  5𝐹𝑒! 𝑂! →  𝑆𝑟𝑂. 6(𝐹𝑒! 𝑂!)   Then   the   fine   powder   is   sintered,   which   results   in   a   slightly   porous   structure   that   can   be   observed  in  the  low-­‐mag  optical  micrograph  of  our  sample  (Micrograph  5).          
  • 14.   14     Micrograph  4  —  SEM  image  of  the  ceramic  magnet  
  • 15.   15     Micrograph  5  —  Optical  micrograph  of  the  magnet  showing  porosity    
  • 16.   16     Photo  7  —  Top  of  the  motor  with  two  carbon  brushes     7,  Carbon  brush   The  DC-­‐motor  also  uses  tiny  carbon  brushes  (Photo  7).  These  transfer  current  onto  a  rotating   shaft.  They  leave  mark  on  paper,  and  are  particularly  soft  (𝐻! = 33).  I  measured  the  electrical   conductivity  to  be   𝜎 = 1×10!  1/Ωm  by  recording  its  dimensions  and  the  resistance  between   opposite  faces.     Graphite   has   a   conductivity   of  𝜎!"#$!!"# = 3.3×10! − 3×10!  depending   on   the   angle   with   respect   to   the   basal   plane.   The   only   other   material   I   found   with   matching   conductivity   was   amorphous   carbon,   which   is   clearly   not   convenient   for   use.   The   hardness   of   graphite   is   𝐻! = 7 − 11,  which  is  three  times  lower  than  the  measured  value,  therefore  I  suppose  it  was   possibly  hardened  by  additives.  The  Micrograph  6  also  reveals  a  graphite-­‐like  structure  with   shiny,  reflecting  areas.  Graphite  is  a  cheap  and  environmentally  friendly  material,  ideal  for  use   as  a  carbon  brush.  It  is  made  from  petroleum  coke  after  it  is  mixed  with  coal  tar  pitch.  It  is  then  
  • 17.   17   extruded  and  shaped,  baked  to  carbonize  the  binder,  and  finally  graphitized  by  heating  it  to   temperatures  approaching  3000°C,  where  the  atoms  arrange  into  graphite.14         Micrograph  6  —  Low-­‐mag  micrograph  of  the  carbon  brush     4 Conclusion   In  every  case  I  could  find  out  what  kind  of  materials  the  parts  were  made  of,  which  were  cheap   used   in   simple   ways.   Sadly   the   manufacturer   did   not   pay   much   attention   on   making   it   environmentally  friendly.      
  • 18.   18   References                                                                                                                   1  IB  Data  Book  by  the  DMSM,  Univeristy  of  Cambridge   2  Website  of  Kanthal  Corporation:  http://kanthal.com/en/products/material-­‐ datasheets/wire/resistance-­‐heating-­‐wire-­‐and-­‐resistance-­‐wire/kanthal-­‐af/   3  AZO  Materials  website:  http://www.azom.com/article.aspx?ArticleID=424   4  Robert  F.  Landel,  Lawrence  E.  Nielsen:  Mechanical  Properties  of  Polymers  and  Composites,   Second  Edition,  page  366   5http://engr.bd.psu.edu/rxm61/METBD470/Lectures/PolymerProperties%20from%20CE S.pdf   6  http://www.matbase.com/material-­‐categories/natural-­‐and-­‐synthetic-­‐ polymers/commodity-­‐polymers/material-­‐properties-­‐of-­‐acrylonitrile-­‐butadiene-­‐styrene-­‐ general-­‐purpose-­‐gp-­‐abs.html#properties   7  DoITPoMS  Reference  IR  Spectra:   http://www.doitpoms.ac.uk/tlplib/artefact/flash/infrared.swf   8  http://www.chemanalytical.com/ft-­‐ir-­‐spectra   9  DoITPoMS  Reference  IR  Spectra:   http://www.doitpoms.ac.uk/tlplib/artefact/flash/infrared.swf   10  Wikipedia  page  for  bimetallic  strip:  http://en.wikipedia.org/wiki/Bimetallic_strip   11  DoITPoMS  Micrograph  library:  www.doitpoms.ac.uk   12  http://www.ferrite-­‐info.com/characteristics.aspx   13  http://www.ferrite-­‐info.com/ferrite_magnets_made.aspx   14  Wikipedia  page  of  graphite:  http://en.wikipedia.org/wiki/Graphite