Recommended
PDF
PPTX
Are You Wasting Too Much Time On Non Interested Prospects?
PDF
PDF
Sparse estimation tutorial 2014
PDF
PDF
PDF
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
PDF
ML: Sparse regression CH.13
PPTX
Oracle property and_hdm_pkg_rigorouslasso
PDF
PDF
PDF
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
PPTX
PDF
PDF
スパース性に基づく機械学習 4.1 ノイズなしL1ノルム最小化問題の問題設定
PPTX
Sentence-State LSTM for Text Representation
PDF
WSDM2018 読み会 Latent cross making use of context in recurrent recommender syst...
PDF
ICLR2017読み会 Data Noising as Smoothing in Neural Network Language Models @Dena
PDF
Note : Noise constastive estimation of unnormalized statictics methods
PDF
Adaptive subgradient methods for online learning and stochastic optimization ...
PDF
GBDTを使ったfeature transformationの適用例
PDF
Learning Better Embeddings for Rare Words Using Distributional Representations
PDF
Preference-oriented Social Networks_Group Recommendation and Inference
PDF
Analysis of Learning from Positive and Unlabeled Data
PDF
Positive Unlabeled Learning for Deceptive Reviews Detection
PDF
Modeling Mass Protest Adoption in Social Network Communities using Geometric ...
PDF
Similarity component analysis
PDF
Query driven context aware recommendation
PDF
Unsupervised Graph-based Topic Labelling using DBpedia
PDF
Psychological Advertising_Exploring User Psychology for Click Prediction in S...
More Related Content
PDF
PPTX
Are You Wasting Too Much Time On Non Interested Prospects?
PDF
PDF
Sparse estimation tutorial 2014
PDF
PDF
PDF
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
PDF
ML: Sparse regression CH.13
Similar to 高次元データの統計:スパース正則化の近似誤差と推定誤差
PPTX
Oracle property and_hdm_pkg_rigorouslasso
PDF
PDF
PDF
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
PPTX
PDF
PDF
スパース性に基づく機械学習 4.1 ノイズなしL1ノルム最小化問題の問題設定
More from Takanori Nakai
PPTX
Sentence-State LSTM for Text Representation
PDF
WSDM2018 読み会 Latent cross making use of context in recurrent recommender syst...
PDF
ICLR2017読み会 Data Noising as Smoothing in Neural Network Language Models @Dena
PDF
Note : Noise constastive estimation of unnormalized statictics methods
PDF
Adaptive subgradient methods for online learning and stochastic optimization ...
PDF
GBDTを使ったfeature transformationの適用例
PDF
Learning Better Embeddings for Rare Words Using Distributional Representations
PDF
Preference-oriented Social Networks_Group Recommendation and Inference
PDF
Analysis of Learning from Positive and Unlabeled Data
PDF
Positive Unlabeled Learning for Deceptive Reviews Detection
PDF
Modeling Mass Protest Adoption in Social Network Communities using Geometric ...
PDF
Similarity component analysis
PDF
Query driven context aware recommendation
PDF
Unsupervised Graph-based Topic Labelling using DBpedia
PDF
Psychological Advertising_Exploring User Psychology for Click Prediction in S...
PDF
PUCKモデルの適用例:修論を仕上げた後、個人的にやっていたリサーチ
PDF
金利期間構造について:Forward Martingale Measureの導出
PPTX
Topic discovery through data dependent and random projections
高次元データの統計:スパース正則化の近似誤差と推定誤差 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Lemma 6.19
- the larger S, the smaller the compatibility constant -
第87回統計科学研究会
15
16. 17. Lemma 6.21
- The (L;S)-compatibility constant is the solution of a Lasso -
第87回統計科学研究会
17
18. Variable Secreening with the Lasso
irrepresentable conditions show that the Lasso,
or any weighted variant, typically selects too
many variables
We shall therefore aim at estimators with oracle
prediction error, yet having not too many false
positives
Chap7に続く
第87回統計科学研究会
18
19. 参考文献
Statistics for High-Dimensional Data:Methods,
Theory and Applications, 2011, P.Buhlmann,
S.A.van de Gerr , Springer
On the conditions used to prove oracle results for
the Lasso, 2009, S.A. van de Geer and P.
Buehlmann, Electronic Journal of Statistics 3:1360-
1392.
The adaptive and the thresholded Lasso for
potentially misspecified models, 2011, S.A.van de
Gerr, P.Buehlmann and S.Zhu, Electronic Journal of
Statistics 5, 688-749
第87回統計科学研究会
19