SlideShare a Scribd company logo
1 of 1
Download to read offline
Over	
  the	
  past	
  years,	
  stem	
  cell	
  research	
  has	
  advanced	
  
to	
   the	
   point	
   where	
   the	
   current	
   literature	
   is	
   seeking	
  
how	
  best	
  to	
  implement	
  stem	
  cells	
  back	
  into	
  the	
  body.	
  
This	
   is	
   termed	
   autologous	
   stem	
   cell	
   transportation,	
  
and	
   may	
   be	
   the	
   key	
   to	
   treating	
   many	
   diseases	
   and	
  
conditions	
   looking	
   forward.	
   However,	
   due	
   to	
   the	
  
sensitivity	
  of	
  stem	
  cells	
  and	
  how	
  they	
  respond	
  to	
  their	
  
environment,	
   implementing	
   these	
   back	
   into	
   the	
  
dynamic	
  human	
  body	
  is	
  no	
  easy	
  task.	
  	
  
Therefore,	
   to	
   efficiently	
   transfer	
   stem	
   cells	
   back	
   into	
  
the	
  body	
  for	
  treatment,	
  we	
  have	
  made	
  in	
  vitro	
  studies	
  
examining	
  the	
  response	
  of	
  human	
  mesenchymal	
  stem	
  
cells	
   (hMSC)	
   to	
   different	
   factors,	
   such	
   as	
   surface	
  
patterns	
  and	
  dynamic,	
  mechanical	
  strains.	
  Using	
  a	
  high	
  
throughput	
  device	
  and	
  nano-­‐surfaces,	
  we	
  were	
  able	
  to	
  
study	
  the	
  biomechanics	
  effects	
  of	
  static	
  and	
  dynamic	
  
stresses	
  on	
  stem	
  cells.	
  
Biomechanical	
  Effects	
  on	
  Cell	
  Culture:	
  A	
  Study	
  of	
  Patterns	
  and	
  Dynamics
Pablo	
  Maceda1,	
  Jason	
  Lee1,	
  Eun	
  Yoon1,	
  and	
  Aaron	
  B.	
  Baker1	
  
1	
  Laboratory	
  for	
  Cardiovascular	
  Bioengineering	
  and	
  Therapeutics,	
  Department	
  of	
  Biomedical	
  Engineering,	
  University	
  of	
  Texas	
  at	
  Austin,	
  TX.
0
0.0033
0.0065
0.0098
0.013
0%	
  FBS 15%	
  FBS Stretch
RelaXve	
  Angle	
  of	
  Aligment	
  (Deg)
0.0
9.5
19.0
28.5
38.0
PaZern	
  So[ PaZern	
  SXff
WT S1KO
EllipXcal	
  Form	
  Factor
0.0
1.5
3.0
4.5
6.0
PaZern_So[ Flat_So[ PaZern_SXff Flat_SXff
WT S1KO
• Human	
   mesenchymal	
   stem	
   cells	
   (hMSC)	
   were	
  
stretched	
  at	
  0.5	
  Hz	
  and	
  maximal	
  strain	
  of	
  5%	
  for	
  30	
  
minutes	
  under	
  sine	
  waveform.	
  	
  
• Phospho-­‐ERK	
   activation	
   of	
   stretched	
   hMSCs	
   was	
  
measured	
  through	
  ELISA	
  and	
  compared	
  to	
  hMSCs	
  
grown	
  on	
  both	
  serum-­‐starved	
  and	
  15%	
  FBS	
  media.	
  
• Murine	
  vascular	
  smooth	
  muscle	
  cells	
  (vSMC)	
  were	
  
cultured,	
   with	
   one	
   strain	
   as	
   wild–	
   type,	
   and	
   the	
  
other	
  strain	
  lacking	
  the	
  Syndecan1	
  gene.	
  	
  
• Both	
   strains	
   of	
   vSMCs	
   were	
   transferred	
   to	
   four	
  
different	
   nano-­‐surfaces,	
   each	
   surface	
   either	
  
patterned	
  or	
  unpatterned,	
  and	
  either	
  soft	
  or	
  stiff.	
  
Image	
   analysis	
   of	
   cells	
   was	
   conducted	
   using	
  
MetaMorph.	
  	
  
METHODS
INTRODUCTION WT,	
  Pattern	
  +	
  Soft WT,	
  Flat	
  +	
  Soft
WT,	
  Pattern	
  +	
  Stiff WT,	
  Flat	
  +	
  Stiff
S1KO,	
  Pattern	
  +	
  Soft S1KO,	
  Flat	
  +	
  Soft
S1KO,	
  Pattern	
  +	
  Stiff S1KO,	
  Flat	
  +	
  Stiff
RESULTS
Figure	
  1.	
  CAD	
  drawings	
  of	
  high	
  throughput	
  device	
  for	
  applying	
  
mechanical	
  stretch	
  to	
  cells.	
  (A)	
  Cells	
  are	
  cultured	
  on	
  a	
  flexible	
  
silicone	
  membrane	
  and	
  an	
  underlying	
  piston	
  applies	
  the	
  stress.	
  Two	
  
versions	
  of	
  the	
  piston,	
  which	
  apply	
  (B)	
  biaxial	
  strain	
  and	
  (C)	
  uniaxial	
  
strain.	
  (D)	
  Trimetric	
  view	
  of	
  constructed	
  machine.	
  (E)	
  Front	
  view	
  of	
  
system	
  with	
  labeled	
  parts.	
  
A
B
C
D
Figure	
  3.	
  Diagram	
  of	
  phospho-­‐ERK	
  activation	
  pathway.	
  (A)	
  A	
  surface	
  
protein,	
  such	
  as	
  integrin,	
  FGF,	
  or	
  Caveolin,	
  receives	
  a	
  signal,	
  in	
  our	
  
case	
  mechanical	
  stress.	
  This	
  signal	
  transfers	
  to	
  (B),	
  Ras,	
  a	
  small	
  
GTPase.	
  This	
  signal	
  is	
  further	
  cascaded	
  through	
  phosphorylation	
  (C)	
  
until	
  it	
  reaches	
  ERK	
  (D),	
  or	
  an	
  extracellular	
  single-­‐regulated	
  kinase.	
  
When	
  phosphorylated,	
  ERK	
  is	
  responsible	
  for	
  short-­‐term	
  actin	
  
remodeling	
  and	
  other	
  pathways	
  that	
  change	
  focal	
  adhesion.	
  	
  
Figure	
  4.	
  Phospho-­‐ERK	
  activation	
  of	
  hMSC	
  under	
  sine	
  waveform	
  
stretch.	
  hMSC	
  were	
  stretched	
  at	
  0.5	
  Hz	
  and	
  maximal	
  strain	
  of	
  5%	
  
for	
  30	
  min	
  under	
  sine	
  waveform.	
  Expression	
  of	
  p-­‐ERK	
  was	
  
compared	
  against	
  serum-­‐starved	
  hMSC	
  under	
  static	
  conditions.	
  
t–Test	
  showed	
  statistically	
  significant	
  difference	
  to	
  cells	
  without	
  
FBS	
  at	
  P<0.05.	
  	
  
Figure	
  5.	
  Phase	
  images	
  of	
  wild–type	
  murine	
  vSMC	
  cultured	
  under	
  different	
  surface	
  conditions.	
  Murine	
  
vSMCs	
  were	
  grown	
  under	
  various	
  nano-­‐surfaces.	
  Images	
  show	
  elongated	
  cells	
  for	
  all	
  factors,	
  and	
  relative	
  
alignment	
  to	
  the	
  nano–patterns	
  for	
  both	
  soft	
  and	
  stiff	
  conditions.	
  Surface	
  was	
  coated	
  with	
  collagen	
  
before	
  seeding	
  the	
  cells.	
  Images	
  were	
  taken	
  48	
  hours	
  post-­‐confluency.	
  
Figure	
  6.	
  Phase	
  images	
  of	
  Syndecan1-­‐KO	
  (S1KO)	
  murine	
  vSMC	
  cultured	
  under	
  different	
  surface	
  
conditions.	
  These	
  cells	
  were	
  cultured	
  without	
  the	
  gene	
  coding	
  for	
  Syndecan1,	
  a	
  transmembrane	
  protein.	
  
Images	
  show	
  little	
  to	
  no	
  alignment	
  to	
  pattern	
  in	
  comparison	
  to	
  wild-­‐type	
  vSMC,	
  instead	
  demonstrating	
  
sporadic	
  orientation.	
  Cells	
  also	
  show	
  less	
  elongation	
  on	
  all	
  factors.	
  Surface	
  was	
  coated	
  with	
  collagen	
  
before	
  seeding	
  the	
  cells.	
  Images	
  were	
  taken	
  48	
  hours	
  post-­‐confluency.	
  
Figure	
  8.	
  Orientation	
  of	
  cells	
  and	
  elliptical	
  form	
  factor.	
  Murine	
  wild-­‐
type	
  and	
  S1KO	
  were	
  cultured	
  on	
  nano-­‐surfaces,	
  with	
  patterns	
  and	
  
stiffness	
  as	
  the	
  variables.	
  Graphs	
  are	
  a	
  result	
  of	
  image	
  analysis,	
  
demonstrate	
  that	
  vSMCs	
  without	
  Syndecan1	
  are	
  less	
  likely	
  to	
  align	
  to	
  
patterns	
  than	
  vSMCs	
  with	
  Syndecan1.	
  Also,	
  across	
  all	
  factors	
  wild-­‐
type	
  vSMCs	
  have	
  greater	
  elongation	
  than	
  S1KO	
  vSMCs.	
  
ACKNOWLEDGEMENTS	
  	
  :	
  American	
  Heart	
  Association,	
  NIH	
  New	
  Innovator	
  	
  Program,	
  and	
  Baker	
  Lab	
  Member:	
  Subhamoy	
  Das,	
  Anthony	
  Monteforte,	
  Peter	
  Voyvodic,	
  Adrianne	
  Shearer,	
  and	
  Victoria	
  Le
CONCLUSIONS
Phospho–ERK	
   is	
   activated	
   to	
   a	
   greater	
   extent	
   when	
  
placed	
  under	
  mechanical	
  stress.	
   	
  We	
  can	
  therefore	
  say	
  
that	
   phospho–ERK	
   is	
   essential	
   to	
   how	
   a	
   cell	
   manages	
  
when	
  placed	
  in	
  a	
  dynamic	
  environment	
  that	
  is	
  constantly	
  
stretching	
   and	
   contracting,	
   such	
   as	
   the	
   heart.	
   We	
  
determined	
  the	
  transmembrane	
  protein	
  Syndecan1	
  to	
  be	
  
pivotal	
  in	
  a	
  cell’s	
  ability	
  to	
  orient	
  itself	
  to	
  different	
  surface	
  
patterns	
  and	
  stiffness.	
  	
  
Future	
   works	
   might	
   include	
   dynamic	
   stretch	
   with	
  
different	
   patterns,	
   as	
   well	
   as	
   stem	
   cell	
   differentiation	
  
pathway	
  studies	
  through	
  mechanical	
  strain.	
  
Figure	
  2.	
  Image	
  of	
  human	
  mesenchymal	
  stem	
  cells	
  (hMSCs).	
  Cells	
  
were	
  passaged	
  twice	
  and	
  left	
  to	
  culture	
  on	
  same	
  dish	
  for	
  four	
  days	
  
before	
  this	
  image	
  was	
  taken.	
  Mesenchymal	
  stem	
  cells	
  are	
  multipotent	
  
stromal	
  cells,	
  meaning	
  they	
  can	
  differentiate	
  into	
  various	
  cell	
  types,	
  
including	
  osteoblasts,	
  chondrocytes,	
  and	
  adipocytes.	
  

More Related Content

What's hot

Olivia_Creasey_Science2012_Poster
Olivia_Creasey_Science2012_PosterOlivia_Creasey_Science2012_Poster
Olivia_Creasey_Science2012_PosterOlivia Creasey
 
Progression of glioblastoma cells and mechanical-epigenetic behaviors
Progression of glioblastoma cells and mechanical-epigenetic behaviorsProgression of glioblastoma cells and mechanical-epigenetic behaviors
Progression of glioblastoma cells and mechanical-epigenetic behaviorsBenjamin Yang
 
Terzic and Maxon et al., 2016
Terzic and Maxon et al., 2016Terzic and Maxon et al., 2016
Terzic and Maxon et al., 2016Jake Maxon
 
BIOPHARM_May Article_FINAL eprint
BIOPHARM_May Article_FINAL eprintBIOPHARM_May Article_FINAL eprint
BIOPHARM_May Article_FINAL eprintDoug Mogensen
 
Characterstics of transformed cells
Characterstics of transformed cellsCharacterstics of transformed cells
Characterstics of transformed cellsKAUSHAL SAHU
 
Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...
Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...
Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...Enrique Moreno Gonzalez
 
Molecular embryology part (2)
Molecular embryology  part (2)Molecular embryology  part (2)
Molecular embryology part (2)Khaled Elmasry
 
P53 Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...
P53  Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...P53  Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...
P53 Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...Sheldon Stein
 
A Review on the role of Wnt-4 in Stem Cell Biology
A Review on the role of Wnt-4 in Stem Cell BiologyA Review on the role of Wnt-4 in Stem Cell Biology
A Review on the role of Wnt-4 in Stem Cell BiologyGayathri Vijayakumar
 
Journal of stem cells research
Journal of stem cells researchJournal of stem cells research
Journal of stem cells researchScidoc Publishers
 

What's hot (19)

Olivia_Creasey_Science2012_Poster
Olivia_Creasey_Science2012_PosterOlivia_Creasey_Science2012_Poster
Olivia_Creasey_Science2012_Poster
 
Progression of glioblastoma cells and mechanical-epigenetic behaviors
Progression of glioblastoma cells and mechanical-epigenetic behaviorsProgression of glioblastoma cells and mechanical-epigenetic behaviors
Progression of glioblastoma cells and mechanical-epigenetic behaviors
 
Terzic and Maxon et al., 2016
Terzic and Maxon et al., 2016Terzic and Maxon et al., 2016
Terzic and Maxon et al., 2016
 
Bio 1
Bio 1Bio 1
Bio 1
 
BIOPHARM_May Article_FINAL eprint
BIOPHARM_May Article_FINAL eprintBIOPHARM_May Article_FINAL eprint
BIOPHARM_May Article_FINAL eprint
 
Role of p53 gene
Role of p53 gene Role of p53 gene
Role of p53 gene
 
Characterstics of transformed cells
Characterstics of transformed cellsCharacterstics of transformed cells
Characterstics of transformed cells
 
SPLICING
SPLICING SPLICING
SPLICING
 
Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...
Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...
Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that ...
 
Molecular embryology part (2)
Molecular embryology  part (2)Molecular embryology  part (2)
Molecular embryology part (2)
 
P53 Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...
P53  Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...P53  Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...
P53 Tumor Suppressor Gene: Understanding P53 Based Dietary Anti Cancer Thera...
 
publication 1
publication 1publication 1
publication 1
 
Apoptosis
ApoptosisApoptosis
Apoptosis
 
Shamah MCB 93
Shamah MCB 93Shamah MCB 93
Shamah MCB 93
 
A Review on the role of Wnt-4 in Stem Cell Biology
A Review on the role of Wnt-4 in Stem Cell BiologyA Review on the role of Wnt-4 in Stem Cell Biology
A Review on the role of Wnt-4 in Stem Cell Biology
 
Transplantation journal
Transplantation journalTransplantation journal
Transplantation journal
 
Journal of stem cells research
Journal of stem cells researchJournal of stem cells research
Journal of stem cells research
 
Stem cells journal
Stem cells  journalStem cells  journal
Stem cells journal
 
Cell cycle and its regulation
Cell cycle and its regulationCell cycle and its regulation
Cell cycle and its regulation
 

Viewers also liked

Areasdeoportunidad 141027235339-conversion-gate02 (1)
Areasdeoportunidad 141027235339-conversion-gate02 (1)Areasdeoportunidad 141027235339-conversion-gate02 (1)
Areasdeoportunidad 141027235339-conversion-gate02 (1)Belen Ovalle
 
LAS MANOS SUCIAS DE CHEVRON-TEXACO
LAS MANOS SUCIAS DE CHEVRON-TEXACOLAS MANOS SUCIAS DE CHEVRON-TEXACO
LAS MANOS SUCIAS DE CHEVRON-TEXACOculquifernando
 
User guide e hakcipta-2
User guide e hakcipta-2User guide e hakcipta-2
User guide e hakcipta-2Said Nafik
 
Music 3 tg draft 4.10.2014
Music 3 tg draft 4.10.2014Music 3 tg draft 4.10.2014
Music 3 tg draft 4.10.2014Pam_Gomez95
 
Thomas kinkade _cj
Thomas kinkade _cjThomas kinkade _cj
Thomas kinkade _cjfilipj2000
 
D.g. 06 09-2011-__grnland
D.g. 06 09-2011-__grnlandD.g. 06 09-2011-__grnland
D.g. 06 09-2011-__grnlandfilipj2000
 

Viewers also liked (10)

Areasdeoportunidad 141027235339-conversion-gate02 (1)
Areasdeoportunidad 141027235339-conversion-gate02 (1)Areasdeoportunidad 141027235339-conversion-gate02 (1)
Areasdeoportunidad 141027235339-conversion-gate02 (1)
 
LAS MANOS SUCIAS DE CHEVRON-TEXACO
LAS MANOS SUCIAS DE CHEVRON-TEXACOLAS MANOS SUCIAS DE CHEVRON-TEXACO
LAS MANOS SUCIAS DE CHEVRON-TEXACO
 
Job Hunting Tips
Job Hunting TipsJob Hunting Tips
Job Hunting Tips
 
Evidencia 13
Evidencia 13Evidencia 13
Evidencia 13
 
Cm 2007 Sc
Cm 2007 ScCm 2007 Sc
Cm 2007 Sc
 
User guide e hakcipta-2
User guide e hakcipta-2User guide e hakcipta-2
User guide e hakcipta-2
 
Music 3 tg draft 4.10.2014
Music 3 tg draft 4.10.2014Music 3 tg draft 4.10.2014
Music 3 tg draft 4.10.2014
 
Thomas kinkade _cj
Thomas kinkade _cjThomas kinkade _cj
Thomas kinkade _cj
 
Chine
ChineChine
Chine
 
D.g. 06 09-2011-__grnland
D.g. 06 09-2011-__grnlandD.g. 06 09-2011-__grnland
D.g. 06 09-2011-__grnland
 

Similar to Poster.Fall2014.PMaceda

Mechanotrasduction and its role in atherosclerosis
Mechanotrasduction and its role in atherosclerosisMechanotrasduction and its role in atherosclerosis
Mechanotrasduction and its role in atherosclerosisArun Geetha Viswanathan
 
Fall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserFall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserCody Heiser
 
Journal of Stem Cells Research, Reviews & Reports
Journal of Stem Cells Research, Reviews & ReportsJournal of Stem Cells Research, Reviews & Reports
Journal of Stem Cells Research, Reviews & ReportsAustin Publishing Group
 
BiomembranesArticle_2011
BiomembranesArticle_2011BiomembranesArticle_2011
BiomembranesArticle_2011William Sprowl
 
Functional matrix revisited
Functional matrix revisitedFunctional matrix revisited
Functional matrix revisitedGejo Johns
 
A physical sciences network characterization of non-tumorigenic and metastati...
A physical sciences network characterization of non-tumorigenic and metastati...A physical sciences network characterization of non-tumorigenic and metastati...
A physical sciences network characterization of non-tumorigenic and metastati...Shashaanka Ashili
 
Functional matrix hypothesis revisited 1
Functional matrix hypothesis revisited 1Functional matrix hypothesis revisited 1
Functional matrix hypothesis revisited 1Chandrashekhar Chandhu
 
Functional matrix Hypothesis- Revisited
Functional matrix Hypothesis- RevisitedFunctional matrix Hypothesis- Revisited
Functional matrix Hypothesis- RevisitedDr Susna Paul
 
SEMINAR TERM PAPER
SEMINAR TERM PAPERSEMINAR TERM PAPER
SEMINAR TERM PAPERSuchi Sheth
 
Functional matrix theory- Revisited .pptx
Functional matrix theory- Revisited .pptxFunctional matrix theory- Revisited .pptx
Functional matrix theory- Revisited .pptxAditi Jain
 
2015_Postdoc_symposium_poster
2015_Postdoc_symposium_poster2015_Postdoc_symposium_poster
2015_Postdoc_symposium_posterChi Y. Lo, Ph.D.
 
Ceraseetal2021complete.pdf
Ceraseetal2021complete.pdfCeraseetal2021complete.pdf
Ceraseetal2021complete.pdfAndreaCerase3
 

Similar to Poster.Fall2014.PMaceda (20)

jbc1998
jbc1998jbc1998
jbc1998
 
Mechanotrasduction and its role in atherosclerosis
Mechanotrasduction and its role in atherosclerosisMechanotrasduction and its role in atherosclerosis
Mechanotrasduction and its role in atherosclerosis
 
Stem cell Biobridge
Stem cell BiobridgeStem cell Biobridge
Stem cell Biobridge
 
Fall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserFall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiser
 
Benvenuti-Amigo.full
Benvenuti-Amigo.fullBenvenuti-Amigo.full
Benvenuti-Amigo.full
 
Pernas_Badrdin
Pernas_BadrdinPernas_Badrdin
Pernas_Badrdin
 
jbmr
jbmrjbmr
jbmr
 
Journal of Stem Cells Research, Reviews & Reports
Journal of Stem Cells Research, Reviews & ReportsJournal of Stem Cells Research, Reviews & Reports
Journal of Stem Cells Research, Reviews & Reports
 
BiomembranesArticle_2011
BiomembranesArticle_2011BiomembranesArticle_2011
BiomembranesArticle_2011
 
Poster
PosterPoster
Poster
 
Abstract
AbstractAbstract
Abstract
 
Functional matrix revisited
Functional matrix revisitedFunctional matrix revisited
Functional matrix revisited
 
A physical sciences network characterization of non-tumorigenic and metastati...
A physical sciences network characterization of non-tumorigenic and metastati...A physical sciences network characterization of non-tumorigenic and metastati...
A physical sciences network characterization of non-tumorigenic and metastati...
 
Functional matrix hypothesis revisited 1
Functional matrix hypothesis revisited 1Functional matrix hypothesis revisited 1
Functional matrix hypothesis revisited 1
 
Functional matrix Hypothesis- Revisited
Functional matrix Hypothesis- RevisitedFunctional matrix Hypothesis- Revisited
Functional matrix Hypothesis- Revisited
 
SEMINAR TERM PAPER
SEMINAR TERM PAPERSEMINAR TERM PAPER
SEMINAR TERM PAPER
 
Ecis Applied Biophysics
Ecis Applied BiophysicsEcis Applied Biophysics
Ecis Applied Biophysics
 
Functional matrix theory- Revisited .pptx
Functional matrix theory- Revisited .pptxFunctional matrix theory- Revisited .pptx
Functional matrix theory- Revisited .pptx
 
2015_Postdoc_symposium_poster
2015_Postdoc_symposium_poster2015_Postdoc_symposium_poster
2015_Postdoc_symposium_poster
 
Ceraseetal2021complete.pdf
Ceraseetal2021complete.pdfCeraseetal2021complete.pdf
Ceraseetal2021complete.pdf
 

Poster.Fall2014.PMaceda

  • 1. Over  the  past  years,  stem  cell  research  has  advanced   to   the   point   where   the   current   literature   is   seeking   how  best  to  implement  stem  cells  back  into  the  body.   This   is   termed   autologous   stem   cell   transportation,   and   may   be   the   key   to   treating   many   diseases   and   conditions   looking   forward.   However,   due   to   the   sensitivity  of  stem  cells  and  how  they  respond  to  their   environment,   implementing   these   back   into   the   dynamic  human  body  is  no  easy  task.     Therefore,   to   efficiently   transfer   stem   cells   back   into   the  body  for  treatment,  we  have  made  in  vitro  studies   examining  the  response  of  human  mesenchymal  stem   cells   (hMSC)   to   different   factors,   such   as   surface   patterns  and  dynamic,  mechanical  strains.  Using  a  high   throughput  device  and  nano-­‐surfaces,  we  were  able  to   study  the  biomechanics  effects  of  static  and  dynamic   stresses  on  stem  cells.   Biomechanical  Effects  on  Cell  Culture:  A  Study  of  Patterns  and  Dynamics Pablo  Maceda1,  Jason  Lee1,  Eun  Yoon1,  and  Aaron  B.  Baker1   1  Laboratory  for  Cardiovascular  Bioengineering  and  Therapeutics,  Department  of  Biomedical  Engineering,  University  of  Texas  at  Austin,  TX. 0 0.0033 0.0065 0.0098 0.013 0%  FBS 15%  FBS Stretch RelaXve  Angle  of  Aligment  (Deg) 0.0 9.5 19.0 28.5 38.0 PaZern  So[ PaZern  SXff WT S1KO EllipXcal  Form  Factor 0.0 1.5 3.0 4.5 6.0 PaZern_So[ Flat_So[ PaZern_SXff Flat_SXff WT S1KO • Human   mesenchymal   stem   cells   (hMSC)   were   stretched  at  0.5  Hz  and  maximal  strain  of  5%  for  30   minutes  under  sine  waveform.     • Phospho-­‐ERK   activation   of   stretched   hMSCs   was   measured  through  ELISA  and  compared  to  hMSCs   grown  on  both  serum-­‐starved  and  15%  FBS  media.   • Murine  vascular  smooth  muscle  cells  (vSMC)  were   cultured,   with   one   strain   as   wild–   type,   and   the   other  strain  lacking  the  Syndecan1  gene.     • Both   strains   of   vSMCs   were   transferred   to   four   different   nano-­‐surfaces,   each   surface   either   patterned  or  unpatterned,  and  either  soft  or  stiff.   Image   analysis   of   cells   was   conducted   using   MetaMorph.     METHODS INTRODUCTION WT,  Pattern  +  Soft WT,  Flat  +  Soft WT,  Pattern  +  Stiff WT,  Flat  +  Stiff S1KO,  Pattern  +  Soft S1KO,  Flat  +  Soft S1KO,  Pattern  +  Stiff S1KO,  Flat  +  Stiff RESULTS Figure  1.  CAD  drawings  of  high  throughput  device  for  applying   mechanical  stretch  to  cells.  (A)  Cells  are  cultured  on  a  flexible   silicone  membrane  and  an  underlying  piston  applies  the  stress.  Two   versions  of  the  piston,  which  apply  (B)  biaxial  strain  and  (C)  uniaxial   strain.  (D)  Trimetric  view  of  constructed  machine.  (E)  Front  view  of   system  with  labeled  parts.   A B C D Figure  3.  Diagram  of  phospho-­‐ERK  activation  pathway.  (A)  A  surface   protein,  such  as  integrin,  FGF,  or  Caveolin,  receives  a  signal,  in  our   case  mechanical  stress.  This  signal  transfers  to  (B),  Ras,  a  small   GTPase.  This  signal  is  further  cascaded  through  phosphorylation  (C)   until  it  reaches  ERK  (D),  or  an  extracellular  single-­‐regulated  kinase.   When  phosphorylated,  ERK  is  responsible  for  short-­‐term  actin   remodeling  and  other  pathways  that  change  focal  adhesion.     Figure  4.  Phospho-­‐ERK  activation  of  hMSC  under  sine  waveform   stretch.  hMSC  were  stretched  at  0.5  Hz  and  maximal  strain  of  5%   for  30  min  under  sine  waveform.  Expression  of  p-­‐ERK  was   compared  against  serum-­‐starved  hMSC  under  static  conditions.   t–Test  showed  statistically  significant  difference  to  cells  without   FBS  at  P<0.05.     Figure  5.  Phase  images  of  wild–type  murine  vSMC  cultured  under  different  surface  conditions.  Murine   vSMCs  were  grown  under  various  nano-­‐surfaces.  Images  show  elongated  cells  for  all  factors,  and  relative   alignment  to  the  nano–patterns  for  both  soft  and  stiff  conditions.  Surface  was  coated  with  collagen   before  seeding  the  cells.  Images  were  taken  48  hours  post-­‐confluency.   Figure  6.  Phase  images  of  Syndecan1-­‐KO  (S1KO)  murine  vSMC  cultured  under  different  surface   conditions.  These  cells  were  cultured  without  the  gene  coding  for  Syndecan1,  a  transmembrane  protein.   Images  show  little  to  no  alignment  to  pattern  in  comparison  to  wild-­‐type  vSMC,  instead  demonstrating   sporadic  orientation.  Cells  also  show  less  elongation  on  all  factors.  Surface  was  coated  with  collagen   before  seeding  the  cells.  Images  were  taken  48  hours  post-­‐confluency.   Figure  8.  Orientation  of  cells  and  elliptical  form  factor.  Murine  wild-­‐ type  and  S1KO  were  cultured  on  nano-­‐surfaces,  with  patterns  and   stiffness  as  the  variables.  Graphs  are  a  result  of  image  analysis,   demonstrate  that  vSMCs  without  Syndecan1  are  less  likely  to  align  to   patterns  than  vSMCs  with  Syndecan1.  Also,  across  all  factors  wild-­‐ type  vSMCs  have  greater  elongation  than  S1KO  vSMCs.   ACKNOWLEDGEMENTS    :  American  Heart  Association,  NIH  New  Innovator    Program,  and  Baker  Lab  Member:  Subhamoy  Das,  Anthony  Monteforte,  Peter  Voyvodic,  Adrianne  Shearer,  and  Victoria  Le CONCLUSIONS Phospho–ERK   is   activated   to   a   greater   extent   when   placed  under  mechanical  stress.    We  can  therefore  say   that   phospho–ERK   is   essential   to   how   a   cell   manages   when  placed  in  a  dynamic  environment  that  is  constantly   stretching   and   contracting,   such   as   the   heart.   We   determined  the  transmembrane  protein  Syndecan1  to  be   pivotal  in  a  cell’s  ability  to  orient  itself  to  different  surface   patterns  and  stiffness.     Future   works   might   include   dynamic   stretch   with   different   patterns,   as   well   as   stem   cell   differentiation   pathway  studies  through  mechanical  strain.   Figure  2.  Image  of  human  mesenchymal  stem  cells  (hMSCs).  Cells   were  passaged  twice  and  left  to  culture  on  same  dish  for  four  days   before  this  image  was  taken.  Mesenchymal  stem  cells  are  multipotent   stromal  cells,  meaning  they  can  differentiate  into  various  cell  types,   including  osteoblasts,  chondrocytes,  and  adipocytes.