SlideShare a Scribd company logo
1 of 34
Reinforcement Learning
INDHUJA LV
What is Machine learning?
 Machine Learning takes place as a result of
interaction between an agent and the world,
the idea behind machine learning is that
 Percepts received by an agent should be used not
only for acting, but also for improving the agent’s
ability to behave optimally in the future to achieve
the goal.
Machine Learning types
 Machine Learning types
 Supervised learning:
a situation in which sample (input, output) pairs of the
function to be learned can be perceived or are given
 You can think it as if there is a kind teacher
 Reinforcement learning:
in the case of the agent acts on its environment, it
receives some evaluation of its action (reinforcement),
but is not told of which action is the correct one to
achieve its goal
Reinforcement learning
 Task
Learn how to behave successfully to achieve a
goal while interacting with an external
environment
 Learn via experiences!
 Examples
 Game playing: player knows whether it win or lose,
but not know how to move at each step
 Control: a traffic system can measure the delay of
cars, but not know how to decrease it.
RL is learning from interaction
RL model
 Each percept(e) is enough to determine the
State(the state is accessible)
 The agent can decompose the Reward component
from a percept.
 The agent task: to find a optimal policy, mapping
states to actions, that maximize long-run measure
of the reinforcement
 Think of reinforcement as reward
 Can be modeled as MDP model!
Review of MDP model
 MDP model <S,T,A,R>
Agent
Environment
State
Reward
Action
s0
r0
a0
s1
a1
r1
s2
a2
r2
s3
• S– set of states
• A– set of actions
• T(s,a,s’) = P(s’|s,a)– the
probability of transition from
s to s’ given action a
• R(s,a)– the expected reward
for taking action a in state s




'
'
)
'
,
,
(
)
'
,
,
(
)
,
(
)
'
,
,
(
)
,
|
'
(
)
,
(
s
s
s
a
s
r
s
a
s
T
a
s
R
s
a
s
r
a
s
s
P
a
s
R
Model based v.s.Model free
approaches
 But, we don’t know anything about the environment
model—the transition function T(s,a,s’)
 Here comes two approaches
 Model based approach RL:
learn the model, and use it to derive the optimal policy.
e.g Adaptive dynamic learning(ADP) approach
 Model free approach RL:
derive the optimal policy without learning the model.
e.g LMS and Temporal difference approach
 Which one is better?
Passive learning v.s. Active
learning
 Passive learning
 The agent imply watches the world going by and
tries to learn the utilities of being in various states
 Active learning
 The agent not simply watches, but also acts
Example environment
Passive learning scenario
 The agent see the the sequences of state
transitions and associate rewards
 The environment generates state transitions and the
agent perceive them
e.g (1,1) (1,2) (1,3) (2,3) (3,3) (4,3)[+1]
(1,1)(1,2) (1,3) (1,2) (1,3) (1,2) (1,1) (2,1)
(3,1) (4,1) (4,2)[-1]
 Key idea: updating the utility value using the
given training sequences.
Passive leaning scenario
LMS updating
 Reward to go of a state
the sum of the rewards from that state until a
terminal state is reached
 Key: use observed reward to go of the state as
the direct evidence of the actual expected utility
of that state
 Learning utility function directly from sequence
example
LMS updating
function LMS-UPDATE (U, e, percepts, M, N ) return an updated U
if TERMINAL?[e] then
{ reward-to-go  0
for each ei in percepts (starting from end) do
s = STATE[ei]
reward-to-go  reward-to-go + REWARS[ei]
U[s] = RUNNING-AVERAGE (U[s], reward-to-go, N[s])
end
}
function RUNNING-AVERAGE (U[s], reward-to-go, N[s] )
U[s] = [ U[s] * (N[s] – 1) + reward-to-go ] / N[s]
LMS updating algorithm in
passive learning
 Drawback:
 The actual utility of a state is constrained to be probability- weighted
average of its successor’s utilities.
 Converge very slowly to correct utilities values (requires a lot of sequences)
 for our example, >1000!
Temporal difference method in
passive learning
 TD(0) key idea:
 adjust the estimated utility value of the current state based on its
immediately reward and the estimated value of the next state.
 The updating rule
 is the learning rate parameter
 Only when is a function that decreases as the number of times
a state has been visited increased, then can U(s)converge to the
correct value.
))
(
)
'
(
)
(
(
)
(
)
( s
U
s
U
s
R
s
U
s
U 


 


The TD learning curve
(4,3)
(2,3)
(2,2)
(1,1)
(3,1)
(4,1)
(4,2)
Adaptive dynamic programming(ADP)
in passive learning
 Different with LMS and TD method(model free
approaches)
 ADP is a model based approach!
 The updating rule for passive learning
 However, in an unknown environment, T is not given,
the agent must learn T itself by experiences with the
environment.
 How to learn T?
))
'
(
)
'
,
(
(
)
'
,
(
)
(
'
s
U
s
s
r
s
s
T
s
U
s


 
ADP learning curves
(4,3)
(3,3)
(2,3)
(1,1)
(3,1)
(4,1)
(4,2)
Active learning
 An active agent must consider
 what actions to take?
 what their outcomes maybe(both on learning and receiving the
rewards in the long run)?
 Update utility equation
 Rule to chose action
))
'
(
)
'
,
,
(
)
,
(
(
max
arg
'
s
U
s
a
s
T
a
s
R
a
s
a


 
))
'
(
)
'
,
,
(
)
,
(
(
max
)
(
'
s
U
s
a
s
T
a
s
R
s
U
s
a


 
Active ADP algorithm
For each s, initialize U(s) , T(s,a,s’) and R(s,a)
Initialize s to current state that is perceived
Loop forever
{
Select an action a and execute it (using current model R and T) using
Receive immediate reward r and observe the new state s’
Using the transition tuple <s,a,s’,r> to update model R and T (see further)
For all the sate s, update U(s) using the updating rule
s = s’
}
))
'
(
)
'
,
,
(
)
,
(
(
max
arg
'
s
U
s
a
s
T
a
s
R
a
s
a


 
))
'
(
)
'
,
,
(
)
,
(
(
max
)
(
'
s
U
s
a
s
T
a
s
R
s
U
s
a


 
How to learn model?
 Use the transition tuple <s, a, s’, r> to learn T(s,a,s’) and
R(s,a). That’s supervised learning!
 Since the agent can get every transition (s, a, s’,r) directly, so take
(s,a)/s’ as an input/output example of the transition probability
function T.
 Different techniques in the supervised learning(see further reading
for detail)
 Use r and T(s,a,s’) to learn R(s,a)


'
)
'
,
,
(
)
,
(
s
r
s
a
s
T
a
s
R
ADP approach pros and cons
 Pros:
 ADP algorithm converges far faster than LMS and Temporal
learning. That is because it use the information from the the model
of the environment.
 Cons:
 Intractable for large state space
 In each step, update U for all states
 Improve this by prioritized-sweeping (see further reading for detail)
Another model free method–
TD-Q learning
 Define Q-value function
 Q-value function updating rule
<*>
 Key idea of TD-Q learning
 Combined with temporal difference approach
 The updating rule
 Rule to chose the action to take
)
,
(
max
)
( a
s
Q
s
U
a

))
'
(
)
'
,
,
(
)
,
(
(
max
)
(
'
s
U
s
a
s
T
a
s
R
s
U
s
a


 
)
'
(
)
'
,
,
(
)
,
(
)
,
(
'
s
U
s
a
s
T
a
s
R
a
s
Q
s


 
)
'
,
'
(
max
)
'
,
,
(
)
,
(
)
,
(
'
'
a
s
Q
s
a
s
T
a
s
R
a
s
Q
s
a


 
))
,
(
)
'
,
'
(
max
(
)
,
(
)
,
(
'
a
s
Q
a
s
Q
r
a
s
Q
a
s
Q
a



 

)
,
(
max
arg a
s
Q
a
a

TD-Q learning agent algorithm
For each pair (s, a), initialize Q(s,a)
Observe the current state s
Loop forever
{
Select an action a and execute it
Receive immediate reward r and observe the new state s’
Update Q(s,a)
s=s’
}
)
,
(
max
arg a
s
Q
a
a

))
,
(
)
'
,
'
(
max
(
)
,
(
)
,
(
'
a
s
Q
a
s
Q
r
a
s
Q
a
s
Q
a



 

 An action has two kinds of outcome
 Gain rewards on the current experience
tuple (s,a,s’)
 Affect the percepts received, and hence
the ability of the agent to learn
Exploration problem in Active
learning
Exploration problem in Active
learning
 A trade off when choosing action between
 its immediately good(reflected in its current utility estimates using the
what we have learned)
 its long term good(exploring more about the environment help it to
behave optimally in the long run)
 Two extreme approaches
 “wacky”approach: acts randomly, in the hope that it will eventually
explore the entire environment.
 “greedy”approach: acts to maximize its utility using current model
estimate
See Figure 20.10
 Just like human in the real world! People need to decide between
 Continuing in a comfortable existence
 Or striking out into the unknown in the hopes of discovering a new
and better life
Exploration problem in Active
learning
 One kind of solution: the agent should be more wacky when it has
little idea of the environment, and more greedy when it has a
model that is close to being correct
 In a given state, the agent should give some weight to actions that it
has not tried very often.
 While tend to avoid actions that are believed to be of low utility
 Implemented by exploration function f(u,n):
 assigning a higher utility estimate to relatively unexplored action state
pairs
 Chang the updating rule of value function to
 U+ denote the optimistic estimate of the utility
))
,
(
),
'
(
)
'
,
,
(
(
)
,
(
(
max
)
(
'
s
a
N
s
U
s
a
s
T
f
a
s
r
s
U
s
a




 
Exploration problem in Active
learning
 One kind of definition of f(u,n)
if n< Ne
u otherwise
 is an optimistic estimate of the best possible reward
obtainable in any state
 The agent will try each action-state pair(s,a) at least Ne times
 The agent will behave initially as if there were wonderful rewards
scattered all over around– optimistic .

)
,
( n
u
f

R


R
Generalization in
Reinforcement Learning
 So far we assumed that all the functions learned by
the agent are (U, T, R,Q) are tabular forms—
i.e.. It is possible to enumerate state and action
spaces.
 Use generalization techniques to deal with large state
or action space.
 Function approximation techniques
Genetic algorithm and Evolutionary
programming
 Start with a set of individuals
 Apply selection and reproduction operators to “evolve” an individual that is
successful (measured by a fitness function)
Genetic algorithm and Evolutionary
programming
 Imagine the individuals as agent functions
 Fitness function as performance measure or reward
function
 No attempt made to learn the relationship the
rewards and actions taken by an agent
 Simply searches directly in the individual space to
find one that maximizes the fitness functions
Genetic algorithm and Evolutionary
programming
 Represent an individual as a binary string(each bit of the string is called a gene)
 Selection works like this: if individual X scores twice as high as Y on the fitness
function, then X is twice likely to be selected for reproduction than Y is
 Reproduction is accomplished by cross-over and mutation
Thank you!

More Related Content

What's hot

Artificial intelligence
Artificial intelligenceArtificial intelligence
Artificial intelligence
ravijain90
 

What's hot (20)

Robotics seminar ppt
Robotics seminar pptRobotics seminar ppt
Robotics seminar ppt
 
Artificial intelligence
Artificial intelligenceArtificial intelligence
Artificial intelligence
 
Artificial Intelligence and Robotics
Artificial Intelligence and RoboticsArtificial Intelligence and Robotics
Artificial Intelligence and Robotics
 
I.BEST FIRST SEARCH IN AI
I.BEST FIRST SEARCH IN AII.BEST FIRST SEARCH IN AI
I.BEST FIRST SEARCH IN AI
 
Web design unit 1
Web design unit 1Web design unit 1
Web design unit 1
 
Computer vision
Computer visionComputer vision
Computer vision
 
Artificial intelligence
Artificial intelligenceArtificial intelligence
Artificial intelligence
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
Robot Software Architecture (Mobile Robots)
Robot Software Architecture (Mobile Robots)Robot Software Architecture (Mobile Robots)
Robot Software Architecture (Mobile Robots)
 
Types of Machine Learning
Types of Machine LearningTypes of Machine Learning
Types of Machine Learning
 
Artificial intelligence
Artificial intelligenceArtificial intelligence
Artificial intelligence
 
Minmax Algorithm In Artificial Intelligence slides
Minmax Algorithm In Artificial Intelligence slidesMinmax Algorithm In Artificial Intelligence slides
Minmax Algorithm In Artificial Intelligence slides
 
Machine Learning and Real-World Applications
Machine Learning and Real-World ApplicationsMachine Learning and Real-World Applications
Machine Learning and Real-World Applications
 
Production system in ai
Production system in aiProduction system in ai
Production system in ai
 
PPT on Artificial Intelligence(A.I.)
PPT on Artificial Intelligence(A.I.) PPT on Artificial Intelligence(A.I.)
PPT on Artificial Intelligence(A.I.)
 
Robotics & Artificial Intelligence
Robotics &  Artificial  IntelligenceRobotics &  Artificial  Intelligence
Robotics & Artificial Intelligence
 
Problem Formulation in Artificial Inteligence Projects
Problem Formulation in Artificial Inteligence ProjectsProblem Formulation in Artificial Inteligence Projects
Problem Formulation in Artificial Inteligence Projects
 
ARTIFICIAL INTELLIGENCE BASIC PPT
ARTIFICIAL INTELLIGENCE BASIC PPTARTIFICIAL INTELLIGENCE BASIC PPT
ARTIFICIAL INTELLIGENCE BASIC PPT
 
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
 
An introduction to AI (artificial intelligence)
An introduction to AI (artificial intelligence)An introduction to AI (artificial intelligence)
An introduction to AI (artificial intelligence)
 

Similar to Reinforcement Learning.ppt

Reinforcement learning 7313
Reinforcement learning 7313Reinforcement learning 7313
Reinforcement learning 7313
Slideshare
 
acai01-updated.ppt
acai01-updated.pptacai01-updated.ppt
acai01-updated.ppt
butest
 
reinforcement-learning-141009013546-conversion-gate02.pdf
reinforcement-learning-141009013546-conversion-gate02.pdfreinforcement-learning-141009013546-conversion-gate02.pdf
reinforcement-learning-141009013546-conversion-gate02.pdf
VaishnavGhadge1
 
Lecture notes
Lecture notesLecture notes
Lecture notes
butest
 
lecture_21.pptx - PowerPoint Presentation
lecture_21.pptx - PowerPoint Presentationlecture_21.pptx - PowerPoint Presentation
lecture_21.pptx - PowerPoint Presentation
butest
 
M Harmon RL Tutorial
M Harmon RL TutorialM Harmon RL Tutorial
M Harmon RL Tutorial
Mance Harmon
 

Similar to Reinforcement Learning.ppt (20)

YijueRL.ppt
YijueRL.pptYijueRL.ppt
YijueRL.ppt
 
RL_online _presentation_1.ppt
RL_online _presentation_1.pptRL_online _presentation_1.ppt
RL_online _presentation_1.ppt
 
reiniforcement learning.ppt
reiniforcement learning.pptreiniforcement learning.ppt
reiniforcement learning.ppt
 
Reinforcement learning 7313
Reinforcement learning 7313Reinforcement learning 7313
Reinforcement learning 7313
 
RL.ppt
RL.pptRL.ppt
RL.ppt
 
An efficient use of temporal difference technique in Computer Game Learning
An efficient use of temporal difference technique in Computer Game LearningAn efficient use of temporal difference technique in Computer Game Learning
An efficient use of temporal difference technique in Computer Game Learning
 
REINFORCEMENT LEARNING
REINFORCEMENT LEARNINGREINFORCEMENT LEARNING
REINFORCEMENT LEARNING
 
acai01-updated.ppt
acai01-updated.pptacai01-updated.ppt
acai01-updated.ppt
 
reinforcement-learning-141009013546-conversion-gate02.pdf
reinforcement-learning-141009013546-conversion-gate02.pdfreinforcement-learning-141009013546-conversion-gate02.pdf
reinforcement-learning-141009013546-conversion-gate02.pdf
 
Reinforcement learning
Reinforcement learningReinforcement learning
Reinforcement learning
 
Reinforcement learning
Reinforcement learning Reinforcement learning
Reinforcement learning
 
Lecture notes
Lecture notesLecture notes
Lecture notes
 
Reinforcement Learning
Reinforcement LearningReinforcement Learning
Reinforcement Learning
 
lecture_21.pptx - PowerPoint Presentation
lecture_21.pptx - PowerPoint Presentationlecture_21.pptx - PowerPoint Presentation
lecture_21.pptx - PowerPoint Presentation
 
Cs221 rl
Cs221 rlCs221 rl
Cs221 rl
 
RL_Dr.SNR Final ppt for Presentation 28.05.2021.pptx
RL_Dr.SNR Final ppt for Presentation 28.05.2021.pptxRL_Dr.SNR Final ppt for Presentation 28.05.2021.pptx
RL_Dr.SNR Final ppt for Presentation 28.05.2021.pptx
 
Matineh Shaker, Artificial Intelligence Scientist, Bonsai at MLconf SF 2017
Matineh Shaker, Artificial Intelligence Scientist, Bonsai at MLconf SF 2017Matineh Shaker, Artificial Intelligence Scientist, Bonsai at MLconf SF 2017
Matineh Shaker, Artificial Intelligence Scientist, Bonsai at MLconf SF 2017
 
ML_lec1.pdf
ML_lec1.pdfML_lec1.pdf
ML_lec1.pdf
 
Intro rl
Intro rlIntro rl
Intro rl
 
M Harmon RL Tutorial
M Harmon RL TutorialM Harmon RL Tutorial
M Harmon RL Tutorial
 

Recently uploaded

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Recently uploaded (20)

Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

Reinforcement Learning.ppt

  • 2. What is Machine learning?  Machine Learning takes place as a result of interaction between an agent and the world, the idea behind machine learning is that  Percepts received by an agent should be used not only for acting, but also for improving the agent’s ability to behave optimally in the future to achieve the goal.
  • 3. Machine Learning types  Machine Learning types  Supervised learning: a situation in which sample (input, output) pairs of the function to be learned can be perceived or are given  You can think it as if there is a kind teacher  Reinforcement learning: in the case of the agent acts on its environment, it receives some evaluation of its action (reinforcement), but is not told of which action is the correct one to achieve its goal
  • 4. Reinforcement learning  Task Learn how to behave successfully to achieve a goal while interacting with an external environment  Learn via experiences!  Examples  Game playing: player knows whether it win or lose, but not know how to move at each step  Control: a traffic system can measure the delay of cars, but not know how to decrease it.
  • 5. RL is learning from interaction
  • 6. RL model  Each percept(e) is enough to determine the State(the state is accessible)  The agent can decompose the Reward component from a percept.  The agent task: to find a optimal policy, mapping states to actions, that maximize long-run measure of the reinforcement  Think of reinforcement as reward  Can be modeled as MDP model!
  • 7. Review of MDP model  MDP model <S,T,A,R> Agent Environment State Reward Action s0 r0 a0 s1 a1 r1 s2 a2 r2 s3 • S– set of states • A– set of actions • T(s,a,s’) = P(s’|s,a)– the probability of transition from s to s’ given action a • R(s,a)– the expected reward for taking action a in state s     ' ' ) ' , , ( ) ' , , ( ) , ( ) ' , , ( ) , | ' ( ) , ( s s s a s r s a s T a s R s a s r a s s P a s R
  • 8. Model based v.s.Model free approaches  But, we don’t know anything about the environment model—the transition function T(s,a,s’)  Here comes two approaches  Model based approach RL: learn the model, and use it to derive the optimal policy. e.g Adaptive dynamic learning(ADP) approach  Model free approach RL: derive the optimal policy without learning the model. e.g LMS and Temporal difference approach  Which one is better?
  • 9. Passive learning v.s. Active learning  Passive learning  The agent imply watches the world going by and tries to learn the utilities of being in various states  Active learning  The agent not simply watches, but also acts
  • 11. Passive learning scenario  The agent see the the sequences of state transitions and associate rewards  The environment generates state transitions and the agent perceive them e.g (1,1) (1,2) (1,3) (2,3) (3,3) (4,3)[+1] (1,1)(1,2) (1,3) (1,2) (1,3) (1,2) (1,1) (2,1) (3,1) (4,1) (4,2)[-1]  Key idea: updating the utility value using the given training sequences.
  • 13. LMS updating  Reward to go of a state the sum of the rewards from that state until a terminal state is reached  Key: use observed reward to go of the state as the direct evidence of the actual expected utility of that state  Learning utility function directly from sequence example
  • 14. LMS updating function LMS-UPDATE (U, e, percepts, M, N ) return an updated U if TERMINAL?[e] then { reward-to-go  0 for each ei in percepts (starting from end) do s = STATE[ei] reward-to-go  reward-to-go + REWARS[ei] U[s] = RUNNING-AVERAGE (U[s], reward-to-go, N[s]) end } function RUNNING-AVERAGE (U[s], reward-to-go, N[s] ) U[s] = [ U[s] * (N[s] – 1) + reward-to-go ] / N[s]
  • 15. LMS updating algorithm in passive learning  Drawback:  The actual utility of a state is constrained to be probability- weighted average of its successor’s utilities.  Converge very slowly to correct utilities values (requires a lot of sequences)  for our example, >1000!
  • 16. Temporal difference method in passive learning  TD(0) key idea:  adjust the estimated utility value of the current state based on its immediately reward and the estimated value of the next state.  The updating rule  is the learning rate parameter  Only when is a function that decreases as the number of times a state has been visited increased, then can U(s)converge to the correct value. )) ( ) ' ( ) ( ( ) ( ) ( s U s U s R s U s U       
  • 17. The TD learning curve (4,3) (2,3) (2,2) (1,1) (3,1) (4,1) (4,2)
  • 18. Adaptive dynamic programming(ADP) in passive learning  Different with LMS and TD method(model free approaches)  ADP is a model based approach!  The updating rule for passive learning  However, in an unknown environment, T is not given, the agent must learn T itself by experiences with the environment.  How to learn T? )) ' ( ) ' , ( ( ) ' , ( ) ( ' s U s s r s s T s U s    
  • 20. Active learning  An active agent must consider  what actions to take?  what their outcomes maybe(both on learning and receiving the rewards in the long run)?  Update utility equation  Rule to chose action )) ' ( ) ' , , ( ) , ( ( max arg ' s U s a s T a s R a s a     )) ' ( ) ' , , ( ) , ( ( max ) ( ' s U s a s T a s R s U s a    
  • 21. Active ADP algorithm For each s, initialize U(s) , T(s,a,s’) and R(s,a) Initialize s to current state that is perceived Loop forever { Select an action a and execute it (using current model R and T) using Receive immediate reward r and observe the new state s’ Using the transition tuple <s,a,s’,r> to update model R and T (see further) For all the sate s, update U(s) using the updating rule s = s’ } )) ' ( ) ' , , ( ) , ( ( max arg ' s U s a s T a s R a s a     )) ' ( ) ' , , ( ) , ( ( max ) ( ' s U s a s T a s R s U s a    
  • 22. How to learn model?  Use the transition tuple <s, a, s’, r> to learn T(s,a,s’) and R(s,a). That’s supervised learning!  Since the agent can get every transition (s, a, s’,r) directly, so take (s,a)/s’ as an input/output example of the transition probability function T.  Different techniques in the supervised learning(see further reading for detail)  Use r and T(s,a,s’) to learn R(s,a)   ' ) ' , , ( ) , ( s r s a s T a s R
  • 23. ADP approach pros and cons  Pros:  ADP algorithm converges far faster than LMS and Temporal learning. That is because it use the information from the the model of the environment.  Cons:  Intractable for large state space  In each step, update U for all states  Improve this by prioritized-sweeping (see further reading for detail)
  • 24. Another model free method– TD-Q learning  Define Q-value function  Q-value function updating rule <*>  Key idea of TD-Q learning  Combined with temporal difference approach  The updating rule  Rule to chose the action to take ) , ( max ) ( a s Q s U a  )) ' ( ) ' , , ( ) , ( ( max ) ( ' s U s a s T a s R s U s a     ) ' ( ) ' , , ( ) , ( ) , ( ' s U s a s T a s R a s Q s     ) ' , ' ( max ) ' , , ( ) , ( ) , ( ' ' a s Q s a s T a s R a s Q s a     )) , ( ) ' , ' ( max ( ) , ( ) , ( ' a s Q a s Q r a s Q a s Q a       ) , ( max arg a s Q a a 
  • 25. TD-Q learning agent algorithm For each pair (s, a), initialize Q(s,a) Observe the current state s Loop forever { Select an action a and execute it Receive immediate reward r and observe the new state s’ Update Q(s,a) s=s’ } ) , ( max arg a s Q a a  )) , ( ) ' , ' ( max ( ) , ( ) , ( ' a s Q a s Q r a s Q a s Q a      
  • 26.  An action has two kinds of outcome  Gain rewards on the current experience tuple (s,a,s’)  Affect the percepts received, and hence the ability of the agent to learn Exploration problem in Active learning
  • 27. Exploration problem in Active learning  A trade off when choosing action between  its immediately good(reflected in its current utility estimates using the what we have learned)  its long term good(exploring more about the environment help it to behave optimally in the long run)  Two extreme approaches  “wacky”approach: acts randomly, in the hope that it will eventually explore the entire environment.  “greedy”approach: acts to maximize its utility using current model estimate See Figure 20.10  Just like human in the real world! People need to decide between  Continuing in a comfortable existence  Or striking out into the unknown in the hopes of discovering a new and better life
  • 28. Exploration problem in Active learning  One kind of solution: the agent should be more wacky when it has little idea of the environment, and more greedy when it has a model that is close to being correct  In a given state, the agent should give some weight to actions that it has not tried very often.  While tend to avoid actions that are believed to be of low utility  Implemented by exploration function f(u,n):  assigning a higher utility estimate to relatively unexplored action state pairs  Chang the updating rule of value function to  U+ denote the optimistic estimate of the utility )) , ( ), ' ( ) ' , , ( ( ) , ( ( max ) ( ' s a N s U s a s T f a s r s U s a      
  • 29. Exploration problem in Active learning  One kind of definition of f(u,n) if n< Ne u otherwise  is an optimistic estimate of the best possible reward obtainable in any state  The agent will try each action-state pair(s,a) at least Ne times  The agent will behave initially as if there were wonderful rewards scattered all over around– optimistic .  ) , ( n u f  R   R
  • 30. Generalization in Reinforcement Learning  So far we assumed that all the functions learned by the agent are (U, T, R,Q) are tabular forms— i.e.. It is possible to enumerate state and action spaces.  Use generalization techniques to deal with large state or action space.  Function approximation techniques
  • 31. Genetic algorithm and Evolutionary programming  Start with a set of individuals  Apply selection and reproduction operators to “evolve” an individual that is successful (measured by a fitness function)
  • 32. Genetic algorithm and Evolutionary programming  Imagine the individuals as agent functions  Fitness function as performance measure or reward function  No attempt made to learn the relationship the rewards and actions taken by an agent  Simply searches directly in the individual space to find one that maximizes the fitness functions
  • 33. Genetic algorithm and Evolutionary programming  Represent an individual as a binary string(each bit of the string is called a gene)  Selection works like this: if individual X scores twice as high as Y on the fitness function, then X is twice likely to be selected for reproduction than Y is  Reproduction is accomplished by cross-over and mutation