SlideShare a Scribd company logo
1 of 27
Download to read offline
Numerical analysis of a locking-free mixed
fem for a bending moment formulation of
         Reissner-Mindlin plates
           ¸         ˜
    L OURENC O B EIR A O   DA   V EIGA1 , DAVID M ORA2 , R ODOLFO R ODR´GUEZ3
                                                                       I



      1
                                               `
          Dipartimento di Matematica, Universita degli Studi di Milano.
           2
                                    ´
               Departamento de Matematica, Universidad del B´o B´o.
                                                            ı   ı
3
                                    ´                             ´
    Departamento de Ingenier´a Matematica, Universidad de Concepcion.
                            ı


                          ´                ´         ´
                      Sesion Especial de Analisis Numerico
                                ´
            XX Congreso de Matematica Capricornio COMCA 2010
                                            ´
                      Universidad de Tarapaca, Arica, Chile
                                4–6 de Agosto de 2010.
Contents

• The model problem
• The continuous formulation
• Galerkin formulation
• Numerical tests




Mixed FEM for Reissner-Mindlin plates.       –2–    B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                          ˜                           I
The model problem.

Given g   ∈ L2 (Ω), find β , γ and w

                                − div(C(ε(β))) − γ = 0 in Ω,

                                         −div γ = g in Ω,
                                          κ
                                      γ = 2 (∇w − β) in Ω,
                                          t
                                       w = 0, β = 0 on ∂Ω,
 • w is the transverse displacement,
 • β = (β1 , β2 ) are the rotations,
 • γ is the shear stress,
 • t is the thickness,
 • κ := Ek/2(1 + ν) is the shear modulus (k is a correction factor),
                   E
 • Cτ :=       12(1−ν 2 )   ((1 − ν)τ + ν tr(τ )I) ,
 • we restrict our analysis to convex plates.
  Mixed FEM for Reissner-Mindlin plates.             –3–        B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                      ˜                           I
The model problem. (cont.)

We introduce as a new unknown the bending moment σ                 = (σij )1≤i,j≤2 , defined by

                                               σ := C(ε(β)).
             12(1 − ν 2 )                     1          ν
 • C −1 τ :=                                       τ−        2)
                                                                tr(τ )I .
                 E                         (1 − ν)    (1 − ν
We rewrite the equation above as:

                          −1           1
                      C        σ = ∇β − (∇β − (∇β)t ) = ∇β − rJ,
                                       2
          1
 • r := − 2 rot β ,
                   
             0 1
 • J :=            .
            −1 0



  Mixed FEM for Reissner-Mindlin plates.               –4–             B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                             ˜                           I
The continuous formulation.

   Continuous mixed problem
   Find ((σ, γ), (β, r, w))          ∈ H × Q such that
               t2
  C −1 σ : τ +               γ·ξ+              β · (div τ + ξ) +       r(τ12 − τ21 ) +          wdiv ξ = 0
Ω              κ         Ω                Ω                        Ω                        Ω

                                   η · (div σ + γ) +           s(σ12 − σ21 ) +         vdiv γ = −              gv,
                               Ω                           Ω                       Ω                       Ω

   for all ((τ , ξ), (η, s, v))      ∈ H × Q, where

                                     H := H(div; Ω) × H(div ; Ω),

                                   Q := [L2 (Ω)]2 × L2 (Ω) × L2 (Ω),
   with
                    H(div; Ω) := {τ ∈ [L2 (Ω)]2×2 : div τ ∈ [L2 (Ω)]2 },
   and
                         H(div ; Ω) := {ξ ∈ [L2 (Ω)]2 : div ξ ∈ L2 (Ω)}.
      Mixed FEM for Reissner-Mindlin plates.              –5–                B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                   ˜                           I
The continuous formulation. (cont.)

Continuous mixed problem
   a((σ, γ), (τ , ξ)) + b((τ , ξ), (β, r, w)) = 0                               ∀(τ , ξ) ∈ H,

                                 b((σ, γ), (η, s, v)) = −                       gv          ∀(η, s, v) ∈ Q,
                                                                            Ω

where

                                                          t2
                     a((σ, γ), (τ , ξ)) :=   C −1 σ : τ +                                  γ · ξ,
                                           Ω              κ                           Ω


   b((τ , ξ), (η, s, v)) :=                η · (div τ + ξ) +                s(τ12 − τ21 ) +               vdiv ξ.
                                      Ω                                 Ω                             Ω

In the analysis we will utilize the following t-dependent norm for the space H

         (τ , ξ)    H   := τ       0,Ω     + div τ + ξ            0,Ω   +t ξ         0,Ω   + div ξ        0,Ω ,

while for the space Q, we will use

                          (η, s, v)        Q   := η   0,Ω   + s         0,Ω     + v    0,Ω .

  Mixed FEM for Reissner-Mindlin plates.                    –6–                        B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                             ˜                           I
The continuous formulation. (cont.)


    Additional regularity
    Proposition 1 Suppose that Ω is a convex polygon and g                     ∈ L2 (Ω). Then, there
                                                                          a
    exists a constant C , independent of t and g , such that

w    2,Ω +     β   2,Ω +    γ   H(div ;Ω) +t    γ   1,Ω +    σ   1,Ω +t       div σ   1,Ω +    r   1,Ω   ≤C g         0,Ω .

      a
          D. N. A RNOLD AND R. S. FALK, A uniformly accurate finite element method for the Reissner-Mindlin plate,
    SIAM J. Numer. Anal., 26 (1989) 1276–1290.




       Mixed FEM for Reissner-Mindlin plates.                –7–                   B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                         ˜                           I
The continuous formulation. (cont.)

Ellipticity in the kernel

        V := {(τ , ξ) ∈ H : ξ + div τ = 0, τ = τ t and div ξ = 0 in Ω}.

Lemma 1 There exists C             > 0, independent of t, such that
                                                            2
                      a((τ , ξ), (τ , ξ)) ≥ C (τ , ξ)       H     ∀(τ , ξ) ∈ V.

Proof. Given (τ , ξ)       ∈ V , using tr(τ )2 ≤ 2(τ : τ ) ∀τ ∈ [L2 (Ω)]2×2 , we obtain
                                         12(1 − ν)              2     t2        2
                   a((τ , ξ), (τ , ξ)) ≥           τ            0,Ω +    ξ      0,Ω .
                                            E                         κ

Since    div τ + ξ        0,Ω   = 0 and div ξ      0,Ω   = 0, we get
                                       2                    2
a((τ , ξ), (τ , ξ)) ≥ C            τ   0,Ω   + div τ + ξ    0,Ω   + t2 ξ    2
                                                                            0,Ω   + div ξ         2
                                                                                                  0,Ω    ,
                                                                       2
                               ⇒ a((τ , ξ), (τ , ξ)) ≥ C (τ , ξ)       H,



  Mixed FEM for Reissner-Mindlin plates.             –8–                   B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                 ˜                           I
The continuous formulation. (cont.)

Inf-Sup condition

Lemma 2 There exists C             > 0, independent of t, such that
                   |b((τ , ξ), (η, s, v))|
            sup                            ≥ C (η, s, v)        Q     ∀(η, s, v) ∈ Q.
          (τ ,ξ)∈H        (τ , ξ) H
          (τ ,ξ)=0


Well-posedness

Theorem 2 There exists a unique ((σ, γ), (β, r, w))            ∈ H × Q solution of the
continuous mixed problem and

                              ((σ, γ), (β, r, w))   H×Q    ≤C g       0,Ω ,

where C is independent of t.



  Mixed FEM for Reissner-Mindlin plates.            –9–                  B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                               ˜                           I
Galerkin formulation.

                                                                       ¯
 • {Th }h>0 : regular family of triangulations of the polygonal region Ω.
 • hT : diameter of the triangle T ∈ Th .
 • h := max{hT : T ∈ Th }.
   ¯
 • Ω=         {T : T ∈ Th }.
Finite elements subspaces

                γ
               Hh := {ξh ∈ H(div ; Ω) : ξh |T ∈ RT0 (T ), ∀T ∈ Th },


                    Qw := {vh ∈ L2 (Ω) : vh |T ∈ P0 (T ), ∀T ∈ Th },
                     h




  Mixed FEM for Reissner-Mindlin plates.              – 10 –       B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                         ˜                           I
Galerkin formulation. (cont.)

We consider the unique polynomial bT             ∈ P3 (T ) that vanishes on ∂T and is
normalized by T bT           = 1.

B(Th ) := {τ ∈ H(div ; Ω) : (τi1 , τi2 )|T ∈ span{curl(bT )}, i = 1, 2, ∀T ∈ Th } ,

where curl v      := (∂2 v, −∂1 v).


       Hh := {τ h ∈ H(div ; Ω) : τ h |T ∈ [RT0 (T )t ]2 , ∀T ∈ Th } ⊕ B(Th ),
        σ




                  Qβ := {ηh ∈ [L2 (Ω)]2 : ηh |T ∈ [P0 (T )]2 , ∀T ∈ Th },
                   h



                    Qr := sh ∈ H 1 (Ω) : sh |T ∈ P1 (T ), ∀T ∈ Th ,
                     h

Note that Hh
           σ
                   × Qβ × Qr correspond to the PEERSa finite elements.
                      h    h
  a
      D. N. A RNOLD, F. B REZZI AND J. D OUGLAS, PEERS: A new mixed finite element for the plane elasticity,
Japan J. Appl. Math., 1 (1984) 347–367.

   Mixed FEM for Reissner-Mindlin plates.              – 11 –                 B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                    ˜                           I
Galerkin formulation. (cont.)


Discrete mixed problem:
Find ((σ h , γh ), (βh , rh , wh ))         ∈ Hh × Qh such that
a((σ h , γh ), (τ h , ξh )) + b((τ h , ξh ), (βh , rh , wh )) = 0           ∀(τ h , ξh ) ∈ Hh ,

                                b((σ h , γh ), (ηh , sh , vh )) = −       gvh        ∀(ηh , sh , vh ) ∈ Qh .
                                                                      Ω


                                                        γ
                                            Hh := Hh × Hh ,
                                                   σ


                                        Qh := Qβ × Qr × Qw .
                                               h    h    h




   Mixed FEM for Reissner-Mindlin plates.            – 12 –                B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                 ˜                           I
Galerkin formulation. (cont.)

Discrete kernel


     Vh := (τ h , ξh ) ∈ Hh :                   ηh · (div τ h + ξh ) +         sh (τ12h − τ21h )
                                            Ω                              Ω

                                            +         vh div ξh = 0 ∀(ηh , sh , vh ) ∈ Qh .
                                                  Ω

Let (τ h , ξh )∈ Vh . Taking (0, 0, vh ) ∈ Qh and using that (div ξh )|T is a constant,
since vh |T is also a constant, we conclude that div ξh = 0 in Ω.

Now, taking (ηh , 0, 0)∈ Qh , since div τ h = 0 in Ω ∀τ h ∈ B(Th ), we have that
(div τ h )|T is a constant vector. Since div ξh = 0, we have that ξh |T is also a
constant vector. Therefore, since ηh |T is also a constant vector, we conclude that
(div τ h + ξh ) = 0 in Ω. Thus, we obtain

Vh = (τ h , ξh ) ∈ Hh : ξh + div τ h = 0,                            sh (τ12h − τ21h ) = 0 ∀sh ∈ Qr
                                                                                                  h
                                                                 Ω

                                                                             and    div ξh = 0 in Ω .
   Mixed FEM for Reissner-Mindlin plates.               – 13 –              B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                  ˜                           I
Galerkin formulation. (cont.)

Ellipticity in the discrete kernel

Lemma 3 There exists C             > 0 such that
                                                             2
              a((τ h , ξh ), (τ h , ξh )) ≥ C (τ h , ξh )    H   ∀(τ h , ξh ) ∈ Vh ,

where the constant C is independent of h and t.

Discrete inf-Sup condition

Lemma 4 There exists C             > 0, independent of h and t, such that
                |b((τ h , ξh ), (ηh , sh , vh ))|
    sup                                           ≥ C (ηh , sh , vh )   Q    ∀(ηh , sh , vh ) ∈ Qh .
(τ h ,ξh )∈Hh             (τ h , ξh ) H
 (τ h ,ξh )=0




  Mixed FEM for Reissner-Mindlin plates.            – 14 –              B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                              ˜                           I
Galerkin formulation. (cont.)

Theorem 3 There exists a unique ((σ h , γh ), (βh , rh , wh ))
                                                             ∈ Hh × Qh solution of
the discrete mixed problem. Moreover, there exist C, C > 0, independent of h and t,
such that
                          ((σ h , γh ), (βh , rh , wh ))    H×Q   ≤C g      0,Ω ,

and

 ((σ, γ), (β, r, w)) − ((σ h , γh ), (βh ,rh , wh ))            H×Q

            ≤C              inf            ((σ, γ),(β, r, w)) − ((τ h , ξh ), (ηh , sh , vh ))        H×Q ,
                     (τ h ,ξh )∈Hh
                    (ηh ,sh ,vh )∈Qh

where ((σ, γ), (β, r, w))           ∈ H × Q is the unique solution of the continuous mixed
problem.




  Mixed FEM for Reissner-Mindlin plates.               – 15 –              B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                 ˜                           I
Galerkin formulation. (cont.)

Rate of convergence

Theorem 4 Let ((σ, γ), (β, r, w))     ∈ H × Q and
((σ h , γh ), (βh , rh , wh )) ∈ Hh × Qh be the unique solutions of the continuous and
discrete mixed problem, respectively. If g ∈ H 1 (Ω), then,

        ((σ, γ), (β, r, w)) − ((σ h , γh ), (βh , rh , wh ))         H×Q   ≤ Ch g        1,Ω .




  Mixed FEM for Reissner-Mindlin plates.            – 16 –             B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                             ˜                           I
Numerical tests.


• Isotropic and homogeneous plate.
• Ω := (0, 1) × (0, 1).
• t = 0.001.
• E = 1, ν = 0.30 and k = 5/6.




                             Figure 1: Square plate: uniform meshes.



 Mixed FEM for Reissner-Mindlin plates.           – 17 –           B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                         ˜                           I
Numerical tests. (cont.)


Choosing the load g as:

                             E
               g(x, y) =              12y(y − 1)(5x2 − 5x + 1) 2y 2 (y − 1)2
                         12(1 − ν 2 )
    +x(x − 1)(5y 2 − 5y + 1) + 12x(x − 1)(5y 2 − 5y + 1) 2x2 (x − 1)2

                                                                +y(y − 1)(5x2 − 5x + 1) ,

so that
                      1 3
             w(x, y) = x (x − 1)3 y 3 (y − 1)3
                      3
                           2t2
                      −           y 3 (y − 1)3 x(x − 1)(5x2 − 5x + 1)
                        5(1 − ν)
                             + x3 (x − 1)3 y(y − 1)(5y 2 − 5y + 1) ,
            β1 (x, y) =y 3 (y − 1)3 x2 (x − 1)2 (2x − 1),
            β2 (x, y) =x3 (x − 1)3 y 2 (y − 1)2 (2y − 1).

  Mixed FEM for Reissner-Mindlin plates.               – 18 –            B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                               ˜                           I
Numerical tests. (cont.)



                e(σ) := σ − σ h               0,Ω ,   e(γ) := γ − γh      t,H(div ;Ω) ,

 e(β) := β − βh             0,Ω ,          e(r) := r − rh        0,Ω ,   e(w) := w − wh              0,Ω ,



                                                log(e(·)/e′ (·))
                                    rc(·) := −2                  ,
                                                  log(N/N ′ )
where N and N ′ denote the degrees of freedom of two consecutive triangulations with
errors e and e′ .




  Mixed FEM for Reissner-Mindlin plates.                – 19 –             B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                 ˜                           I
Numerical tests. (cont.)


Table 1: Errors and experimental rates of convergence for variables σ and γ , computed
on uniform meshes.

                    N                e(σ)           rc(σ)          e(γ)        rc(γ)
                  1345          0.40270e-04            –        0.31715e-02        –

                  5249          0.19649e-04         1.054       0.15876e-02     1.016

                 20737          0.09760e-04         1.019       0.07942e-02     1.008

                 82433          0.04868e-04         1.008       0.03971e-02     1.004

                328705          0.02431e-04         1.004       0.01986e-02     1.002




  Mixed FEM for Reissner-Mindlin plates.               – 20 –             B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                ˜                           I
Numerical tests. (cont.)



Table 2: Errors and experimental rates of convergence for variables               β , r and w, com-
puted on uniform meshes.



    N                 e(β)             rc(β)           e(r)       rc(r)           e(w)              rc(w)
   1345          0.39713e-04                –      0.87462e-04        –      0.66226e-05                –

   5249          0.18189e-04           1.147       0.39217e-04    1.178      0.27707e-05             1.280

  20737          0.08884e-04           1.043       0.15009e-04    1.398      0.13136e-05             1.086

  82433          0.04416e-04           1.013       0.05491e-04    1.457      0.06478e-05             1.025

  328705         0.02205e-04           1.004       0.01991e-04    1.466      0.03228e-05             1.007




  Mixed FEM for Reissner-Mindlin plates.               – 21 –             B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                ˜                           I
Numerical tests. (cont.)


              10
                                                                                     σ ♦
                1                                                                    γ +
                                                                                     β
             0.1               ⋆                                                     r ×
                                                ⋆                                    w △
                                                              ⋆
            0.01                                                        ⋆            h⋆ ⋆
                              +
          0.001                                 +
                                                             +
e                                                                       +
                                                                                       +
        0.0001                ×
                              ♦                 ×
                                                ♦            ×
          1e-05               △                              ♦          ×
                                                △                       ♦
                                                             △                         ♦
                                                                                       ×
          1e-06                                                         △
                                                                                      △
          1e-07
          1e-08
                         1000                        10000             100000                     1e+06
                                                    degrees of freedom N

    Mixed FEM for Reissner-Mindlin plates.                 – 22 –           B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                  ˜                           I
Numerical tests. (cont.)




Figure 2: Approximate transverse displacement (left) and first component of the rotation
vector (right).

   Mixed FEM for Reissner-Mindlin plates.               – 23 –         B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                             ˜                           I
Numerical tests. (cont.)




Figure 3: Approximate shear vector: first component (left) and second component
(right).

   Mixed FEM for Reissner-Mindlin plates.               – 24 –         B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                             ˜                           I
Numerical tests. (cont.)




        Figure 4: Approximate bending moment:                 σ 11h (left) and σ 12h (right).

Mixed FEM for Reissner-Mindlin plates.               – 25 –                 B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                  ˜                           I
Numerical tests. (cont.)




        Figure 5: Approximate bending moment:                 σ 21h (left) and σ 22h (right).

Mixed FEM for Reissner-Mindlin plates.               – 26 –                 B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                                                  ˜                           I
Many thanks for your attention.




Mixed FEM for Reissner-Mindlin plates.   – 27 –   B EIR AO DA V EIGA , M ORA , R ODR´GUEZ
                                                        ˜                           I

More Related Content

What's hot

近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定Kosei ABE
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateAlexander Litvinenko
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Ponencia en el XVIII CCM
Ponencia en el XVIII CCMPonencia en el XVIII CCM
Ponencia en el XVIII CCMrcanom
 
Beam theory
Beam theoryBeam theory
Beam theorybissla19
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Ex 7 4_fsc_part1
Ex 7 4_fsc_part1Ex 7 4_fsc_part1
Ex 7 4_fsc_part1naeemniazi3
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.SEENET-MTP
 
2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Modelspinchung
 
B. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualityB. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualitySEENET-MTP
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equationSpringer
 
Quantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion CotaescuQuantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion CotaescuSEENET-MTP
 

What's hot (19)

近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
 
Chapter 1 straight line
Chapter 1 straight lineChapter 1 straight line
Chapter 1 straight line
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian Update
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Ponencia en el XVIII CCM
Ponencia en el XVIII CCMPonencia en el XVIII CCM
Ponencia en el XVIII CCM
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
Beam theory
Beam theoryBeam theory
Beam theory
 
AMU - Mathematics - 2004
AMU - Mathematics  - 2004AMU - Mathematics  - 2004
AMU - Mathematics - 2004
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Ex 7 4_fsc_part1
Ex 7 4_fsc_part1Ex 7 4_fsc_part1
Ex 7 4_fsc_part1
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
 
Appendices
AppendicesAppendices
Appendices
 
B. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualityB. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-duality
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equation
 
Quantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion CotaescuQuantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion Cotaescu
 
Nts
NtsNts
Nts
 

Similar to Expo

IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's ClassesIIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's ClassesSOURAV DAS
 
Example triple integral
Example triple integralExample triple integral
Example triple integralZulaikha Ahmad
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricasPedro Dias
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
Shahjahan notes:MathematicsinphysicstheorysampleproblematcShahjahan notes:Mathematicsinphysicstheorysampleproblematc
Shahjahan notes:MathematicsinphysicstheorysampleproblematcShahjahan Physics
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCSR2011
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curvesmmasdeu
 
Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplifiedmarwan a
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a stringAlexander Decker
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejadaoriolespinal
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 

Similar to Expo (20)

IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's ClassesIIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricas
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Lei
LeiLei
Lei
 
Lei
LeiLei
Lei
 
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
Shahjahan notes:MathematicsinphysicstheorysampleproblematcShahjahan notes:Mathematicsinphysicstheorysampleproblematc
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
 
Legendre
LegendreLegendre
Legendre
 
Electronic and Communication Engineering 4th Semester (2012-December) Questio...
Electronic and Communication Engineering 4th Semester (2012-December) Questio...Electronic and Communication Engineering 4th Semester (2012-December) Questio...
Electronic and Communication Engineering 4th Semester (2012-December) Questio...
 
Assignment6
Assignment6Assignment6
Assignment6
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskin
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 
Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a string
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 

Expo

  • 1. Numerical analysis of a locking-free mixed fem for a bending moment formulation of Reissner-Mindlin plates ¸ ˜ L OURENC O B EIR A O DA V EIGA1 , DAVID M ORA2 , R ODOLFO R ODR´GUEZ3 I 1 ` Dipartimento di Matematica, Universita degli Studi di Milano. 2 ´ Departamento de Matematica, Universidad del B´o B´o. ı ı 3 ´ ´ Departamento de Ingenier´a Matematica, Universidad de Concepcion. ı ´ ´ ´ Sesion Especial de Analisis Numerico ´ XX Congreso de Matematica Capricornio COMCA 2010 ´ Universidad de Tarapaca, Arica, Chile 4–6 de Agosto de 2010.
  • 2. Contents • The model problem • The continuous formulation • Galerkin formulation • Numerical tests Mixed FEM for Reissner-Mindlin plates. –2– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 3. The model problem. Given g ∈ L2 (Ω), find β , γ and w − div(C(ε(β))) − γ = 0 in Ω, −div γ = g in Ω, κ γ = 2 (∇w − β) in Ω, t w = 0, β = 0 on ∂Ω, • w is the transverse displacement, • β = (β1 , β2 ) are the rotations, • γ is the shear stress, • t is the thickness, • κ := Ek/2(1 + ν) is the shear modulus (k is a correction factor), E • Cτ := 12(1−ν 2 ) ((1 − ν)τ + ν tr(τ )I) , • we restrict our analysis to convex plates. Mixed FEM for Reissner-Mindlin plates. –3– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 4. The model problem. (cont.) We introduce as a new unknown the bending moment σ = (σij )1≤i,j≤2 , defined by σ := C(ε(β)). 12(1 − ν 2 ) 1 ν • C −1 τ := τ− 2) tr(τ )I . E (1 − ν) (1 − ν We rewrite the equation above as: −1 1 C σ = ∇β − (∇β − (∇β)t ) = ∇β − rJ, 2 1 • r := − 2 rot β ,   0 1 • J :=  . −1 0 Mixed FEM for Reissner-Mindlin plates. –4– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 5. The continuous formulation. Continuous mixed problem Find ((σ, γ), (β, r, w)) ∈ H × Q such that t2 C −1 σ : τ + γ·ξ+ β · (div τ + ξ) + r(τ12 − τ21 ) + wdiv ξ = 0 Ω κ Ω Ω Ω Ω η · (div σ + γ) + s(σ12 − σ21 ) + vdiv γ = − gv, Ω Ω Ω Ω for all ((τ , ξ), (η, s, v)) ∈ H × Q, where H := H(div; Ω) × H(div ; Ω), Q := [L2 (Ω)]2 × L2 (Ω) × L2 (Ω), with H(div; Ω) := {τ ∈ [L2 (Ω)]2×2 : div τ ∈ [L2 (Ω)]2 }, and H(div ; Ω) := {ξ ∈ [L2 (Ω)]2 : div ξ ∈ L2 (Ω)}. Mixed FEM for Reissner-Mindlin plates. –5– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 6. The continuous formulation. (cont.) Continuous mixed problem a((σ, γ), (τ , ξ)) + b((τ , ξ), (β, r, w)) = 0 ∀(τ , ξ) ∈ H, b((σ, γ), (η, s, v)) = − gv ∀(η, s, v) ∈ Q, Ω where t2 a((σ, γ), (τ , ξ)) := C −1 σ : τ + γ · ξ, Ω κ Ω b((τ , ξ), (η, s, v)) := η · (div τ + ξ) + s(τ12 − τ21 ) + vdiv ξ. Ω Ω Ω In the analysis we will utilize the following t-dependent norm for the space H (τ , ξ) H := τ 0,Ω + div τ + ξ 0,Ω +t ξ 0,Ω + div ξ 0,Ω , while for the space Q, we will use (η, s, v) Q := η 0,Ω + s 0,Ω + v 0,Ω . Mixed FEM for Reissner-Mindlin plates. –6– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 7. The continuous formulation. (cont.) Additional regularity Proposition 1 Suppose that Ω is a convex polygon and g ∈ L2 (Ω). Then, there a exists a constant C , independent of t and g , such that w 2,Ω + β 2,Ω + γ H(div ;Ω) +t γ 1,Ω + σ 1,Ω +t div σ 1,Ω + r 1,Ω ≤C g 0,Ω . a D. N. A RNOLD AND R. S. FALK, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989) 1276–1290. Mixed FEM for Reissner-Mindlin plates. –7– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 8. The continuous formulation. (cont.) Ellipticity in the kernel V := {(τ , ξ) ∈ H : ξ + div τ = 0, τ = τ t and div ξ = 0 in Ω}. Lemma 1 There exists C > 0, independent of t, such that 2 a((τ , ξ), (τ , ξ)) ≥ C (τ , ξ) H ∀(τ , ξ) ∈ V. Proof. Given (τ , ξ) ∈ V , using tr(τ )2 ≤ 2(τ : τ ) ∀τ ∈ [L2 (Ω)]2×2 , we obtain 12(1 − ν) 2 t2 2 a((τ , ξ), (τ , ξ)) ≥ τ 0,Ω + ξ 0,Ω . E κ Since div τ + ξ 0,Ω = 0 and div ξ 0,Ω = 0, we get 2 2 a((τ , ξ), (τ , ξ)) ≥ C τ 0,Ω + div τ + ξ 0,Ω + t2 ξ 2 0,Ω + div ξ 2 0,Ω , 2 ⇒ a((τ , ξ), (τ , ξ)) ≥ C (τ , ξ) H, Mixed FEM for Reissner-Mindlin plates. –8– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 9. The continuous formulation. (cont.) Inf-Sup condition Lemma 2 There exists C > 0, independent of t, such that |b((τ , ξ), (η, s, v))| sup ≥ C (η, s, v) Q ∀(η, s, v) ∈ Q. (τ ,ξ)∈H (τ , ξ) H (τ ,ξ)=0 Well-posedness Theorem 2 There exists a unique ((σ, γ), (β, r, w)) ∈ H × Q solution of the continuous mixed problem and ((σ, γ), (β, r, w)) H×Q ≤C g 0,Ω , where C is independent of t. Mixed FEM for Reissner-Mindlin plates. –9– B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 10. Galerkin formulation. ¯ • {Th }h>0 : regular family of triangulations of the polygonal region Ω. • hT : diameter of the triangle T ∈ Th . • h := max{hT : T ∈ Th }. ¯ • Ω= {T : T ∈ Th }. Finite elements subspaces γ Hh := {ξh ∈ H(div ; Ω) : ξh |T ∈ RT0 (T ), ∀T ∈ Th }, Qw := {vh ∈ L2 (Ω) : vh |T ∈ P0 (T ), ∀T ∈ Th }, h Mixed FEM for Reissner-Mindlin plates. – 10 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 11. Galerkin formulation. (cont.) We consider the unique polynomial bT ∈ P3 (T ) that vanishes on ∂T and is normalized by T bT = 1. B(Th ) := {τ ∈ H(div ; Ω) : (τi1 , τi2 )|T ∈ span{curl(bT )}, i = 1, 2, ∀T ∈ Th } , where curl v := (∂2 v, −∂1 v). Hh := {τ h ∈ H(div ; Ω) : τ h |T ∈ [RT0 (T )t ]2 , ∀T ∈ Th } ⊕ B(Th ), σ Qβ := {ηh ∈ [L2 (Ω)]2 : ηh |T ∈ [P0 (T )]2 , ∀T ∈ Th }, h Qr := sh ∈ H 1 (Ω) : sh |T ∈ P1 (T ), ∀T ∈ Th , h Note that Hh σ × Qβ × Qr correspond to the PEERSa finite elements. h h a D. N. A RNOLD, F. B REZZI AND J. D OUGLAS, PEERS: A new mixed finite element for the plane elasticity, Japan J. Appl. Math., 1 (1984) 347–367. Mixed FEM for Reissner-Mindlin plates. – 11 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 12. Galerkin formulation. (cont.) Discrete mixed problem: Find ((σ h , γh ), (βh , rh , wh )) ∈ Hh × Qh such that a((σ h , γh ), (τ h , ξh )) + b((τ h , ξh ), (βh , rh , wh )) = 0 ∀(τ h , ξh ) ∈ Hh , b((σ h , γh ), (ηh , sh , vh )) = − gvh ∀(ηh , sh , vh ) ∈ Qh . Ω γ Hh := Hh × Hh , σ Qh := Qβ × Qr × Qw . h h h Mixed FEM for Reissner-Mindlin plates. – 12 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 13. Galerkin formulation. (cont.) Discrete kernel Vh := (τ h , ξh ) ∈ Hh : ηh · (div τ h + ξh ) + sh (τ12h − τ21h ) Ω Ω + vh div ξh = 0 ∀(ηh , sh , vh ) ∈ Qh . Ω Let (τ h , ξh )∈ Vh . Taking (0, 0, vh ) ∈ Qh and using that (div ξh )|T is a constant, since vh |T is also a constant, we conclude that div ξh = 0 in Ω. Now, taking (ηh , 0, 0)∈ Qh , since div τ h = 0 in Ω ∀τ h ∈ B(Th ), we have that (div τ h )|T is a constant vector. Since div ξh = 0, we have that ξh |T is also a constant vector. Therefore, since ηh |T is also a constant vector, we conclude that (div τ h + ξh ) = 0 in Ω. Thus, we obtain Vh = (τ h , ξh ) ∈ Hh : ξh + div τ h = 0, sh (τ12h − τ21h ) = 0 ∀sh ∈ Qr h Ω and div ξh = 0 in Ω . Mixed FEM for Reissner-Mindlin plates. – 13 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 14. Galerkin formulation. (cont.) Ellipticity in the discrete kernel Lemma 3 There exists C > 0 such that 2 a((τ h , ξh ), (τ h , ξh )) ≥ C (τ h , ξh ) H ∀(τ h , ξh ) ∈ Vh , where the constant C is independent of h and t. Discrete inf-Sup condition Lemma 4 There exists C > 0, independent of h and t, such that |b((τ h , ξh ), (ηh , sh , vh ))| sup ≥ C (ηh , sh , vh ) Q ∀(ηh , sh , vh ) ∈ Qh . (τ h ,ξh )∈Hh (τ h , ξh ) H (τ h ,ξh )=0 Mixed FEM for Reissner-Mindlin plates. – 14 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 15. Galerkin formulation. (cont.) Theorem 3 There exists a unique ((σ h , γh ), (βh , rh , wh )) ∈ Hh × Qh solution of the discrete mixed problem. Moreover, there exist C, C > 0, independent of h and t, such that ((σ h , γh ), (βh , rh , wh )) H×Q ≤C g 0,Ω , and ((σ, γ), (β, r, w)) − ((σ h , γh ), (βh ,rh , wh )) H×Q ≤C inf ((σ, γ),(β, r, w)) − ((τ h , ξh ), (ηh , sh , vh )) H×Q , (τ h ,ξh )∈Hh (ηh ,sh ,vh )∈Qh where ((σ, γ), (β, r, w)) ∈ H × Q is the unique solution of the continuous mixed problem. Mixed FEM for Reissner-Mindlin plates. – 15 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 16. Galerkin formulation. (cont.) Rate of convergence Theorem 4 Let ((σ, γ), (β, r, w)) ∈ H × Q and ((σ h , γh ), (βh , rh , wh )) ∈ Hh × Qh be the unique solutions of the continuous and discrete mixed problem, respectively. If g ∈ H 1 (Ω), then, ((σ, γ), (β, r, w)) − ((σ h , γh ), (βh , rh , wh )) H×Q ≤ Ch g 1,Ω . Mixed FEM for Reissner-Mindlin plates. – 16 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 17. Numerical tests. • Isotropic and homogeneous plate. • Ω := (0, 1) × (0, 1). • t = 0.001. • E = 1, ν = 0.30 and k = 5/6. Figure 1: Square plate: uniform meshes. Mixed FEM for Reissner-Mindlin plates. – 17 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 18. Numerical tests. (cont.) Choosing the load g as: E g(x, y) = 12y(y − 1)(5x2 − 5x + 1) 2y 2 (y − 1)2 12(1 − ν 2 ) +x(x − 1)(5y 2 − 5y + 1) + 12x(x − 1)(5y 2 − 5y + 1) 2x2 (x − 1)2 +y(y − 1)(5x2 − 5x + 1) , so that 1 3 w(x, y) = x (x − 1)3 y 3 (y − 1)3 3 2t2 − y 3 (y − 1)3 x(x − 1)(5x2 − 5x + 1) 5(1 − ν) + x3 (x − 1)3 y(y − 1)(5y 2 − 5y + 1) , β1 (x, y) =y 3 (y − 1)3 x2 (x − 1)2 (2x − 1), β2 (x, y) =x3 (x − 1)3 y 2 (y − 1)2 (2y − 1). Mixed FEM for Reissner-Mindlin plates. – 18 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 19. Numerical tests. (cont.) e(σ) := σ − σ h 0,Ω , e(γ) := γ − γh t,H(div ;Ω) , e(β) := β − βh 0,Ω , e(r) := r − rh 0,Ω , e(w) := w − wh 0,Ω , log(e(·)/e′ (·)) rc(·) := −2 , log(N/N ′ ) where N and N ′ denote the degrees of freedom of two consecutive triangulations with errors e and e′ . Mixed FEM for Reissner-Mindlin plates. – 19 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 20. Numerical tests. (cont.) Table 1: Errors and experimental rates of convergence for variables σ and γ , computed on uniform meshes. N e(σ) rc(σ) e(γ) rc(γ) 1345 0.40270e-04 – 0.31715e-02 – 5249 0.19649e-04 1.054 0.15876e-02 1.016 20737 0.09760e-04 1.019 0.07942e-02 1.008 82433 0.04868e-04 1.008 0.03971e-02 1.004 328705 0.02431e-04 1.004 0.01986e-02 1.002 Mixed FEM for Reissner-Mindlin plates. – 20 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 21. Numerical tests. (cont.) Table 2: Errors and experimental rates of convergence for variables β , r and w, com- puted on uniform meshes. N e(β) rc(β) e(r) rc(r) e(w) rc(w) 1345 0.39713e-04 – 0.87462e-04 – 0.66226e-05 – 5249 0.18189e-04 1.147 0.39217e-04 1.178 0.27707e-05 1.280 20737 0.08884e-04 1.043 0.15009e-04 1.398 0.13136e-05 1.086 82433 0.04416e-04 1.013 0.05491e-04 1.457 0.06478e-05 1.025 328705 0.02205e-04 1.004 0.01991e-04 1.466 0.03228e-05 1.007 Mixed FEM for Reissner-Mindlin plates. – 21 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 22. Numerical tests. (cont.) 10 σ ♦ 1 γ + β 0.1 ⋆ r × ⋆ w △ ⋆ 0.01 ⋆ h⋆ ⋆ + 0.001 + + e + + 0.0001 × ♦ × ♦ × 1e-05 △ ♦ × △ ♦ △ ♦ × 1e-06 △ △ 1e-07 1e-08 1000 10000 100000 1e+06 degrees of freedom N Mixed FEM for Reissner-Mindlin plates. – 22 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 23. Numerical tests. (cont.) Figure 2: Approximate transverse displacement (left) and first component of the rotation vector (right). Mixed FEM for Reissner-Mindlin plates. – 23 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 24. Numerical tests. (cont.) Figure 3: Approximate shear vector: first component (left) and second component (right). Mixed FEM for Reissner-Mindlin plates. – 24 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 25. Numerical tests. (cont.) Figure 4: Approximate bending moment: σ 11h (left) and σ 12h (right). Mixed FEM for Reissner-Mindlin plates. – 25 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 26. Numerical tests. (cont.) Figure 5: Approximate bending moment: σ 21h (left) and σ 22h (right). Mixed FEM for Reissner-Mindlin plates. – 26 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I
  • 27. Many thanks for your attention. Mixed FEM for Reissner-Mindlin plates. – 27 – B EIR AO DA V EIGA , M ORA , R ODR´GUEZ ˜ I