SlideShare a Scribd company logo
1 of 53
Download to read offline
Topic 1: Basics of Power Systems
A.H. Mohsenian‐Rad (U of T) 1Networking and Distributed Systems
ECE 5332: Communications and Control for Smart
Spring 2012
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 2
‱ The Four Main Elements in Power Systems:
 Power Production / Generation
 Power Transmission
 Power Distribution
 Power Consumption / Load 
‱ Of course, we also need monitoring and control systems.
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 3
‱ Power Production:
 Different Types:
 Traditional
 Renewable
 Capacity, Cost, Carbon Emission
 Step‐up Transformers
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 4
‱ Power Transmission:
 High Voltage (HV) Transmission Lines
 Several Hundred Miles
 Switching Stations
 Transformers
 Circuit Breakers
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 5
‱ The Power Transmission Grid in the United States:
www.geni.org
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 6
‱ Major Inter‐connections in the United States:
www.geni.org
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 7
‱ Power Distribution:
 Medium Voltage (MV) Transmission Lines (< 50 kV)
 Power Deliver to Load Locations
 Interface with Consumers / Metering
 Distribution Sub‐stations
 Step‐Down Transformers
 Distribution Transformers
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 8
‱ Power Consumption:
 Industrial
 Commercial
 Residential
 Demand Response
 Controllable Load
 Non‐Controllable
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 9
Generation Transmission Distribution Load
Power Systems
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 10
‱ Power System Control:
 Data Collection: Sensors, PMUs, etc.
 Decision Making: Controllers
 Actuators: Circuit Breakers, etc.
Power Grid Graph Representation
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 11
Nodes: Buses
Links: Transmission Lines
Generator
Load
Power Grid Graph Representation
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 12
Nodes: Buses
Links: Transmission Lines
Generator
Load
Buses (Voltage)
Power Grid Graph Representation
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 13
Nodes: Buses
Links: Transmission Lines
Generator
Load
Transmission Lines (Power Flow, Loss)
Power Grid Graph Representation
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 14
Nodes: Buses
Links: Transmission Lines
Generator
Load
Consumers
Power Grid Graph Representation
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 15
Nodes: Buses
Links: Transmission Lines
Generator
Load
10 MW 3 MW
7 MW
Transmission Line Admittance
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 16
‱ Admittance y is defined as the inverse of impedance z:
 z = r + j x                   (r: Resistance, x: Reactance)
 y = g + j b (g: Conductance, b: Susceptance)
 y = 1 / z
 Parameter g is usually positive
 Parameter b: 
 Positive: Capacitor
 Negative: Inductor
Transmission Line Admittance
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 17
‱ For the transmission line connecting bus i to bus k:
 Addmitance: yik
 Example:
yik = 1 – j 4   (per unit)
 Note that, yii is denoted by yi and indicates:
 Susceptance for any shunt element (capacitor) to ground at bus i. 
Y-Bus Matrix
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 18
‱ We define:
 Ybus = [ Yij ] where
 Diagonal Elements:
 Off‐diagonal Elements: 
 Note that Ybas matrix depends on the power grid topology 
and the admittance of all transmission lines.
 N is the number of busses in the grid.
ï‚č

N
ikk
ikiii yyY
,1
ijij yY 
Y-Bus Matrix
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 19
‱ Example: For a grid with 4‐buses, we have:
‱ After separating the real and imaginary parts:
ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ







4342414434241
3434323133231
2423242321221
1413121413121
yyyyyyy
yyyyyyy
yyyyyyy
yyyyyyy
Ybus
BjGYbus 
Bus Voltage
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 20
‱ Let Vi denote the voltage at bus i:
‱ Note that, Vi is a phasor, with magnitude and angle. 
‱ In most operating scenarios we have:
iii VV 
jiji VV  ï‚č
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 21
‱ Let Si denote the power injection at bus i:
Si = Pi + j Qi
‱ Generation Bus:  Pi > 0
‱ Load Bus:  Pi < 0 (negative power injection)
Active Power        Reactive Power
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 22
‱ Using Kirchhoff laws, AC Power Flow Equations become:
‱ Do we know all notations here? 
‱ If we know enough variables, we can obtain the rest of 
variables by solving a system of nonlinear equations. 
 
 





N
j
jkkjjkkjjkk
N
j
jkkjjkkjjkk
BGVVQ
BGVVP
1
1
)cos()sin(
)sin()cos(


Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 23
‱ The AC Power Flow Equations are complicated to solve.
‱ Next, we try to simplify the equations in three steps. 
‱ Step 1: For most networks, G << B. Thus, we set G = 0:
 
 





N
j
jkkjjkk
N
j
jkkjjkk
BVVQ
BVVP
1
1
)cos(
)sin(


Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 24
‱ Step 2: For most neighboring buses:                                  .
‱ As a result, we have: 
ïŻïŻ
15to10ï‚Łï€­ ji 
ïƒź

ïƒŹ


1)(
)(
jk
jkjk
Cos
Sin


 
 





N
j
kjjkk
N
j
jkkjjkk
BVVQ
BVVP
1
1
)( 
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 25
‱ Step 3: In per‐unit, |Vi| is very close to 1.0 (0.95 to 1.05). 
‱ As a result, we have:                    . 
‱ Pk has a linear model and Qk is almost fixed.
1ji VV
  k
N
kj
j
kjkk
N
j
kjk
N
j
jkkjk
bBBBQ
BP




ï‚č


,11
1
)( 
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 26
‱ Step 3: In per‐unit, |Vi| is very close to 1.0 (0.95 to 1.05). 
‱ As a result, we have:                    . 
‱ Pk has a linear model and Qk is almost fixed.
1ji VV
  k
N
kj
j
kjkk
N
j
kjk
N
j
jkkjk
bBBBQ
BP




ï‚č


,11
1
)( 
DC Power Flow Equations
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 27
‱ Given the power injection values at all buses, we can use
to obtain the voltage angles at all buses.  
‱ Let Pij denote the power flow from bus i to bus j, we have:


N
j
jkkjk BP
1
)( 
)( jiijij BP  
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 28
‱ Example: Obtain power flow values in the following grid:
puPg
21  puPg
22 
puPg
14  puPl
43 
puPl
12 
1014 jy  1013 jy 
1034 jy 
1023 jy 
1012 jy 
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 29
‱ First, we obtain the Y‐bus matrix:
ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ



ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ



ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ







44434241
34333231
24232221
14131211
4342414434241
3434323133231
2423242321221
1413121413121
BBBB
BBBB
BBBB
BBBB
jBjj
bbbbbbb
bbbbbbb
bbbbbbb
bbbbbbb
jYbus
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 30
‱ Next, we write the (active) power flow equations:
‱ This can be written as: 
 
 
 
  44342413432421414
43433432312321313
42432322423211212
41431321211413121




BBBBBBP
BBBBBBP
BBBBBBP
BBBBBBP




ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ


ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ







ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ


4
3
2
1
434241434241
343432313231
242324232121
141312141312
4
3
2
1




BBBBBB
BBBBBB
BBBBBB
BBBBBB
P
P
P
P
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 31
‱ From the last two slides, we finally obtain:
‱ Therefore, the voltage angles are obtained as: 
ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ


ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ



ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ


4
3
2
1




ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ


ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ



ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ


1
4
3
2
1




Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 32
‱ However, the last matrix in the previous slide is singular!
‱ Therefore, we cannot take the inverse. 
‱ The system of equations would have infinite solutions.
‱ The problem is that the four angles are not independent.
‱ What matters is the angular/phase difference. 
‱ We choose one bus (e.g., bus 1) as reference bus:             .01 
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 33
‱ We should also remove the corresponding rows/columns:
‱ The angular differences (with respect to     ): 
ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ


ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ







ïƒș
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ
ïƒȘ



4
3
2
1
2010010
10301010
0102010
10101030
1
4
1
2




ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ


ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ



4
3
2
20100
103010
01020
1
4
1



1
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ



ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ



025.0
15.0
025.0
1
4
1
20100
103010
01020
1
4
3
2



025.0
15.0
025.0
14
13
12






Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 34
‱ Finally, the power flow values are calculated as:
puPg
21  puPg
22 
puPg
14  puPl
43 
puPl
12 
25.1)025.015.0(10)(
25.1)15.0025.0(10)(
25.0)025.00(10)(
5.1)15.00(10)(
25.0)025.00(10)(
433434
322323
411414
311313
211212










BP
BP
BP
BP
BP
0.25
1.25
1.250.25 1.5
Power Flow Equations
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 35
‱ What if the generator connected to bus 1 is renewable?
‱ What if the capacity of transmission link (1,3) is 1 pu?
‱ What if we can apply demand response to load bus 3?   
‱ What if one of the transmission lines fails? 
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 36
‱ In the example we discussed earlier, we had:
‱ In particular, we had:  
‱ However, generation levels             and      assumed given.
‱ Q: What if the generators have different generation costs?
Power Supply = Power Load
llggg
PPPPP 32421 
ggg
PPP 421 ,,
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 37
‱ For thermal power plants, generation cost is quadratic:
‱ Example: a grid with three power plants:
‱ Each power plant has some min and max generation levels.
Generation Cost = C(P) = a1 + a2 x P + a3 x P2
C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW
C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW
C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 38
‱ For thermal power plants, generation cost is quadratic:
‱ Example: a grid with three power plants:
‱ Each power plant has some min and max generation levels.
Generation Cost = C(P) = a1 + a2 x P + a3 x P2
C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW
C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW
C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 39
‱ For thermal power plants, generation cost is quadratic:
‱ Example: a grid with three power plants:
‱ Each power plant has some min and max generation levels.
Generation Cost = C(P) = a1 + a2 x P + a3 x P2
C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW
C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW
C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 40
‱ For thermal power plants, generation cost is quadratic:
‱ Example: a grid with three power plants:
‱ Each power plant has some min and max generation levels.
Generation Cost = C(P) = a1 + a2 x P + a3 x P2
C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW
C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW
C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 41
‱ For thermal power plants, generation cost is quadratic:
‱ Example: a grid with three power plants:
‱ Each power plant has some min and max generation levels.
Generation Cost = C(P) = a1 + a2 x P + a3 x P2
C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW
C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW
C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 42
‱ We should select P1, P2, and P3 to: 
‱ Meet total load Pload = 850 MW
‱ Minimize the total cost of generation 
‱ Economic Dispatch Problem:
     
850
20050
400100
600150subject to
CCCminimize
321
3
2
1
321
,, 321

ï‚Łï‚Ł
ï‚Łï‚Ł
ï‚Łï‚Ł

PPP
P
P
P
PPP
PPP
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 43
‱ Is the formulated problem a convex program? Why?
‱ Convex programs can be solved efficiently.
‱ An useful software is CVX for Matlab (http://cvxr.com/cvx).
‱ The optimal economic dispatch solution: 
P1 = 393.2 MW
P2 = 334.6 MW
P3 = 122.2 MW
Q: Do they satisfy all constraints? 
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 44
‱ Is the formulated problem a convex program? Why?
‱ Convex programs can be solved efficiently.
‱ An useful software is CVX for Matlab (http://cvxr.com/cvx).
‱ The optimal economic dispatch solution: 
P1 = 393.2 MW
P2 = 334.6 MW
P3 = 122.2 MW
Minimum Cost = 3916.6 + 3153.8 + 1123.9
= 8194.3 
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 45
‱ What if we have to satisfy topology constraints? 
1P
3P MW400
2P
MW45020013 ï‚ŁP
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ




ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ



3
2
1
4
3
2
400
450
20100
103010
01020
P
P



202010)( 33311313 ï€­ï‚łïƒžï‚Łï€­ï€œï€­ï€œ BP
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 46
‱ The same optimal solutions are still valid:
MW393.21 P
MW122.23 P MW400
MW334.62 P
MW450
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ


805.3
830.19
685.15
4
3
2



203 ï€­ï‚łï± 20013 ï‚ŁP
156.8
160.3
41.438.1 198.3
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 47
‱ The same optimal solutions are still valid:
MW393.21 P
MW122.23 P MW400
MW334.62 P
MW450
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ


805.3
830.19
685.15
4
3
2



203 ï€­ï‚łï± 20013 ï‚ŁP
156.8
160.3
41.438.1 198.3
What if 17013 ï‚ŁP
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 48
‱ Then the economic dispatch problem becomes:
     
17
400
450
20100
103010
01020
850
20050
400100
600150subject to
CCCminimize
3
3
2
1
4
3
2
321
3
2
1
321
,,,,, 321321
ï€­ï‚ł
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ




ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ



ï‚Łï‚Ł
ï‚Łï‚Ł
ï‚Łï‚Ł







P
P
PPP
P
P
P
PPP
PPP
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 49
‱ Then the economic dispatch problem becomes:
     
17
400
450
20100
103010
01020
850
20050
400100
600150subject to
CCCminimize
3
3
2
1
4
3
2
321
3
2
1
321
,,,,, 321321
ï€­ï‚ł
ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ




ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ






ïƒș
ïƒș
ïƒș

ïƒč
ïƒȘ
ïƒȘ
ïƒȘ



ï‚Łï‚Ł
ï‚Łï‚Ł
ï‚Łï‚Ł







P
P
PPP
P
P
P
PPP
PPP Still a Convex 
Program?
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 50
‱ The new optimal solutions are obtained as:
‱ The total generation cost becomes: $8,233.66 > $8,194.3
‱ Here, we had to sacrifice “cost” for “implementation”.
MW2801 P
MW1703 P MW400
MW4002 P
MW450
110
170
600 170
Economic Dispatch Problem
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 51
‱ The new optimal solutions are obtained as:
‱ The total generation cost becomes: $8,233.66 > $8,194.3
‱ Here, we had to sacrifice “cost” for “implementation”.
MW2801 P
MW1703 P MW400
MW4002 P
MW450
110
170
600 170
What if 15013 ï‚ŁP
Unit Commitment
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 52
‱ Economic Dispatch is solved a few hours ahead of operation.
‱ On the other hand, we need to decide about the choice of 
power plants that we want to turn on for the next day.
‱ This is done by solving the Unit Commitment problem.
‱ We particularly decide on which slow‐starting power plants we 
should turn on during the next day given various constraints. 
‱ The mathematical concepts are similar to the E‐D problem. 
References
Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 53
‱ W. J. Wood and B. F. Wollenberg, Power Generation,
Operation, and Control, John Wiley & Sons, 2nd Ed., 1996.
‱ J. McCalley and L. Tesfatsion, "Power Flow Equations", Lecture
Notes, EE 458, Department of Electrical and Computer
Engineering, Iowa State University, Spring 2010.

More Related Content

What's hot

IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...
USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...
USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...ELELIJ
 
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...Power System Operation
 
Congestion issues and its related management
Congestion issues and its related managementCongestion issues and its related management
Congestion issues and its related managementalpna1808
 
Available transfer capability (atc) sbw ppt
Available transfer capability (atc) sbw pptAvailable transfer capability (atc) sbw ppt
Available transfer capability (atc) sbw pptRavi Sekpure
 
Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...
Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...
Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...IJARIDEA Journal
 
Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...eSAT Publishing House
 
Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...
Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...
Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...IJERA Editor
 
Congestion Management Approaches in Deregulated Electricity Market: A Compreh...
Congestion Management Approaches in Deregulated Electricity Market: A Compreh...Congestion Management Approaches in Deregulated Electricity Market: A Compreh...
Congestion Management Approaches in Deregulated Electricity Market: A Compreh...Dr. Sudhir Kumar Srivastava
 
Transmission Congestion Management by Using Series Facts Devices and Changing...
Transmission Congestion Management by Using Series Facts Devices and Changing...Transmission Congestion Management by Using Series Facts Devices and Changing...
Transmission Congestion Management by Using Series Facts Devices and Changing...IJMER
 
Benefits of power flow control
Benefits of power flow controlBenefits of power flow control
Benefits of power flow controljgould03
 
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...IOSR Journals
 
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus SystemIRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus SystemIRJET Journal
 
Sensitivity Analysis for Transmission Planning
Sensitivity Analysis for Transmission PlanningSensitivity Analysis for Transmission Planning
Sensitivity Analysis for Transmission Planningsdahman
 
Power grid operation in India
Power grid operation in IndiaPower grid operation in India
Power grid operation in IndiaMahim Srivastava
 
A study of voltage regulation in microgrid using a DSTATCOM
A study of voltage regulation in microgrid using a DSTATCOMA study of voltage regulation in microgrid using a DSTATCOM
A study of voltage regulation in microgrid using a DSTATCOMjournalBEEI
 

What's hot (19)

IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...
USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...
USAGE BASED COST ALLOCATION TECHNIQUE FOR EHV NETWORKS USING NON-LINEAR UTILI...
 
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
 
Congestion issues and its related management
Congestion issues and its related managementCongestion issues and its related management
Congestion issues and its related management
 
Available transfer capability (atc) sbw ppt
Available transfer capability (atc) sbw pptAvailable transfer capability (atc) sbw ppt
Available transfer capability (atc) sbw ppt
 
Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...
Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...
Dual Active Power Filter For LCL Resonance In Grid-Connected Voltage-Source C...
 
Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...
 
Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...
Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...
Transmission Congestion and Voltage Profile Management Using TCSC and TCPAR i...
 
Congestion Management Approaches in Deregulated Electricity Market: A Compreh...
Congestion Management Approaches in Deregulated Electricity Market: A Compreh...Congestion Management Approaches in Deregulated Electricity Market: A Compreh...
Congestion Management Approaches in Deregulated Electricity Market: A Compreh...
 
Transmission Congestion Management by Using Series Facts Devices and Changing...
Transmission Congestion Management by Using Series Facts Devices and Changing...Transmission Congestion Management by Using Series Facts Devices and Changing...
Transmission Congestion Management by Using Series Facts Devices and Changing...
 
Benefits of power flow control
Benefits of power flow controlBenefits of power flow control
Benefits of power flow control
 
1743 1748
1743 17481743 1748
1743 1748
 
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
 
Modeling of static var compensator-high voltage direct current to provide pow...
Modeling of static var compensator-high voltage direct current to provide pow...Modeling of static var compensator-high voltage direct current to provide pow...
Modeling of static var compensator-high voltage direct current to provide pow...
 
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus SystemIRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
 
Sensitivity Analysis for Transmission Planning
Sensitivity Analysis for Transmission PlanningSensitivity Analysis for Transmission Planning
Sensitivity Analysis for Transmission Planning
 
G
GG
G
 
Power grid operation in India
Power grid operation in IndiaPower grid operation in India
Power grid operation in India
 
A study of voltage regulation in microgrid using a DSTATCOM
A study of voltage regulation in microgrid using a DSTATCOMA study of voltage regulation in microgrid using a DSTATCOM
A study of voltage regulation in microgrid using a DSTATCOM
 

Similar to smart grid topic on power systems

H9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdf
H9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdfH9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdf
H9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdfEMERSON EDUARDO RODRIGUES
 
The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)theijes
 
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...IRJET Journal
 
Impacts of Distributed Generation on Power Quality
Impacts of Distributed Generation on Power QualityImpacts of Distributed Generation on Power Quality
Impacts of Distributed Generation on Power QualityParth Patel
 
A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...
A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...
A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...IJMTST Journal
 
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Onyebuchi nosiri
 
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Onyebuchi nosiri
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Distributed generation placement
Distributed generation placementDistributed generation placement
Distributed generation placementreza shahbazi
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptxVijayMuni2
 
Dc-Dc boost converter topologies & MPPT techniques for grid connected PV system
Dc-Dc boost converter topologies & MPPT techniques for grid connected PV systemDc-Dc boost converter topologies & MPPT techniques for grid connected PV system
Dc-Dc boost converter topologies & MPPT techniques for grid connected PV systemrameshwar meena
 
Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...
Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...
Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...Sohan Bin Anwar Siddique
 
220v gss working modelFinal report
220v gss working modelFinal report220v gss working modelFinal report
220v gss working modelFinal reportgiriraj bairwa
 
Comparison of ac and dc transmission
Comparison of ac and dc transmissionComparison of ac and dc transmission
Comparison of ac and dc transmissionjawaharramaya
 
Dynamic Power Factor Correction in a Non Linear Environment
Dynamic Power Factor Correction in a Non Linear EnvironmentDynamic Power Factor Correction in a Non Linear Environment
Dynamic Power Factor Correction in a Non Linear Environmentiosrjce
 

Similar to smart grid topic on power systems (20)

H9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdf
H9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdfH9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdf
H9 VOLTAGE AND REACTIVE EMERSON EDUARDO RODRIGUES.pdf
 
The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)
 
seminar on_HVDC.pdf ppt
 seminar on_HVDC.pdf ppt seminar on_HVDC.pdf ppt
seminar on_HVDC.pdf ppt
 
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...
 
Ecc203 a 2
Ecc203 a 2Ecc203 a 2
Ecc203 a 2
 
Impacts of Distributed Generation on Power Quality
Impacts of Distributed Generation on Power QualityImpacts of Distributed Generation on Power Quality
Impacts of Distributed Generation on Power Quality
 
A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...
A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...
A Three Phase D-STATCOM to Compensate AC and DC loads by using Fuzzy Logic DC...
 
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
 
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Distributed generation placement
Distributed generation placementDistributed generation placement
Distributed generation placement
 
1743 1748
1743 17481743 1748
1743 1748
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
 
Dc-Dc boost converter topologies & MPPT techniques for grid connected PV system
Dc-Dc boost converter topologies & MPPT techniques for grid connected PV systemDc-Dc boost converter topologies & MPPT techniques for grid connected PV system
Dc-Dc boost converter topologies & MPPT techniques for grid connected PV system
 
Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...
Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...
Principle and Algorithm of Reactive Power Management for LLC Based Parlled MT...
 
220v gss working modelFinal report
220v gss working modelFinal report220v gss working modelFinal report
220v gss working modelFinal report
 
Comparison of ac and dc transmission
Comparison of ac and dc transmissionComparison of ac and dc transmission
Comparison of ac and dc transmission
 
Dcgris3
Dcgris3Dcgris3
Dcgris3
 
H010615159
H010615159H010615159
H010615159
 
Dynamic Power Factor Correction in a Non Linear Environment
Dynamic Power Factor Correction in a Non Linear EnvironmentDynamic Power Factor Correction in a Non Linear Environment
Dynamic Power Factor Correction in a Non Linear Environment
 

Recently uploaded

Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...
Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...
Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...aakahthapa70
 
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...Delhi Escorts Service
 
Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...
Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...
Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...aakahthapa70
 
Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...
Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...
Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...Ayesha Khan
 
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In KarachiCall Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In KarachiAyesha Khan
 
Russian Call Girls in Goa %(9316020077)# Russian Call Girls in Goa By Russi...
Russian Call Girls  in Goa %(9316020077)# Russian Call Girls  in Goa By Russi...Russian Call Girls  in Goa %(9316020077)# Russian Call Girls  in Goa By Russi...
Russian Call Girls in Goa %(9316020077)# Russian Call Girls in Goa By Russi...Goa Call Girls Service Goa escort agency
 
Call Girls In Sector 94 Noida 9711911712 Escorts ServiCe Noida
Call Girls In Sector 94 Noida 9711911712 Escorts ServiCe NoidaCall Girls In Sector 94 Noida 9711911712 Escorts ServiCe Noida
Call Girls In Sector 94 Noida 9711911712 Escorts ServiCe NoidaDelhi Escorts Service
 
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋Sheetaleventcompany
 
Call Girls In Islamabad 💯Call Us 🔝03090999379🔝
Call Girls In Islamabad 💯Call Us 🔝03090999379🔝Call Girls In Islamabad 💯Call Us 🔝03090999379🔝
Call Girls In Islamabad 💯Call Us 🔝03090999379🔝Ayesha Khan
 
(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCR
(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCR(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCR
(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCREscort Service
 
JABALPUR CALL GIRL 92628/71154 JABALPUR K
JABALPUR CALL GIRL 92628/71154 JABALPUR KJABALPUR CALL GIRL 92628/71154 JABALPUR K
JABALPUR CALL GIRL 92628/71154 JABALPUR KNiteshKumar82226
 
Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...
Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...
Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...Ayesha Khan
 
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝thapagita
 
🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...
🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...
🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...monikaservice1
 
BHOPAL CALL GIRL 92628*71154 BHOPAL CALL
BHOPAL CALL GIRL 92628*71154 BHOPAL CALLBHOPAL CALL GIRL 92628*71154 BHOPAL CALL
BHOPAL CALL GIRL 92628*71154 BHOPAL CALLNiteshKumar82226
 
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...aakahthapa70
 
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...aakahthapa70
 
Call Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls Service
Call Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls ServiceCall Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls Service
Call Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls ServiceAyesha Khan
 
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash PaymentCall Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Paymentaakahthapa70
 

Recently uploaded (20)

Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...
Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...
Call Girls In {{Connaught Place Delhi}}96679@38988 Indian Russian High Profil...
 
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
 
Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...
Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...
Genuine Call Girls In {Mahipalpur Delhi} 9667938988 Indian Russian High Profi...
 
Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...
Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...
Call Girls In Islamabad | 03278838827 || 24/7 Service Islamabad Call Girls & ...
 
CALL GIRLS IN GOA & ESCORTS SERVICE +919540619990
CALL GIRLS IN GOA & ESCORTS SERVICE +919540619990CALL GIRLS IN GOA & ESCORTS SERVICE +919540619990
CALL GIRLS IN GOA & ESCORTS SERVICE +919540619990
 
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In KarachiCall Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
 
Russian Call Girls in Goa %(9316020077)# Russian Call Girls in Goa By Russi...
Russian Call Girls  in Goa %(9316020077)# Russian Call Girls  in Goa By Russi...Russian Call Girls  in Goa %(9316020077)# Russian Call Girls  in Goa By Russi...
Russian Call Girls in Goa %(9316020077)# Russian Call Girls in Goa By Russi...
 
Call Girls In Sector 94 Noida 9711911712 Escorts ServiCe Noida
Call Girls In Sector 94 Noida 9711911712 Escorts ServiCe NoidaCall Girls In Sector 94 Noida 9711911712 Escorts ServiCe Noida
Call Girls In Sector 94 Noida 9711911712 Escorts ServiCe Noida
 
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
 
Call Girls In Islamabad 💯Call Us 🔝03090999379🔝
Call Girls In Islamabad 💯Call Us 🔝03090999379🔝Call Girls In Islamabad 💯Call Us 🔝03090999379🔝
Call Girls In Islamabad 💯Call Us 🔝03090999379🔝
 
(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCR
(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCR(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCR
(9599264170) ↫ Call Girls In Rk Puram ↫ Delhi NCR
 
JABALPUR CALL GIRL 92628/71154 JABALPUR K
JABALPUR CALL GIRL 92628/71154 JABALPUR KJABALPUR CALL GIRL 92628/71154 JABALPUR K
JABALPUR CALL GIRL 92628/71154 JABALPUR K
 
Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...
Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...
Book Call Girls in Lahore || 03070433345 || Young, Hot, Sexy, VIP Girls Avail...
 
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
 
🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...
🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...
🔝Call Girls In INA Colony Call Us ➄ 8800357707 In Call Out Call Both With Hig...
 
BHOPAL CALL GIRL 92628*71154 BHOPAL CALL
BHOPAL CALL GIRL 92628*71154 BHOPAL CALLBHOPAL CALL GIRL 92628*71154 BHOPAL CALL
BHOPAL CALL GIRL 92628*71154 BHOPAL CALL
 
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
 
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
 
Call Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls Service
Call Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls ServiceCall Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls Service
Call Girls in Lahore || 03090999379 || Get 30% Off on Hot Call Girls Service
 
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash PaymentCall Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
 

smart grid topic on power systems

  • 1. Topic 1: Basics of Power Systems A.H. Mohsenian‐Rad (U of T) 1Networking and Distributed Systems ECE 5332: Communications and Control for Smart Spring 2012
  • 2. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 2 ‱ The Four Main Elements in Power Systems:  Power Production / Generation  Power Transmission  Power Distribution  Power Consumption / Load  ‱ Of course, we also need monitoring and control systems.
  • 3. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 3 ‱ Power Production:  Different Types:  Traditional  Renewable  Capacity, Cost, Carbon Emission  Step‐up Transformers
  • 4. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 4 ‱ Power Transmission:  High Voltage (HV) Transmission Lines  Several Hundred Miles  Switching Stations  Transformers  Circuit Breakers
  • 5. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 5 ‱ The Power Transmission Grid in the United States: www.geni.org
  • 6. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 6 ‱ Major Inter‐connections in the United States: www.geni.org
  • 7. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 7 ‱ Power Distribution:  Medium Voltage (MV) Transmission Lines (< 50 kV)  Power Deliver to Load Locations  Interface with Consumers / Metering  Distribution Sub‐stations  Step‐Down Transformers  Distribution Transformers
  • 8. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 8 ‱ Power Consumption:  Industrial  Commercial  Residential  Demand Response  Controllable Load  Non‐Controllable
  • 9. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 9 Generation Transmission Distribution Load
  • 10. Power Systems Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 10 ‱ Power System Control:  Data Collection: Sensors, PMUs, etc.  Decision Making: Controllers  Actuators: Circuit Breakers, etc.
  • 11. Power Grid Graph Representation Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 11 Nodes: Buses Links: Transmission Lines Generator Load
  • 12. Power Grid Graph Representation Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 12 Nodes: Buses Links: Transmission Lines Generator Load Buses (Voltage)
  • 13. Power Grid Graph Representation Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 13 Nodes: Buses Links: Transmission Lines Generator Load Transmission Lines (Power Flow, Loss)
  • 14. Power Grid Graph Representation Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 14 Nodes: Buses Links: Transmission Lines Generator Load Consumers
  • 15. Power Grid Graph Representation Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 15 Nodes: Buses Links: Transmission Lines Generator Load 10 MW 3 MW 7 MW
  • 16. Transmission Line Admittance Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 16 ‱ Admittance y is defined as the inverse of impedance z:  z = r + j x                   (r: Resistance, x: Reactance)  y = g + j b (g: Conductance, b: Susceptance)  y = 1 / z  Parameter g is usually positive  Parameter b:   Positive: Capacitor  Negative: Inductor
  • 17. Transmission Line Admittance Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 17 ‱ For the transmission line connecting bus i to bus k:  Addmitance: yik  Example: yik = 1 – j 4   (per unit)  Note that, yii is denoted by yi and indicates:  Susceptance for any shunt element (capacitor) to ground at bus i. 
  • 18. Y-Bus Matrix Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 18 ‱ We define:  Ybus = [ Yij ] where  Diagonal Elements:  Off‐diagonal Elements:   Note that Ybas matrix depends on the power grid topology  and the admittance of all transmission lines.  N is the number of busses in the grid. ï‚č  N ikk ikiii yyY ,1 ijij yY 
  • 19. Y-Bus Matrix Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 19 ‱ Example: For a grid with 4‐buses, we have: ‱ After separating the real and imaginary parts: ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ        4342414434241 3434323133231 2423242321221 1413121413121 yyyyyyy yyyyyyy yyyyyyy yyyyyyy Ybus BjGYbus 
  • 20. Bus Voltage Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 20 ‱ Let Vi denote the voltage at bus i: ‱ Note that, Vi is a phasor, with magnitude and angle.  ‱ In most operating scenarios we have: iii VV  jiji VV  ï‚č
  • 21. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 21 ‱ Let Si denote the power injection at bus i: Si = Pi + j Qi ‱ Generation Bus:  Pi > 0 ‱ Load Bus:  Pi < 0 (negative power injection) Active Power        Reactive Power
  • 22. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 22 ‱ Using Kirchhoff laws, AC Power Flow Equations become: ‱ Do we know all notations here?  ‱ If we know enough variables, we can obtain the rest of  variables by solving a system of nonlinear equations.           N j jkkjjkkjjkk N j jkkjjkkjjkk BGVVQ BGVVP 1 1 )cos()sin( )sin()cos(  
  • 23. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 23 ‱ The AC Power Flow Equations are complicated to solve. ‱ Next, we try to simplify the equations in three steps.  ‱ Step 1: For most networks, G << B. Thus, we set G = 0:          N j jkkjjkk N j jkkjjkk BVVQ BVVP 1 1 )cos( )sin(  
  • 24. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 24 ‱ Step 2: For most neighboring buses:                                  . ‱ As a result, we have:  ïŻïŻ 15to10ï‚Łï€­ ji  ïƒź  ïƒŹ   1)( )( jk jkjk Cos Sin            N j kjjkk N j jkkjjkk BVVQ BVVP 1 1 )( 
  • 25. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 25 ‱ Step 3: In per‐unit, |Vi| is very close to 1.0 (0.95 to 1.05).  ‱ As a result, we have:                    .  ‱ Pk has a linear model and Qk is almost fixed. 1ji VV   k N kj j kjkk N j kjk N j jkkjk bBBBQ BP     ï‚č   ,11 1 )( 
  • 26. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 26 ‱ Step 3: In per‐unit, |Vi| is very close to 1.0 (0.95 to 1.05).  ‱ As a result, we have:                    .  ‱ Pk has a linear model and Qk is almost fixed. 1ji VV   k N kj j kjkk N j kjk N j jkkjk bBBBQ BP     ï‚č   ,11 1 )(  DC Power Flow Equations
  • 27. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 27 ‱ Given the power injection values at all buses, we can use to obtain the voltage angles at all buses.   ‱ Let Pij denote the power flow from bus i to bus j, we have:   N j jkkjk BP 1 )(  )( jiijij BP  
  • 28. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 28 ‱ Example: Obtain power flow values in the following grid: puPg 21  puPg 22  puPg 14  puPl 43  puPl 12  1014 jy  1013 jy  1034 jy  1023 jy  1012 jy 
  • 29. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 29 ‱ First, we obtain the Y‐bus matrix: ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ    ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ    ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ        44434241 34333231 24232221 14131211 4342414434241 3434323133231 2423242321221 1413121413121 BBBB BBBB BBBB BBBB jBjj bbbbbbb bbbbbbb bbbbbbb bbbbbbb jYbus
  • 30. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 30 ‱ Next, we write the (active) power flow equations: ‱ This can be written as:          44342413432421414 43433432312321313 42432322423211212 41431321211413121     BBBBBBP BBBBBBP BBBBBBP BBBBBBP     ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ   ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ        ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ   4 3 2 1 434241434241 343432313231 242324232121 141312141312 4 3 2 1     BBBBBB BBBBBB BBBBBB BBBBBB P P P P
  • 31. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 31 ‱ From the last two slides, we finally obtain: ‱ Therefore, the voltage angles are obtained as:  ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ   ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ    ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ   4 3 2 1     ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ   ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ    ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ   1 4 3 2 1    
  • 32. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 32 ‱ However, the last matrix in the previous slide is singular! ‱ Therefore, we cannot take the inverse.  ‱ The system of equations would have infinite solutions. ‱ The problem is that the four angles are not independent. ‱ What matters is the angular/phase difference.  ‱ We choose one bus (e.g., bus 1) as reference bus:             .01 
  • 33. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 33 ‱ We should also remove the corresponding rows/columns: ‱ The angular differences (with respect to     ):  ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ   ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ        ïƒș ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ ïƒȘ    4 3 2 1 2010010 10301010 0102010 10101030 1 4 1 2     ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ   ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ    4 3 2 20100 103010 01020 1 4 1    1 ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ    ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ    025.0 15.0 025.0 1 4 1 20100 103010 01020 1 4 3 2    025.0 15.0 025.0 14 13 12      
  • 34. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 34 ‱ Finally, the power flow values are calculated as: puPg 21  puPg 22  puPg 14  puPl 43  puPl 12  25.1)025.015.0(10)( 25.1)15.0025.0(10)( 25.0)025.00(10)( 5.1)15.00(10)( 25.0)025.00(10)( 433434 322323 411414 311313 211212           BP BP BP BP BP 0.25 1.25 1.250.25 1.5
  • 35. Power Flow Equations Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 35 ‱ What if the generator connected to bus 1 is renewable? ‱ What if the capacity of transmission link (1,3) is 1 pu? ‱ What if we can apply demand response to load bus 3?    ‱ What if one of the transmission lines fails? 
  • 36. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 36 ‱ In the example we discussed earlier, we had: ‱ In particular, we had:   ‱ However, generation levels             and      assumed given. ‱ Q: What if the generators have different generation costs? Power Supply = Power Load llggg PPPPP 32421  ggg PPP 421 ,,
  • 37. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 37 ‱ For thermal power plants, generation cost is quadratic: ‱ Example: a grid with three power plants: ‱ Each power plant has some min and max generation levels. Generation Cost = C(P) = a1 + a2 x P + a3 x P2 C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
  • 38. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 38 ‱ For thermal power plants, generation cost is quadratic: ‱ Example: a grid with three power plants: ‱ Each power plant has some min and max generation levels. Generation Cost = C(P) = a1 + a2 x P + a3 x P2 C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
  • 39. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 39 ‱ For thermal power plants, generation cost is quadratic: ‱ Example: a grid with three power plants: ‱ Each power plant has some min and max generation levels. Generation Cost = C(P) = a1 + a2 x P + a3 x P2 C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
  • 40. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 40 ‱ For thermal power plants, generation cost is quadratic: ‱ Example: a grid with three power plants: ‱ Each power plant has some min and max generation levels. Generation Cost = C(P) = a1 + a2 x P + a3 x P2 C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
  • 41. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 41 ‱ For thermal power plants, generation cost is quadratic: ‱ Example: a grid with three power plants: ‱ Each power plant has some min and max generation levels. Generation Cost = C(P) = a1 + a2 x P + a3 x P2 C1(P1) = 561 + 7.92 x P1 + 0.001562 x (P1)2 150 MW ≀ P1 ≀ 600 MW C2(P2) = 310 + 7.85 x P2 + 0.001940 x (P2)2 100 MW ≀ P2 ≀ 400 MW C3(P3) =   78 + 7.97 x P3 + 0.004820 x (P3)2 50 MW ≀ P3 ≀ 200 MW
  • 42. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 42 ‱ We should select P1, P2, and P3 to:  ‱ Meet total load Pload = 850 MW ‱ Minimize the total cost of generation  ‱ Economic Dispatch Problem:       850 20050 400100 600150subject to CCCminimize 321 3 2 1 321 ,, 321  ï‚Łï‚Ł ï‚Łï‚Ł ï‚Łï‚Ł  PPP P P P PPP PPP
  • 43. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 43 ‱ Is the formulated problem a convex program? Why? ‱ Convex programs can be solved efficiently. ‱ An useful software is CVX for Matlab (http://cvxr.com/cvx). ‱ The optimal economic dispatch solution:  P1 = 393.2 MW P2 = 334.6 MW P3 = 122.2 MW Q: Do they satisfy all constraints? 
  • 44. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 44 ‱ Is the formulated problem a convex program? Why? ‱ Convex programs can be solved efficiently. ‱ An useful software is CVX for Matlab (http://cvxr.com/cvx). ‱ The optimal economic dispatch solution:  P1 = 393.2 MW P2 = 334.6 MW P3 = 122.2 MW Minimum Cost = 3916.6 + 3153.8 + 1123.9 = 8194.3 
  • 45. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 45 ‱ What if we have to satisfy topology constraints?  1P 3P MW400 2P MW45020013 ï‚ŁP ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ     ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ    3 2 1 4 3 2 400 450 20100 103010 01020 P P    202010)( 33311313 ï€­ï‚łïƒžï‚Łï€­ï€œï€­ï€œ BP
  • 46. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 46 ‱ The same optimal solutions are still valid: MW393.21 P MW122.23 P MW400 MW334.62 P MW450 ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ   805.3 830.19 685.15 4 3 2    203 ï€­ï‚łï± 20013 ï‚ŁP 156.8 160.3 41.438.1 198.3
  • 47. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 47 ‱ The same optimal solutions are still valid: MW393.21 P MW122.23 P MW400 MW334.62 P MW450 ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ   805.3 830.19 685.15 4 3 2    203 ï€­ï‚łï± 20013 ï‚ŁP 156.8 160.3 41.438.1 198.3 What if 17013 ï‚ŁP
  • 48. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 48 ‱ Then the economic dispatch problem becomes:       17 400 450 20100 103010 01020 850 20050 400100 600150subject to CCCminimize 3 3 2 1 4 3 2 321 3 2 1 321 ,,,,, 321321 ï€­ï‚ł ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ     ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ    ï‚Łï‚Ł ï‚Łï‚Ł ï‚Łï‚Ł        P P PPP P P P PPP PPP
  • 49. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 49 ‱ Then the economic dispatch problem becomes:       17 400 450 20100 103010 01020 850 20050 400100 600150subject to CCCminimize 3 3 2 1 4 3 2 321 3 2 1 321 ,,,,, 321321 ï€­ï‚ł ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ     ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ       ïƒș ïƒș ïƒș  ïƒč ïƒȘ ïƒȘ ïƒȘ    ï‚Łï‚Ł ï‚Łï‚Ł ï‚Łï‚Ł        P P PPP P P P PPP PPP Still a Convex  Program?
  • 50. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 50 ‱ The new optimal solutions are obtained as: ‱ The total generation cost becomes: $8,233.66 > $8,194.3 ‱ Here, we had to sacrifice “cost” for “implementation”. MW2801 P MW1703 P MW400 MW4002 P MW450 110 170 600 170
  • 51. Economic Dispatch Problem Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 51 ‱ The new optimal solutions are obtained as: ‱ The total generation cost becomes: $8,233.66 > $8,194.3 ‱ Here, we had to sacrifice “cost” for “implementation”. MW2801 P MW1703 P MW400 MW4002 P MW450 110 170 600 170 What if 15013 ï‚ŁP
  • 52. Unit Commitment Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 52 ‱ Economic Dispatch is solved a few hours ahead of operation. ‱ On the other hand, we need to decide about the choice of  power plants that we want to turn on for the next day. ‱ This is done by solving the Unit Commitment problem. ‱ We particularly decide on which slow‐starting power plants we  should turn on during the next day given various constraints.  ‱ The mathematical concepts are similar to the E‐D problem. 
  • 53. References Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 53 ‱ W. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, John Wiley & Sons, 2nd Ed., 1996. ‱ J. McCalley and L. Tesfatsion, "Power Flow Equations", Lecture Notes, EE 458, Department of Electrical and Computer Engineering, Iowa State University, Spring 2010.