SlideShare a Scribd company logo
1 of 308
Download to read offline
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Clustering Using Differential Evolution
Navdha Sah
Thesis Adviser: Dr. Thang N. Bui
Department of Math & Computer Science
Penn State Harrisburg
Spring 2016
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
Why clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
Why clustering?
Useful in finding natural groupings within a data set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering?
What is clustering?
The problem of partitioning a collection of objects into groups.
Objects in the same group are similar.
Objects in different groups are dissimilar.
Why clustering?
Useful in finding natural groupings within a data set
Useful in analysis, description and utilization of valuable information
hidden within groups
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
What is “natural” grouping?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
Grouping by shapes?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
Grouping by colors?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
The Ground Truth!
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Example
Data Set Grouping by Shape
Grouping by Color The Ground Truth
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
∪k
i=1 Ci = X,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
∪k
i=1 Ci = X,
Ci ∩ Cj = ϕ ∀i, j ∈ {1, 2, . . . , k}, i ̸= j,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
What is a clustering?
Data set
Let X = {X1, X2, . . . , Xn} be a set of n data items, where Xi ∈ IRf
, i = 1, . . . , n,
that is, Xi = (Xi1, . . . , Xif ), where Xij ’s are called features of Xi .
Clustering
A clustering of X is then a partition C = (C1, . . . , Ck ) of X such that:
∪k
i=1 Ci = X,
Ci ∩ Cj = ϕ ∀i, j ∈ {1, 2, . . . , k}, i ̸= j,
Ci ̸= ϕ ∀i ∈ {1, 2, . . . , k}.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
How is clustering measured?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
How is clustering measured?
Need to measure similarity or dissimilarity between items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
How is clustering measured?
Need to measure similarity or dissimilarity between items.
Similarity can be measured using distance measures.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Distance Measures
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Distance Measures
Euclidean distance
d(Xi , Xj ) =
f∑
p=1
(Xip − Xjp)2 ,
where Xi and Xj are two f-dimensional items.
It is a special case of the Minkowsky metric (α = 2)
d(Xi , Xj ) =


f∑
p=1
(Xip − Xjp)α


1/α
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Distance Measures
MinMax distance
d(Xi , Xj ) =
f∑
p=1
|Xip − Xjp|
MAXp − MINp
,
where Xip and Xjp are the pth
feature values for items Xi and Xj , and
MAXp and MINp are the maximum and minimum values for the pth
feature across the data set, that is,
MAXp = max{Xip | i = 1, . . . , n},
MINp = min{Xip | i = 1, . . . , n}.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
A good clustering would be one with compact and distinct
clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
A good clustering would be one with compact and distinct
clusters.
A validity index helps capture the notion of compactness
and separation in a clustering solution.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Clustering Validity Indexes
Used to analyze the quality of a clustering solution on a
quantitative basis.
A good clustering would be one with compact and distinct
clusters.
A validity index helps capture the notion of compactness
and separation in a clustering solution.
Need the distance measure and the clustering to calculate
the validity index.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D)
A clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D)
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di average distance of items from centroid
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di average distance of items from centroid
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Mij = D(ωi, ωj), i ̸= j Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DB Index
FDB(C, D) =
1
K
K∑
i=1
Di average distance of items from centroid
Si =

 1
|Ci|
∑
X∈Ci
D(X, ωi)q


1
q
Mij = D(ωi, ωj), i ̸= j Di = max
0≤i,j≤K
i̸=j
{
Si + Sj
Mij
}
A clustering
Distance function
Number of clusters
distance between clusters i and j
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
average distance of furthest away items in Ci
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
CS Index
average distance of furthest away items in Ci
FCS(C, D) =
1
K
K∑
i=1
[
1
|Ci |
∑
Xi ∈Ci
max
Xj ∈Ci
{
D(Xi, Xj)
}
]
1
K
K∑
i=1
[
min
j∈K,j̸=i
{
D(ωi, ωj)
}
]
average minimum distance between closest centroids
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
Number of clusters
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
sum of distance of all items from their centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
DK = max
0≤i,j≤K
i̸=j
{D(ωi, ωj)}
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
sum of distance of all items from their centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
PBM Index
E =
n∑
i=1
D(Xi, ωx )
FPBM(C, D) =
1
K
×
E
EK
× DK
DK = max
0≤i,j≤K
i̸=j
{D(ωi, ωj)}
EK =
K∑
k=1
∑
X∈Ck
D(X, ωk )
A clustering
Distance function
Number of clusters
sum of distance of all items from global centroid
max distance between centroids
sum of distance of all items from their centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
Input: Data set X = {X1, . . . , Xn} where Xi ∈ IRf
, a distance function
D and a validity index F.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
Input: Data set X = {X1, . . . , Xn} where Xi ∈ IRf
, a distance function
D and a validity index F.
Output: A clustering C = {C1, . . . , Ck } of X such that F(C, D) is opti-
mized over all possible clusterings of X.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
The Clustering Problem
Definition
Input: Data set X = {X1, . . . , Xn} where Xi ∈ IRf
, a distance function
D and a validity index F.
Output: A clustering C = {C1, . . . , Ck } of X such that F(C, D) is opti-
mized over all possible clusterings of X.
The problem is known to be NP-Hard.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
Engineering
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
Engineering
Recommender systems
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Applications
Marketing
Medical sciences
Engineering
Recommender systems
Community detection
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
Particle Swarm Optimization (PSO) algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
Particle Swarm Optimization (PSO) algorithms
Genetic Algorithms (GA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Related Work
K-Means algorithm
Evolution Strategy (ES) algorithms
Particle Swarm Optimization (PSO) algorithms
Genetic Algorithms (GA)
Differential Evolution (DE) algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
Population based search methodology.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
Population based search methodology.
A population of candidate solutions is maintained and
evolved.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution
Similar to genetic algorithms.
Population based search methodology.
A population of candidate solutions is maintained and
evolved.
Differs from Genetic Algorithms in terms of offspring
creation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
Exploration phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
Exploration phase
Exploitation phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC has two main stages:
Initialization stage
Evolution stage
In the initialization stage, a population of individuals is generated.
In the evolution stage, the population evolves through a number of
cycles.
Each cycle has two phases:
Exploration phase
Exploitation phase
Best individual is returned at the end.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
end while
Cycle
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Cycle
Generation
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Cycle
Generation
Perturb P
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Exploration
[<70%
generations]
Perturb P
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Exploitation
[≥70%
generations]
Perturb P
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
D ← Euclidean distance /*distance measure*/
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Perturb P
D ← MinMax distance [≥ 70% cycles]
Until some criteria are met
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Differential Evolution Clustering (DEC)
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep one of them in P
end for
end while
Perturb P
D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Initialization
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
where Ω = {ω1, . . . , ωK } are the centroids,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
where Ω = {ω1, . . . , ωK } are the centroids,
T = {t1, . . . , tK }, 0 ≤ ti ≤ 1 , are the thresholds, and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
Each individual I is a triple,
I = (Ω, T , C)
where Ω = {ω1, . . . , ωK } are the centroids,
T = {t1, . . . , tK }, 0 ≤ ti ≤ 1 , are the thresholds, and
C is the clustering for the set of centroids.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
1 2 3 K − 1 K
(ω1, t1) (ω2, t2) (ω3, t3) · · · (ωK−1, tK−1) (ωK , tK )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
1 2 3 K − 1 K
(ω1, t1) (ω2, t2) (ω3, t3) · · · (ωK−1, tK−1) (ωK , tK )
C1 C2 ϕ
CK−1
ϕ
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Encoding
1 2 3 K − 1 K
(ω1, t1) (ω2, t2) (ω3, t3) · · · (ωK−1, tK−1) (ωK , tK )
C1 C2 ϕ
CK−1
ϕ
Inactive centroid Active centroid
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
N/3 individuals have up to 50% active centroids
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
N/3 individuals have up to 50% active centroids
A clustering is then computed by assigning items to their
closest active centroids.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Setup
Create a population P of N individuals, where
N/3 individuals have 90% − 100% active centroids
N/3 individuals have up to 70% − 80% active centroids
N/3 individuals have up to 50% active centroids
A clustering is then computed by assigning items to their
closest active centroids.
Centroids are recomputed periodically.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
DB index,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
DB index,
CS index, or
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Fitness of Individual
Fitness
Each individual in the population is assigned a fitness determined by the
validity index calculated for its clustering. The validity indexes used are:
DB index,
CS index, or
PBM index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Evolution stage
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Evolution stage
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Evolution stage
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
Ic ← (Ωc, Tc, Cc)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
Ic ← (Ωc, Tc, Cc)
Randomly select three unique individuals Ix , Iy , Iz (donors) from the
population.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
For each individual Ip (parent) in the population, an offspring Ic is
generated using crossover as follows:
Ic ← (Ωc, Tc, Cc)
Randomly select three unique individuals Ix , Iy , Iz (donors) from the
population.
The threshold vector Tc is computed using:
tc
i =
{
tx
i + σt (t
y
i
− tz
i ) if URandom(0, 1) < η
tp otherwise,
where η ∈ [0, 1] is the crossover probability, σt is the scaling factor and
URandom(0, 1) denotes a random number selected from [0, 1].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Idea
The centroid vector, Ωc is computed in a similar fashion,
ωi =
{
ωx
i + σω(g)(ωy
i − ωz
i ) if URandom(0, 1) < η
ωp
i otherwise,
but with a different scaling factor, σω(g), that changes based on
exploration and exploitation phase.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
centroid boundary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip
Offspring ωc
11
. . . ωc
1f
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip From Ix , Iy , Iz
Offspring ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip From Ix , Iy , Iz From Ix , Iy , Iz
Offspring . . . .ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
ωc
i1
. . . ωc
if
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
Exploration
From Ip From Ix , Iy , Iz From Ix , Iy , Iz From Ip
Offspring . . . .ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
ωc
i1
. . . ωc
if
ωc
K1
. . . ωc
Kf
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Crossover
Example of Crossover
Parent Ip ωp
11
. . . ωp
1f
ωp
21
. . . ωp
2f
ωp
i1
. . . ωp
if
ωp
K1
. . . ωp
Kf
. . . .
Donor Ix ωx
11
. . . ωx
1f
ωx
21
. . . ωx
2f
ωx
i1
. . . ωx
if
ωx
K1
. . . ωx
Kf
. . . .
Donor Iy ωy
11
. . . ωy
1f
ωy
21
. . . ωy
2f
ωy
i1
. . . ωy
if
ωy
K1
. . . ωy
Kf
. . . .
Donor Iz ωz
11
. . . ωz
1f
ωz
21
. . . ωz
2f
ωz
i1
. . . ωz
if
ωz
K1
. . . ωz
Kf
. . . .
From Ip From Ix , Iy , Iz From Ix , Iy , Iz From Ip
Exploitation
different σ for each feature f
Offspring . . . .ωc
11
. . . ωc
1f
ωc
21
. . . ωc
2f
ωc
i1
. . . ωc
if
ωc
K1
. . . ωc
Kf
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
Merging two close clusters to see if fitness can be improved.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
Merging two close clusters to see if fitness can be improved.
Scatter
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Objective
Improve the quality of the offspring after crossover.
How
The three techniques implemented for local optimization are:
BreakUp
Breaking up a large cluster into smaller clusters, where a cluster
with more than 40% items of the data set is considered large.
Merge
Merging two close clusters to see if fitness can be improved.
Scatter
Redistributing items of a cluster to other clusters to see if fitness
can be improved.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
BreakUp
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
BreakUp
Merge
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Local Optimization
Exploration phase
BreakUp
Exploitation phase
BreakUp
Merge
Scatter
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : A clustering of an individual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : A clustering of an individual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
BreakUp : Largest cluster
Largest Cluster
marks the closest item selected
marks the centroid for the red items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
If on combining Ci and Cj , fitness of I improves, merge and form one
bigger cluster.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
If on combining Ci and Cj , fitness of I improves, merge and form one
bigger cluster.
Else, search for next closest pair of clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Merge
Objective
The aim is to improve the clustering by recombining clusters that are similar.
How
Find closest clusters Ci and Cj in offspring I.
If on combining Ci and Cj , fitness of I improves, merge and form one
bigger cluster.
Else, search for next closest pair of clusters.
Repeat till k pairs of clusters have been merged, or all pairs have been
considered.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
If fitness of I improves on redistributing items from C to other clusters,
do it.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
If fitness of I improves on redistributing items from C to other clusters,
do it.
Else, search for the next smallest cluster.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Scatter
Objective
The aim is to get rid of clusters that might affect the fitness adversely.
How
Find the smallest cluster C in I.
If fitness of I improves on redistributing items from C to other clusters,
do it.
Else, search for the next smallest cluster.
Repeat till k clusters have been scattered, or every cluster has been
considered.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Replacement
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Replacement
If fitness of Ic is better than Ip, replace Ip with Ic in the
population.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Replacement
If fitness of Ic is better than Ip, replace Ip with Ic in the
population.
Else, accept Ic with a probability µ, where µ decreases with
time.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
Randomly select a number of individuals (not the best) to be modified
from the current population.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
Randomly select a number of individuals (not the best) to be modified
from the current population.
Tweak the centroids and threshold values for the selected individual
with a small probability.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Perturb population
Idea
In order to prevent premature convergence and avoid getting stuck in local
optima, the population is perturbed at the end of every cycle.
How
Randomly select a number of individuals (not the best) to be modified
from the current population.
Tweak the centroids and threshold values for the selected individual
with a small probability.
Recompute the clustering.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
In Euclidean distance, features with larger magnitudes
dominate the distance calculation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Change Distance Measure
In Euclidean distance, features with larger magnitudes
dominate the distance calculation.
This problem is addressed by using MinMax distance.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination condition
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination Criteria
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination Criteria
The algorithm stops when one of the following conditions is
met:
2500 generations have passed, or
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Termination Criteria
The algorithm stops when one of the following conditions is
met:
2500 generations have passed, or
70% cycles have passed and fitness of the best offspring
has not improved in the last 100 generations.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Return Best
DEC Algorithm
D ← Euclidean distance
P ← Initialization
Repeat
while g ≤ number of generations per cycle
for each individual Ip in P
Perform crossover to generate offspring Ic
Local optimize Ic
Compare Ic and Ip and keep better individual in P
end for
end while
Perturb P
If exploitation phase, D ← MinMax distance
Until some criteria are met
Return the best clustering found
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
A clustering solution in DEC needs to have at least two
clusters.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
A clustering solution in DEC needs to have at least two
clusters.
The user can set the minimum number of clusters a
solution must have.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Notes
An individual in DEC can have at most K number of
clusters.
A clustering solution in DEC needs to have at least two
clusters.
The user can set the minimum number of clusters a
solution must have.
The minimum number of clusters set affects the quality of
the solution obtained.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Outline
1 Background
2 DEC Algorithm
3 Results
4 Conclusion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Implementation Details
Implemented in C++ and compiled using g++ and the -O3
optimization flag.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Implementation Details
Implemented in C++ and compiled using g++ and the -O3
optimization flag.
Testing machines: Intel Core i5-3570 CPU at 3.40 GHz
and 32 GB of RAM with Ubuntu 14.04 OS.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
Number of
classifications [2 to 15
classes],
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
Number of
classifications [2 to 15
classes],
Number of features [3
to 90 features]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Experimental Setup
Data sets Size # of features # of clusters
Cancer 683 9 2
Cleveland 297 13 5
Dermatology 358 34 6
E.coli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
M.Libras 360 90 15
Pendigits 3497 16 10
Pima 768 8 2
Sonar 208 60 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Yeast 1484 8 10
Tested with a total of 17
data sets.
Data sets selected based
on:
Number of items [150
to 3500 items],
Number of
classifications [2 to 15
classes],
Number of features [3
to 90 features]
30 runs for each data set.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin),and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 36 0 0
36 items
Cluster 2 23 63 0
86 items
Cluster 3 0 8 48
56 items
Using CS Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 36 0 0
36 items
Cluster 2 23 63 0
86 items
Cluster 3 0 8 48
56 items
Using CS Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 49 6 0
55 items
Cluster 2 4 13 1
18 items
Cluster 3 6 52 47
105 items
Using PBM Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Validity Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DB Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 36 0 0
36 items
Cluster 2 23 63 0
86 items
Cluster 3 0 8 48
56 items
Using CS Index
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 49 6 0
55 items
Cluster 2 4 13 1
18 items
Cluster 3 6 52 47
105 items
Using PBM Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin),and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of distance measure
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 17 1 0
18 items
Cluster 2 14 70 48
132 items
Cluster 3 28 0 0
28 items
Euclidean distance (0.47)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 47 0 0
47 items
Cluster 2 12 69 0
81 items
Cluster 3 0 2 48
50 items
MinMax distance (1.65)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Euclidean & MinMax (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
DEC uses the following two methods to recompute
clustering for the final set of centroids, Ω:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
DEC uses the following two methods to recompute
clustering for the final set of centroids, Ω:
The clustering is recomputed using one iteration of
K-means algorithm on Ω (CA1).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
Different clusterings can be obtained for a given set of
centroids.
DEC uses the following two methods to recompute
clustering for the final set of centroids, Ω:
The clustering is recomputed using one iteration of
K-means algorithm on Ω (CA1).
Same as above but centroids are recomputed as well
(CA2).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DEC (1.12)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DEC (1.12)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 4 2
56 items
Cluster 2 0 43 8
51 items
Cluster 3 9 24 38
71 items
DEC Using CA1 (1.80)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of clustering method
GTK
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 3 1
54 items
Cluster 2 0 49 17
66 items
Cluster 3 9 19 30
58 items
GT Using CA1 (1.14)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 51 4 0
55 items
Cluster 2 8 64 0
72 items
Cluster 3 0 3 48
51 items
Using DEC (1.12)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 50 4 2
56 items
Cluster 2 0 43 8
51 items
Cluster 3 9 24 38
71 items
DEC Using CA1 (1.80)
Wine
Ground Truth
Class 1 Class 2 Class 3
59 items 71 items 48 items
Cluster 1 46 1 0
47 items
Cluster 2 0 50 17
67 items
Cluster 3 13 20 31
64 items
DEC Using CA2 (0.62)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin), and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Kmin
2 4 6 8 10
1
2
3
4
Wine-GT
Wine-GTk
Glass-GT
Glass-GTk
E.coli-GT
E.coli-GTk
Minimum Number of Clusters Required (Kmin)
DBValidityIndex
E.coli-DB
Wine-DB
Glass-DB
Better fitness with
lower value of Kmin.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Kmin
2 4 6 8 10
0
1
2
3
4
Wine-GT
Wine-GTk
Glass-GT
Glass-GTk
E.coli-GTE.coli-GTk
Minimum Number of Clusters Required (Kmin)
CSValidityIndex
E.coli-CS
Wine-CS
Glass-CS
Better fitness with
lower value of Kmin.
Worse fitness for
ground truth
shows that external
factors
might have been
used to
determine the
clustering.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Effect of Kmin
2 4 6 8 10
0
200
400
Wine-GT
Wine-GTk
Glass-GT Glass-GTk
E.coli-GT
E.coli-GTk
Minimum Number of Clusters Required (Kmin)
PBMValidityIndex
E.coli-PBM
Wine-PBM
Glass-PBM
Better fitness with
lower value of Kmin.
Worse fitness for
ground truth
shows that external
factors
might have been
used to
determine the
clustering.
DEC converges to
Kmin
clusters due to this
characteristic of the
validity index.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Results
Results for DEC algorithm were collected to analyze:
the quality of the solution based on different validity
indexes,
the impact of distance measures on the performance of the
algorithm,
different methods for computing clustering,
the effect of minimum number of clusters (Kmin),and
the running time of the algorithm.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
DEC takes longer to finish for CS Index as compared to DB
and PBM indexes.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
DEC takes longer to finish for CS Index as compared to DB
and PBM indexes.
Example approximate run times of DEC:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Running Time
The DEC algorithm has a running time of O(n2).
DEC takes longer to finish for CS Index as compared to DB
and PBM indexes.
Example approximate run times of DEC:
size = 200, f ∈ [2, 15]: 200 seconds
size = 300, f > 30: 600 seconds
size = 700, f ∈ [2, 15]: upto 30 minutes
size ≥ 1000, f ∈ [2, 15]: upto 5 hours
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
DEC(2) represents the results
when Kmin is set to 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
DEC(k) represents the results
when Kmin is set to known
number of clusters (ground
truth)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Cancer
DEC(2) 2.00 1.13 2.82 0.58
ACDE 2.00 0.45 2.05 0.52
DCPSO 2.25 0.48 2.50 0.57
GCUK 2.00 0.61 2.50 0.63
Classical DE 2.25 0.89 2.10 0.51
Average Link 2.00 0.90 2.00 0.76
Glass
DEC(6) 6.00 0.30 6.00 1.02
DEC(2) 2.00 0.10 2.00 0.84
ACDE 6.05 0.33 6.05 1.01
DCPSO 5.95 0.76 5.95 1.51
GCUK 5.85 1.47 5.85 1.83
Classical DE 5.60 0.78 5.60 1.66
Average Link 6.00 1.02 6.00 1.85
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC vs Existing Algorithms
Data Set Algorithm
CS DB
# of clusters Index # of clusters Index
Iris
DEC(3) 3.00 0.60 3.00 0.56
DEC(2) 3.00 0.60 2.00 0.42
ACDE 3.25 0.66 3.05 0.46
DCPSO 2.23 0.73 2.25 0.69
GCUK 2.35 0.72 2.30 0.73
Classical DE 2.50 0.76 2.50 0.58
Average Link 3.00 0.78 3.00 0.84
Wine
DEC(3) 3.00 0.94 3.00 1.12
DEC(2) 2.00 0.70 2.00 0.96
ACDE 3.25 0.92 3.25 3.04
DCPSO 3.05 1.87 3.05 4.34
GCUK 2.95 1.58 2.95 5.34
Classical DE 3.50 1.79 3.50 3.39
Average Link 3.00 1.89 3.00 5.72
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
the validity index,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
the validity index,
the value of Kmin, and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
Summary
The clustering returned by DEC is affected by:
the distance measure,
the validity index,
the value of Kmin, and
the method for computing the clustering.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Background DEC Algorithm Results Conclusion
DEC on Iris
2 2.5 3 3.5 4 4.5
2
4
6
Sepal Width (y)
PetalLength(z)
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC
ClusteringDEC

More Related Content

What's hot

K-Means Clustering Simply
K-Means Clustering SimplyK-Means Clustering Simply
K-Means Clustering SimplyEmad Nabil
 
Log Analytics in Datacenter with Apache Spark and Machine Learning
Log Analytics in Datacenter with Apache Spark and Machine LearningLog Analytics in Datacenter with Apache Spark and Machine Learning
Log Analytics in Datacenter with Apache Spark and Machine LearningPiotr Tylenda
 
Predicate-Preserving Collision-Resistant Hashing
Predicate-Preserving  Collision-Resistant HashingPredicate-Preserving  Collision-Resistant Hashing
Predicate-Preserving Collision-Resistant HashingPhilippe Camacho, Ph.D.
 
A Signature Scheme as Secure as the Diffie Hellman Problem
A Signature Scheme as Secure as the Diffie Hellman ProblemA Signature Scheme as Secure as the Diffie Hellman Problem
A Signature Scheme as Secure as the Diffie Hellman Problemvsubhashini
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the WeightsMark Chang
 
Recommendation System --Theory and Practice
Recommendation System --Theory and PracticeRecommendation System --Theory and Practice
Recommendation System --Theory and PracticeKimikazu Kato
 
Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleYvonne K. Matos
 
PAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningPAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningMark Chang
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Matthew Leingang
 
Mining Frequent Closed Graphs on Evolving Data Streams
Mining Frequent Closed Graphs on Evolving Data StreamsMining Frequent Closed Graphs on Evolving Data Streams
Mining Frequent Closed Graphs on Evolving Data StreamsAlbert Bifet
 
PAC Bayesian for Deep Learning
PAC Bayesian for Deep LearningPAC Bayesian for Deep Learning
PAC Bayesian for Deep LearningMark Chang
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structuresDavid Gleich
 
Relaxation methods for the matrix exponential on large networks
Relaxation methods for the matrix exponential on large networksRelaxation methods for the matrix exponential on large networks
Relaxation methods for the matrix exponential on large networksDavid Gleich
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the WeightsMark Chang
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsMark Chang
 
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradientHyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradientFabian Pedregosa
 
Computational Linguistics week 5
Computational Linguistics  week 5Computational Linguistics  week 5
Computational Linguistics week 5Mark Chang
 
Introduction to Big Data Science
Introduction to Big Data ScienceIntroduction to Big Data Science
Introduction to Big Data ScienceAlbert Bifet
 

What's hot (20)

K-Means Clustering Simply
K-Means Clustering SimplyK-Means Clustering Simply
K-Means Clustering Simply
 
Interactive High-Dimensional Visualization of Social Graphs
Interactive High-Dimensional Visualization of Social GraphsInteractive High-Dimensional Visualization of Social Graphs
Interactive High-Dimensional Visualization of Social Graphs
 
Log Analytics in Datacenter with Apache Spark and Machine Learning
Log Analytics in Datacenter with Apache Spark and Machine LearningLog Analytics in Datacenter with Apache Spark and Machine Learning
Log Analytics in Datacenter with Apache Spark and Machine Learning
 
Predicate-Preserving Collision-Resistant Hashing
Predicate-Preserving  Collision-Resistant HashingPredicate-Preserving  Collision-Resistant Hashing
Predicate-Preserving Collision-Resistant Hashing
 
A Signature Scheme as Secure as the Diffie Hellman Problem
A Signature Scheme as Secure as the Diffie Hellman ProblemA Signature Scheme as Secure as the Diffie Hellman Problem
A Signature Scheme as Secure as the Diffie Hellman Problem
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the Weights
 
Recommendation System --Theory and Practice
Recommendation System --Theory and PracticeRecommendation System --Theory and Practice
Recommendation System --Theory and Practice
 
Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and Kaggle
 
PAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningPAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep Learning
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)
 
Mining Frequent Closed Graphs on Evolving Data Streams
Mining Frequent Closed Graphs on Evolving Data StreamsMining Frequent Closed Graphs on Evolving Data Streams
Mining Frequent Closed Graphs on Evolving Data Streams
 
PAC Bayesian for Deep Learning
PAC Bayesian for Deep LearningPAC Bayesian for Deep Learning
PAC Bayesian for Deep Learning
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
Relaxation methods for the matrix exponential on large networks
Relaxation methods for the matrix exponential on large networksRelaxation methods for the matrix exponential on large networks
Relaxation methods for the matrix exponential on large networks
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the Weights
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANs
 
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradientHyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
 
Computational Linguistics week 5
Computational Linguistics  week 5Computational Linguistics  week 5
Computational Linguistics week 5
 
Introduction to Big Data Science
Introduction to Big Data ScienceIntroduction to Big Data Science
Introduction to Big Data Science
 
presentazione
presentazionepresentazione
presentazione
 

Similar to ClusteringDEC

Regularized Principal Component Analysis for Spatial Data
Regularized Principal Component Analysis for Spatial DataRegularized Principal Component Analysis for Spatial Data
Regularized Principal Component Analysis for Spatial DataWen-Ting Wang
 
Raspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdf
Raspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdfRaspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdf
Raspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdfSANTIAGO PABLO ALBERTO
 
HaiqingWang-MasterThesis
HaiqingWang-MasterThesisHaiqingWang-MasterThesis
HaiqingWang-MasterThesisHaiqing Wang
 
Computational Complexity: Introduction-Turing Machines-Undecidability
Computational Complexity: Introduction-Turing Machines-UndecidabilityComputational Complexity: Introduction-Turing Machines-Undecidability
Computational Complexity: Introduction-Turing Machines-UndecidabilityAntonis Antonopoulos
 
Elements of Programming Interviews.pdf
Elements of Programming Interviews.pdfElements of Programming Interviews.pdf
Elements of Programming Interviews.pdfSudhir Biswal
 
super-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdfsuper-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdfssuser089265
 
Computational Complexity: Complexity Classes
Computational Complexity: Complexity ClassesComputational Complexity: Complexity Classes
Computational Complexity: Complexity ClassesAntonis Antonopoulos
 
Machine Learning ebook.pdf
Machine Learning ebook.pdfMachine Learning ebook.pdf
Machine Learning ebook.pdfHODIT12
 
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 11_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1MostafaHazemMostafaa
 
A practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) LearningA practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) LearningBruno Gonçalves
 
Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)Mostafa G. M. Mostafa
 

Similar to ClusteringDEC (20)

Regularized Principal Component Analysis for Spatial Data
Regularized Principal Component Analysis for Spatial DataRegularized Principal Component Analysis for Spatial Data
Regularized Principal Component Analysis for Spatial Data
 
Web_Alg_Project
Web_Alg_ProjectWeb_Alg_Project
Web_Alg_Project
 
Raspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdf
Raspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdfRaspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdf
Raspberry Pi: Python todo en uno para dummies por John Shovic parte 2.pdf
 
c5.pdf
c5.pdfc5.pdf
c5.pdf
 
HaiqingWang-MasterThesis
HaiqingWang-MasterThesisHaiqingWang-MasterThesis
HaiqingWang-MasterThesis
 
c5.pdf
c5.pdfc5.pdf
c5.pdf
 
Machine learning cheat sheet
Machine learning cheat sheetMachine learning cheat sheet
Machine learning cheat sheet
 
Discrete mathematics
Discrete mathematicsDiscrete mathematics
Discrete mathematics
 
Computational Complexity: Introduction-Turing Machines-Undecidability
Computational Complexity: Introduction-Turing Machines-UndecidabilityComputational Complexity: Introduction-Turing Machines-Undecidability
Computational Complexity: Introduction-Turing Machines-Undecidability
 
Elements of Programming Interviews.pdf
Elements of Programming Interviews.pdfElements of Programming Interviews.pdf
Elements of Programming Interviews.pdf
 
super-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdfsuper-cheatsheet-artificial-intelligence.pdf
super-cheatsheet-artificial-intelligence.pdf
 
Computational Complexity: Complexity Classes
Computational Complexity: Complexity ClassesComputational Complexity: Complexity Classes
Computational Complexity: Complexity Classes
 
thesis
thesisthesis
thesis
 
Machine Learning ebook.pdf
Machine Learning ebook.pdfMachine Learning ebook.pdf
Machine Learning ebook.pdf
 
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 11_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
1_5_AI_edx_ml_51intro_240204_104838machine learning lecture 1
 
A practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) LearningA practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) Learning
 
Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)Neural Networks: Principal Component Analysis (PCA)
Neural Networks: Principal Component Analysis (PCA)
 
Aina_final
Aina_finalAina_final
Aina_final
 
XGBoostLSS - An extension of XGBoost to probabilistic forecasting, Alexander ...
XGBoostLSS - An extension of XGBoost to probabilistic forecasting, Alexander ...XGBoostLSS - An extension of XGBoost to probabilistic forecasting, Alexander ...
XGBoostLSS - An extension of XGBoost to probabilistic forecasting, Alexander ...
 
main
mainmain
main
 

ClusteringDEC