SlideShare a Scribd company logo
1 of 3
Download to read offline
PLA Micro-Scaffolds for Cell Culture
Nathan Tahbaz
Lichen Wang
Abstract
3D bioplastic scaffolds are regularly used to culture cells into a specific shape or pattern
for use in tissue engineering application. These structures are typically acquired from a
commercial fabricator, or produced in lab. A high resolution scaffold with micro-scale structures
Introduction
PLA (polly-lactic acid) is a biodegradable thermoplastic with a melting point of 150-160°
C. Because of these characteristics, it is well suited for use as a scaffold substrate. PLA
provides an acceptable surface quality for cells to seed onto, and can theoretically be dissolved
after cell propagation has been achieved. Its melting point and low viscosity allow for
sterilization at room temperature using conventional UV or alcohol methods.
Experimental procedure
Benchmark models (figure 1) were produced in SolidWorks CAD software, then exported
as STL files. The STL files were then sliced with Slic3r open source slicing software to produce
G-code. This G-code was served to the 3D printer directly using PrintRun (pronterface) open
source software.
Figure 1: Benchmark CAD Models
During the slicing step of the procedure, variables such as tool speed, temperature, and
extrusion multiplier were adjusted. This adjustment was made based on a quantitative analysis
of the previously produced scaffold via digital bright-field microscopy. This process produced
incremental improvements in the quality of preceding samples as well as iterative data gathering
Results
The primary factors in determining filament diameter and consistency appear to be tool
speed, temperature, and extrusion multiplier. Profiles for different model types and required
filament diameters were extrapolated from data. These profiles can constantly produce
acceptable scaffold structures with a tolerance of +/- 50 micrometers (with a bias towards over
extrusion, e.g. + ).
The majority of the trials were conducted with the goal of producing a 250 micrometer
filament diameter, as such the profile for producing models with a filament diameter of 250
micrometers is the most refined. The filament diameter of scaffolds produced with the refined
profile measured within +/- 5 micrometers of each other. This result establishes a standard for
precision in terms of filament diameter (figures 3 & 4)
Conclusions
The overall goal of the experimental series was to refine the settings required to produce
a scaffold structure within expectable tolerances of the CAD model it was printed from. Based
on this goal, the initial data gathered would show the experiment to be a moderate success. At
the end of the experimental trials, filament diameter tolerance was at +/- 50 micrometers. While
the hypothesized final tolerance was +/- 25 micrometers, the final result shows an improvement
of 60 micrometers from initial trials.
Figure 2: Filament Diameter
Figures 3 & 4: Final Results

More Related Content

Viewers also liked

Contaminacion del agua
Contaminacion del aguaContaminacion del agua
Contaminacion del aguajohn calle
 
Contaminacion del aire
Contaminacion del aireContaminacion del aire
Contaminacion del airejohn calle
 
10 científicos-que-descubrieron-ciencia-prueba-de
10 científicos-que-descubrieron-ciencia-prueba-de10 científicos-que-descubrieron-ciencia-prueba-de
10 científicos-que-descubrieron-ciencia-prueba-dejandry11
 
Betaleadership et Espace Innovation, agilité en entreprise
Betaleadership et Espace Innovation, agilité en entrepriseBetaleadership et Espace Innovation, agilité en entreprise
Betaleadership et Espace Innovation, agilité en entrepriseSylvain Loubradou
 
Phase pour réussir ensemble chasse et travail en meute inelligente
Phase pour réussir ensemble chasse et travail en meute inelligentePhase pour réussir ensemble chasse et travail en meute inelligente
Phase pour réussir ensemble chasse et travail en meute inelligenteOPPORTUNITES ET STRUCTURE PORTEUSE
 
Présentation "La meute", Jean-François Varrin
Présentation "La meute", Jean-François VarrinPrésentation "La meute", Jean-François Varrin
Présentation "La meute", Jean-François VarrinEditions du Pantheon
 
La veille de Red Guy du 27.11.13 - Les drones
La veille de Red Guy du 27.11.13 - Les dronesLa veille de Red Guy du 27.11.13 - Les drones
La veille de Red Guy du 27.11.13 - Les dronesRed Guy
 
Coécrire ensemble le processus de travail en meute intelligente
Coécrire ensemble le processus de travail en meute intelligenteCoécrire ensemble le processus de travail en meute intelligente
Coécrire ensemble le processus de travail en meute intelligenteOPPORTUNITES ET STRUCTURE PORTEUSE
 
Chasser en meute (Organigramme fonctionnel)
Chasser en meute (Organigramme fonctionnel)Chasser en meute (Organigramme fonctionnel)
Chasser en meute (Organigramme fonctionnel)GESTIO NOVE
 
Sortez de la meute : Réussir son branding personnel avec les médias sociaux
Sortez de la meute : Réussir son branding personnel avec les médias sociauxSortez de la meute : Réussir son branding personnel avec les médias sociaux
Sortez de la meute : Réussir son branding personnel avec les médias sociauxJean-François Lévesque, LL.M.
 
Update: Vorlesung BAW - Social Media Tools
Update: Vorlesung BAW - Social Media ToolsUpdate: Vorlesung BAW - Social Media Tools
Update: Vorlesung BAW - Social Media ToolsClaudia Becker
 

Viewers also liked (20)

Arlon informatica
Arlon informaticaArlon informatica
Arlon informatica
 
Contaminacion del agua
Contaminacion del aguaContaminacion del agua
Contaminacion del agua
 
Contaminacion del aire
Contaminacion del aireContaminacion del aire
Contaminacion del aire
 
10 científicos-que-descubrieron-ciencia-prueba-de
10 científicos-que-descubrieron-ciencia-prueba-de10 científicos-que-descubrieron-ciencia-prueba-de
10 científicos-que-descubrieron-ciencia-prueba-de
 
Glucometros y la importancia en su elección
Glucometros y la importancia en su elecciónGlucometros y la importancia en su elección
Glucometros y la importancia en su elección
 
Plaguicidas toxicologia
Plaguicidas toxicologiaPlaguicidas toxicologia
Plaguicidas toxicologia
 
Actividad fisica
Actividad fisicaActividad fisica
Actividad fisica
 
LA OFIMATICA
LA OFIMATICALA OFIMATICA
LA OFIMATICA
 
Trabajo de dahiara y elian ...
Trabajo de dahiara y elian ...Trabajo de dahiara y elian ...
Trabajo de dahiara y elian ...
 
Sesion 12
Sesion 12Sesion 12
Sesion 12
 
Tyler Blair1
Tyler Blair1Tyler Blair1
Tyler Blair1
 
Betaleadership et Espace Innovation, agilité en entreprise
Betaleadership et Espace Innovation, agilité en entrepriseBetaleadership et Espace Innovation, agilité en entreprise
Betaleadership et Espace Innovation, agilité en entreprise
 
Phase pour réussir ensemble chasse et travail en meute inelligente
Phase pour réussir ensemble chasse et travail en meute inelligentePhase pour réussir ensemble chasse et travail en meute inelligente
Phase pour réussir ensemble chasse et travail en meute inelligente
 
Présentation "La meute", Jean-François Varrin
Présentation "La meute", Jean-François VarrinPrésentation "La meute", Jean-François Varrin
Présentation "La meute", Jean-François Varrin
 
La veille de Red Guy du 27.11.13 - Les drones
La veille de Red Guy du 27.11.13 - Les dronesLa veille de Red Guy du 27.11.13 - Les drones
La veille de Red Guy du 27.11.13 - Les drones
 
Coécrire ensemble le processus de travail en meute intelligente
Coécrire ensemble le processus de travail en meute intelligenteCoécrire ensemble le processus de travail en meute intelligente
Coécrire ensemble le processus de travail en meute intelligente
 
Chasser en meute (Organigramme fonctionnel)
Chasser en meute (Organigramme fonctionnel)Chasser en meute (Organigramme fonctionnel)
Chasser en meute (Organigramme fonctionnel)
 
Check list du chasseur et travailleur en meute intelligente
Check list du chasseur et travailleur  en meute intelligenteCheck list du chasseur et travailleur  en meute intelligente
Check list du chasseur et travailleur en meute intelligente
 
Sortez de la meute : Réussir son branding personnel avec les médias sociaux
Sortez de la meute : Réussir son branding personnel avec les médias sociauxSortez de la meute : Réussir son branding personnel avec les médias sociaux
Sortez de la meute : Réussir son branding personnel avec les médias sociaux
 
Update: Vorlesung BAW - Social Media Tools
Update: Vorlesung BAW - Social Media ToolsUpdate: Vorlesung BAW - Social Media Tools
Update: Vorlesung BAW - Social Media Tools
 

Similar to PLA Micro-Scaffolds for Cell Culture

Stratasys White Paper - Injection Molding
Stratasys White Paper - Injection MoldingStratasys White Paper - Injection Molding
Stratasys White Paper - Injection MoldingSUE BROWN
 
Technology for Plastic Mold Tooling - Direct Metal Deposition
Technology for Plastic Mold Tooling - Direct Metal Deposition  Technology for Plastic Mold Tooling - Direct Metal Deposition
Technology for Plastic Mold Tooling - Direct Metal Deposition HCL Technologies
 
Research poster 3d printing 36x48
Research poster 3d printing 36x48Research poster 3d printing 36x48
Research poster 3d printing 36x48Richard Mastrorilli
 
Software packages for foundry use
Software packages for foundry useSoftware packages for foundry use
Software packages for foundry useAKSHANSH MISHRA
 
Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...
Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...
Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...IRJET Journal
 
A dry process for production of microfluidic devices based on the lamination ...
A dry process for production of microfluidic devices based on the lamination ...A dry process for production of microfluidic devices based on the lamination ...
A dry process for production of microfluidic devices based on the lamination ...Veluri Vijay Chowdary
 
Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...
Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...
Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...IRJET Journal
 
Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...
Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...
Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...SANTIAGO PABLO ALBERTO
 
Kaolinite/Polypropylene Nanocomposites. Part 3: 3D Printing
Kaolinite/Polypropylene Nanocomposites. Part 3: 3D PrintingKaolinite/Polypropylene Nanocomposites. Part 3: 3D Printing
Kaolinite/Polypropylene Nanocomposites. Part 3: 3D PrintingIRJET Journal
 
CellSeeker-PDRPresentaton-2
CellSeeker-PDRPresentaton-2CellSeeker-PDRPresentaton-2
CellSeeker-PDRPresentaton-2Edward Chiang
 
3D Circuits-Wireless-Save Cost & Assembly
3D Circuits-Wireless-Save Cost & Assembly 3D Circuits-Wireless-Save Cost & Assembly
3D Circuits-Wireless-Save Cost & Assembly sourcepointassociates
 
Sharma2017
Sharma2017Sharma2017
Sharma2017eceir
 
Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...
Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...
Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...IOSR Journals
 
Modeling and Optimization of Mold Filling Parameters for Maximization of Pr...
Modeling and Optimization of  Mold  Filling Parameters for Maximization of Pr...Modeling and Optimization of  Mold  Filling Parameters for Maximization of Pr...
Modeling and Optimization of Mold Filling Parameters for Maximization of Pr...IRJET Journal
 

Similar to PLA Micro-Scaffolds for Cell Culture (20)

Stratasys White Paper - Injection Molding
Stratasys White Paper - Injection MoldingStratasys White Paper - Injection Molding
Stratasys White Paper - Injection Molding
 
Metal flow simulation
Metal flow simulationMetal flow simulation
Metal flow simulation
 
G:\Biomaterial Fabrication
G:\Biomaterial FabricationG:\Biomaterial Fabrication
G:\Biomaterial Fabrication
 
G:\Biomaterial Fabrication
G:\Biomaterial FabricationG:\Biomaterial Fabrication
G:\Biomaterial Fabrication
 
Technology for Plastic Mold Tooling - Direct Metal Deposition
Technology for Plastic Mold Tooling - Direct Metal Deposition  Technology for Plastic Mold Tooling - Direct Metal Deposition
Technology for Plastic Mold Tooling - Direct Metal Deposition
 
Research poster 3d printing 36x48
Research poster 3d printing 36x48Research poster 3d printing 36x48
Research poster 3d printing 36x48
 
Software packages for foundry use
Software packages for foundry useSoftware packages for foundry use
Software packages for foundry use
 
Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...
Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...
Optimalization of Parameters for 3D Print for Acrylonitrile-Butadiene-Styrene...
 
A dry process for production of microfluidic devices based on the lamination ...
A dry process for production of microfluidic devices based on the lamination ...A dry process for production of microfluidic devices based on the lamination ...
A dry process for production of microfluidic devices based on the lamination ...
 
Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...
Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...
Enabling Value added Product (UTR) Rolling using Artificial Intelligence base...
 
214221023 rishabh.pptx
214221023 rishabh.pptx214221023 rishabh.pptx
214221023 rishabh.pptx
 
Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...
Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...
Electrónica: Extrusión de filamentos y su impresión 3D de mezclas de poli (ác...
 
3D printing in dentistry
3D printing in dentistry3D printing in dentistry
3D printing in dentistry
 
Kaolinite/Polypropylene Nanocomposites. Part 3: 3D Printing
Kaolinite/Polypropylene Nanocomposites. Part 3: 3D PrintingKaolinite/Polypropylene Nanocomposites. Part 3: 3D Printing
Kaolinite/Polypropylene Nanocomposites. Part 3: 3D Printing
 
CellSeeker-PDRPresentaton-2
CellSeeker-PDRPresentaton-2CellSeeker-PDRPresentaton-2
CellSeeker-PDRPresentaton-2
 
3D Circuits-Wireless-Save Cost & Assembly
3D Circuits-Wireless-Save Cost & Assembly 3D Circuits-Wireless-Save Cost & Assembly
3D Circuits-Wireless-Save Cost & Assembly
 
Sharma2017
Sharma2017Sharma2017
Sharma2017
 
Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...
Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...
Experimental Test on Carbon Fiber/Epoxy and Glass Fiber /Epoxy Pultruded Rods...
 
Modeling and Optimization of Mold Filling Parameters for Maximization of Pr...
Modeling and Optimization of  Mold  Filling Parameters for Maximization of Pr...Modeling and Optimization of  Mold  Filling Parameters for Maximization of Pr...
Modeling and Optimization of Mold Filling Parameters for Maximization of Pr...
 
Rp
RpRp
Rp
 

PLA Micro-Scaffolds for Cell Culture

  • 1. PLA Micro-Scaffolds for Cell Culture Nathan Tahbaz Lichen Wang Abstract 3D bioplastic scaffolds are regularly used to culture cells into a specific shape or pattern for use in tissue engineering application. These structures are typically acquired from a commercial fabricator, or produced in lab. A high resolution scaffold with micro-scale structures Introduction PLA (polly-lactic acid) is a biodegradable thermoplastic with a melting point of 150-160° C. Because of these characteristics, it is well suited for use as a scaffold substrate. PLA provides an acceptable surface quality for cells to seed onto, and can theoretically be dissolved after cell propagation has been achieved. Its melting point and low viscosity allow for sterilization at room temperature using conventional UV or alcohol methods. Experimental procedure Benchmark models (figure 1) were produced in SolidWorks CAD software, then exported as STL files. The STL files were then sliced with Slic3r open source slicing software to produce G-code. This G-code was served to the 3D printer directly using PrintRun (pronterface) open source software. Figure 1: Benchmark CAD Models
  • 2. During the slicing step of the procedure, variables such as tool speed, temperature, and extrusion multiplier were adjusted. This adjustment was made based on a quantitative analysis of the previously produced scaffold via digital bright-field microscopy. This process produced incremental improvements in the quality of preceding samples as well as iterative data gathering Results The primary factors in determining filament diameter and consistency appear to be tool speed, temperature, and extrusion multiplier. Profiles for different model types and required filament diameters were extrapolated from data. These profiles can constantly produce acceptable scaffold structures with a tolerance of +/- 50 micrometers (with a bias towards over extrusion, e.g. + ). The majority of the trials were conducted with the goal of producing a 250 micrometer filament diameter, as such the profile for producing models with a filament diameter of 250 micrometers is the most refined. The filament diameter of scaffolds produced with the refined profile measured within +/- 5 micrometers of each other. This result establishes a standard for precision in terms of filament diameter (figures 3 & 4) Conclusions The overall goal of the experimental series was to refine the settings required to produce a scaffold structure within expectable tolerances of the CAD model it was printed from. Based on this goal, the initial data gathered would show the experiment to be a moderate success. At the end of the experimental trials, filament diameter tolerance was at +/- 50 micrometers. While the hypothesized final tolerance was +/- 25 micrometers, the final result shows an improvement of 60 micrometers from initial trials. Figure 2: Filament Diameter
  • 3. Figures 3 & 4: Final Results