SlideShare a Scribd company logo
1 of 34
DIRECT  METHODS  FOR SOLVING  SYSTEMS  OF LINEAR EQUATIONS Presented by: Acosta CreusMileidy Lorena    2073699 Teacher: Ph.D. Eduardo Carrillo Zambrano Numerical Methods in Petroleum Engineering INDUSTRIAL UNIVERSITY OF SANTANDER 2010
CONTENT CONVENTIONAL METHODS OF SOLUTION 1.1. Mathematical background 1.2. Solving Small Numbers Of Equations 1.2.1. Graphical method  1.2.2. Cramer’s rule  1.2.3. Elimination of Unknowns
CONTENT 2. TECHIQUES FOR IMPROVING SOLUTIONS 2.1. Use of more significant figures 2. 2.Pivoting 2.3. Scaling 3. COMPLEMENTARY TECHNIQUES 3.1. Gauss-Jordan 3.2. LU Decomposition 4. BIBLIOGRAPHY
1. CONVENTIONAL METHODS OF  SOLUTION 1.1.  MATHEMATICAL BACKGROUND  Matriz An matrix A of mxn is a rectangular array of mn numbers arranged in m rows and n columns. The component or element ij of A, denoted by aij is the number that appears in the row i and column j of A.  SCHOOL OF PETROLEUM ENGINEERING
Types of matrixes SCHOOL OF PETROLEUM ENGINEERING
Types of matrixes SCHOOL OF PETROLEUM ENGINEERING
Types of matrixes SCHOOL OF PETROLEUM ENGINEERING
CONVENTIONAL METHODS OF  SOLUTION 1.2. Solving Small Numbers Of Equations The following are several methods that are appropriate for solving small (n ≤3) sets of simultaneous equations and that don’t require a computer.  These are:  ,[object Object]
Determinants and Cramer’s rule
Elimination of UnknownsSCHOOL OF PETROLEUM ENGINEERING
1.2.1. Graphical Method  A graphical solution is obtainable for two equations by plotting them on Cartesian coordinates with one axis corresponding to x1 and the other to x2, because each equation is a straight line.  2 3 5 a11x1 + a12x2 = b1 a21 x1 + a22x2 = b2 Despejando x2 SCHOOL OF PETROLEUM ENGINEERING
1.2.1. Graphical Method  Beyond three equations, graphical methods break down and, consequently, have little practical value for solving simultaneous equations.  There are three cases that can pose problems when solving sets of linear equations: 2 3 5 -1/2x1+ x2= 1 -1/2x1 + x2 = 1/2 x2 x2 x2 (-2.3/5)x1+ x2= 1.1 -1/2x1 + x2 = 1 -1/2x1+ x2= 1 -x1+ 2x2= 2 x1  x1  x1  a) No solution	              b) Infinite solutions   	         c) ill-conditioned system  SCHOOL OF PETROLEUM ENGINEERING
1.2.1. Graphical Method  EXAMPLE: Let x1 be theabscissa. Solvebothequationsfor x2: 2 3 Withthegraphicalmethodtosolve: Solve: X1=4 ; X2=3 3x1 + 2x2 = 18 - x1 + 2x2 = 2 3x1 + 2x2 = 18 5 - x1 + 2x2 = 2 𝑥2=−32𝑥1+9 𝑥2=12𝑥1+1   SCHOOL OF PETROLEUM ENGINEERING
1.2.2. Cramer’s rule  Each unknown in a system of linear algebraic equations may be expressed as a fraction of two determinants with denominator D and with the numerator obtained from D by replacing the column of coefficients of the unknown in question by the constants b1, b2,…,bn. For example, 2 3 5 Gabriel Cramer FUENTE: http://auladeblanca.blogspot.com SCHOOL OF PETROLEUM ENGINEERING
1.2.2. Cramer’s rule  EXAMPLE WithCramer’s rule tosolve: 0.3x1+ 0.52x2 + x3= -0.01 0.5x1 + x2 + 1.9x3= 0.67 0.1x1 + 0.3x2 + 0.5x3= -0.44 Solution D=0.30.5210.511.90.10.30.5   2 3 5 1 Towritethedeterminant D: SCHOOL OF PETROLEUM ENGINEERING
1.2.2. Cramer’s rule  2 3 Tosolvetheminors: Evaluatingthedeterminant 2 3 A1=11.90.30.5=1(0.5)-1.9(0.3)=-0.07 A1=0.51.90.10.5=0.5(0.5)-1.9(0.1)=0.06 A1=0.510.10.3=0.5(0.3)-1(0.1)=0.05   These can be used to evaluate the determinant, so: 5 D=0.3(-0.07)-0.52(0.06)+1(0.05) D=-0.0022 SCHOOL OF PETROLEUM ENGINEERING
1.2.2. Cramer’s rule  4 Employing Cramer’s rule: x1=−0.010.5210.6711.9−0.440.30.5−0.0022=0.03278−0.0022=-14.9 x2=0.3−0.0110.50.671.90.1−0.440.5−0.0022=0.0649−0.0022=-29.5 x3=0.30.52−0.010.510.670.10.3−0.445−0.0022=−0.04356−0.0022=19.8   2 3 «For more thanthreeequations, Cramer´s rule becomesimpractcalbecause, as thenumber of equatiomsincreases, thedeterminants are time consumingtoevaluatebyhand» 5 SCHOOL OF PETROLEUM ENGINEERING
1.2.3. Elimination of Unknowns The basic strategy is to multiply the equations by constants so that one of the unknowns will be eliminated when the two equations are combined.   The result is a single equation that can be solved for the remaining unknown.  2 3 a11x1 + a12x2 = b1		 a21a11x1 + a21a12x2 = b1a21 a21 x1 + a22x2 = b2		a21a11x1 + a22a11x2= b1a11 5 SCHOOL OF PETROLEUM ENGINEERING
1.2.1. Elimination of Unknowns 2 EXAMPLE: Withelimination of unknownse: 3 3x1 + 2x2 = 18 - x1 + 2x2 = 2 5 Usingthelastequations: 𝑥1=218−2(2)32−2(−1)=4                𝑥2=32−18(−1)32−2(−1)=3   Thesevaluesare equalstographicalmethods. SCHOOL OF PETROLEUM ENGINEERING
2. TECHIQUES FOR IMPROVING SOLUTIONS ESCUELA DE INGENIERÍA DE PETRÓLEOS
3. COMPLEMENTARY TECHNIQUES 3.1. Gauss-Jordan 3.2. LU Decomposition ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN Gaussian elimination is an algorithm of linear algebra to determine the solutions of a system of linear equations, matrices and inverse found. STEPS 1 To convert linear equation system to banded matrix ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN 2 Go to the leftmost nonzero column 3 If the first line has a zero in this column, swap it with another  that does not have ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN 4 Get zeros below the pivot, adding appropriate multiples of row  than the row below it ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN 3 Repeat the operations with of the other rows to obtain the higher triangular matrix 3 Starting with the last line is not zero, move up to get the identity matrix. ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN 3 Solution of the system of equations ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN EXAMPLE To find the unknowns of the linear equation system using the method Gauss-Jordan Solution ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN EXAMPLE ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN EXAMPLE ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.1. GAUSS-JORDAN EXAMPLE ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.2. LU DECOMPOSITION The primary appeal of LU decomposition is that the time-consuming elimination step can be formulated so that it involves only operations on the matrix of coefficients (A), Thus it is well suited for those situations where many right-hand-side vectors (B) must be evaluated for a single value of (A).  STEPS 1 The linear equation system can be rearranged to give [A][x]=[B] ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.2. LU DECOMPOSITION 2 Assume that there is a lower diagonal matrix with 1’s on the diagonal [L][D]=[B] L=100𝑙1210𝑙13𝑙231   3 To express the linear equation system as an upper triangular system [U][x]=[D] 𝑈=𝑢11𝑢12𝑢130𝑢22𝑢2300𝑢∗𝑥1𝑥2𝑥3=𝑑1𝑑2𝑑3   ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.2. LU DECOMPOSITION Summary of steps       [A]   [X]= [B] [U]    [L]          [L]  [D]= [B] [U] [X]= [D]     [X] a) Decomposition b) Forwards c) Backward [ D ] Substitution ESCUELA DE INGENIERÍA DE PETRÓLEOS
3.2. LU DECOMPOSITION Consider solving the system of equations by LU decomposition EXAMPLE Solution ESCUELA DE INGENIERÍA DE PETRÓLEOS

More Related Content

What's hot

Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsHazel Joy Chong
 
Lesson 5: Polynomials
Lesson 5: PolynomialsLesson 5: Polynomials
Lesson 5: PolynomialsKevin Johnson
 
Gaussian Elimination
Gaussian EliminationGaussian Elimination
Gaussian EliminationZunAib Ali
 
quadratic equation
quadratic equationquadratic equation
quadratic equationRubal Oborai
 
Systems of Linear Equations
Systems of Linear EquationsSystems of Linear Equations
Systems of Linear Equationsalrosiemae
 
05 Chapter MATLAB Differntial equations
05 Chapter MATLAB Differntial equations05 Chapter MATLAB Differntial equations
05 Chapter MATLAB Differntial equationsDr. Mohammed Danish
 
Systems Non Linear Equations
Systems Non Linear EquationsSystems Non Linear Equations
Systems Non Linear EquationsBitsy Griffin
 
Math Project 2ppt
Math Project 2pptMath Project 2ppt
Math Project 2pptguest7461b8
 
System of equations
System of equationsSystem of equations
System of equationsmariacadena
 
Solving Linear Equations - GRADE 8 MATHEMATICS
Solving Linear Equations - GRADE 8 MATHEMATICSSolving Linear Equations - GRADE 8 MATHEMATICS
Solving Linear Equations - GRADE 8 MATHEMATICSCoreAces
 
Lesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic FunctionsLesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic FunctionsKevin Johnson
 
Jawapan matriks spM LATIH TUBI 2015
Jawapan matriks spM LATIH TUBI 2015Jawapan matriks spM LATIH TUBI 2015
Jawapan matriks spM LATIH TUBI 2015aloysiusapat
 
Lecture 05 b radicals multiplication and division
Lecture 05 b radicals multiplication and divisionLecture 05 b radicals multiplication and division
Lecture 05 b radicals multiplication and divisionHazel Joy Chong
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equationsswartzje
 
linear equation system with 2 and 3 variables
linear equation system with 2 and 3 variableslinear equation system with 2 and 3 variables
linear equation system with 2 and 3 variablesWanda Sari
 
D0366025029
D0366025029D0366025029
D0366025029theijes
 
Linear equations Class 10 by aryan kathuria
Linear equations Class 10 by aryan kathuriaLinear equations Class 10 by aryan kathuria
Linear equations Class 10 by aryan kathuriaDhiraj Singh
 
Solving Systems of Linear Equations in Two Variables by Graphing
Solving Systems of Linear Equations in Two Variables by GraphingSolving Systems of Linear Equations in Two Variables by Graphing
Solving Systems of Linear Equations in Two Variables by GraphingJoey Valdriz
 

What's hot (20)

Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
Lesson 5: Polynomials
Lesson 5: PolynomialsLesson 5: Polynomials
Lesson 5: Polynomials
 
Gaussian Elimination
Gaussian EliminationGaussian Elimination
Gaussian Elimination
 
quadratic equation
quadratic equationquadratic equation
quadratic equation
 
Systems of Linear Equations
Systems of Linear EquationsSystems of Linear Equations
Systems of Linear Equations
 
05 Chapter MATLAB Differntial equations
05 Chapter MATLAB Differntial equations05 Chapter MATLAB Differntial equations
05 Chapter MATLAB Differntial equations
 
Systems Non Linear Equations
Systems Non Linear EquationsSystems Non Linear Equations
Systems Non Linear Equations
 
Math Project 2ppt
Math Project 2pptMath Project 2ppt
Math Project 2ppt
 
System of equations
System of equationsSystem of equations
System of equations
 
Solving Linear Equations - GRADE 8 MATHEMATICS
Solving Linear Equations - GRADE 8 MATHEMATICSSolving Linear Equations - GRADE 8 MATHEMATICS
Solving Linear Equations - GRADE 8 MATHEMATICS
 
Lesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic FunctionsLesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic Functions
 
Jawapan matriks spM LATIH TUBI 2015
Jawapan matriks spM LATIH TUBI 2015Jawapan matriks spM LATIH TUBI 2015
Jawapan matriks spM LATIH TUBI 2015
 
Lecture 05 b radicals multiplication and division
Lecture 05 b radicals multiplication and divisionLecture 05 b radicals multiplication and division
Lecture 05 b radicals multiplication and division
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equations
 
linear equation system with 2 and 3 variables
linear equation system with 2 and 3 variableslinear equation system with 2 and 3 variables
linear equation system with 2 and 3 variables
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
D0366025029
D0366025029D0366025029
D0366025029
 
Linear equations Class 10 by aryan kathuria
Linear equations Class 10 by aryan kathuriaLinear equations Class 10 by aryan kathuria
Linear equations Class 10 by aryan kathuria
 
Matriks
MatriksMatriks
Matriks
 
Solving Systems of Linear Equations in Two Variables by Graphing
Solving Systems of Linear Equations in Two Variables by GraphingSolving Systems of Linear Equations in Two Variables by Graphing
Solving Systems of Linear Equations in Two Variables by Graphing
 

Viewers also liked

Métodos directos para la solución de sistemas de ecuaciones lineales
Métodos directos para la solución de sistemas de ecuaciones linealesMétodos directos para la solución de sistemas de ecuaciones lineales
Métodos directos para la solución de sistemas de ecuaciones linealesMileacre
 
Equations root
Equations rootEquations root
Equations rootMileacre
 
Ejercicios propuestos diferenciacion e integracion o1
Ejercicios propuestos diferenciacion e integracion o1Ejercicios propuestos diferenciacion e integracion o1
Ejercicios propuestos diferenciacion e integracion o1Mileacre
 
Exercises roots equations
Exercises roots equationsExercises roots equations
Exercises roots equationsMileacre
 

Viewers also liked (8)

Métodos directos para la solución de sistemas de ecuaciones lineales
Métodos directos para la solución de sistemas de ecuaciones linealesMétodos directos para la solución de sistemas de ecuaciones lineales
Métodos directos para la solución de sistemas de ecuaciones lineales
 
Equations root
Equations rootEquations root
Equations root
 
Ejercicios propuestos diferenciacion e integracion o1
Ejercicios propuestos diferenciacion e integracion o1Ejercicios propuestos diferenciacion e integracion o1
Ejercicios propuestos diferenciacion e integracion o1
 
Exercises roots equations
Exercises roots equationsExercises roots equations
Exercises roots equations
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Bisection and fixed point method
Bisection and fixed point methodBisection and fixed point method
Bisection and fixed point method
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Numerical method
Numerical methodNumerical method
Numerical method
 

Similar to Métodos directos para la solución de sistemas de ecuaciones lineales

Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3Nazrin Nazdri
 
Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfRahulUkhande
 
Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)Minhas Kamal
 
Linear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptxLinear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptxMazwan3
 
Method of simple gauss
Method of simple gaussMethod of simple gauss
Method of simple gaussJeannie
 
Method Of Simple Gauss
Method Of Simple GaussMethod Of Simple Gauss
Method Of Simple GaussJeannie
 
Method of simple gauss
Method of simple gaussMethod of simple gauss
Method of simple gaussJeannie
 
algebra lesson notes (best).pdf
algebra lesson notes (best).pdfalgebra lesson notes (best).pdf
algebra lesson notes (best).pdfCyprianObota
 
Final presentation
Final presentationFinal presentation
Final presentationpaezp
 
Numerical Techniques
Numerical TechniquesNumerical Techniques
Numerical TechniquesYasir Mahdi
 
Gauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptxGauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptxAHSANMEHBOOB12
 
Appliacation of Matrix.pptx
Appliacation of Matrix.pptxAppliacation of Matrix.pptx
Appliacation of Matrix.pptxPSIT kanpur
 

Similar to Métodos directos para la solución de sistemas de ecuaciones lineales (20)

Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdf
 
Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Linear)
 
Linear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptxLinear Algebra- Gauss Elim-converted.pptx
Linear Algebra- Gauss Elim-converted.pptx
 
Method of simple gauss
Method of simple gaussMethod of simple gauss
Method of simple gauss
 
Method Of Simple Gauss
Method Of Simple GaussMethod Of Simple Gauss
Method Of Simple Gauss
 
Method of simple gauss
Method of simple gaussMethod of simple gauss
Method of simple gauss
 
algebra lesson notes (best).pdf
algebra lesson notes (best).pdfalgebra lesson notes (best).pdf
algebra lesson notes (best).pdf
 
algebra
algebraalgebra
algebra
 
Gauss simple
Gauss simpleGauss simple
Gauss simple
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
Final presentation
Final presentationFinal presentation
Final presentation
 
Linear Algebra(1).pptx
Linear Algebra(1).pptxLinear Algebra(1).pptx
Linear Algebra(1).pptx
 
Numerical Techniques
Numerical TechniquesNumerical Techniques
Numerical Techniques
 
Gauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptxGauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptx
 
CHAPTER 3 numer.pdf
CHAPTER 3 numer.pdfCHAPTER 3 numer.pdf
CHAPTER 3 numer.pdf
 
Appliacation of Matrix.pptx
Appliacation of Matrix.pptxAppliacation of Matrix.pptx
Appliacation of Matrix.pptx
 
system linear equations
 system linear equations  system linear equations
system linear equations
 
Cramer's Rule.ppt
Cramer's Rule.pptCramer's Rule.ppt
Cramer's Rule.ppt
 
Cramers Rule.ppt
Cramers Rule.pptCramers Rule.ppt
Cramers Rule.ppt
 

More from Mileacre

Roots of equations
Roots of equationsRoots of equations
Roots of equationsMileacre
 
Roots of equations
Roots of equationsRoots of equations
Roots of equationsMileacre
 
Numerical approximation
Numerical approximationNumerical approximation
Numerical approximationMileacre
 
Numerical approximation
Numerical approximationNumerical approximation
Numerical approximationMileacre
 
Numerical approximation
Numerical approximationNumerical approximation
Numerical approximationMileacre
 
Mathematical models
Mathematical  modelsMathematical  models
Mathematical modelsMileacre
 
Ley de darcy o1 grupo 5
Ley de darcy o1 grupo 5Ley de darcy o1 grupo 5
Ley de darcy o1 grupo 5Mileacre
 
Cap. 1 resumen
Cap. 1 resumenCap. 1 resumen
Cap. 1 resumenMileacre
 

More from Mileacre (8)

Roots of equations
Roots of equationsRoots of equations
Roots of equations
 
Roots of equations
Roots of equationsRoots of equations
Roots of equations
 
Numerical approximation
Numerical approximationNumerical approximation
Numerical approximation
 
Numerical approximation
Numerical approximationNumerical approximation
Numerical approximation
 
Numerical approximation
Numerical approximationNumerical approximation
Numerical approximation
 
Mathematical models
Mathematical  modelsMathematical  models
Mathematical models
 
Ley de darcy o1 grupo 5
Ley de darcy o1 grupo 5Ley de darcy o1 grupo 5
Ley de darcy o1 grupo 5
 
Cap. 1 resumen
Cap. 1 resumenCap. 1 resumen
Cap. 1 resumen
 

Métodos directos para la solución de sistemas de ecuaciones lineales

  • 1. DIRECT METHODS FOR SOLVING SYSTEMS OF LINEAR EQUATIONS Presented by: Acosta CreusMileidy Lorena 2073699 Teacher: Ph.D. Eduardo Carrillo Zambrano Numerical Methods in Petroleum Engineering INDUSTRIAL UNIVERSITY OF SANTANDER 2010
  • 2. CONTENT CONVENTIONAL METHODS OF SOLUTION 1.1. Mathematical background 1.2. Solving Small Numbers Of Equations 1.2.1. Graphical method 1.2.2. Cramer’s rule 1.2.3. Elimination of Unknowns
  • 3. CONTENT 2. TECHIQUES FOR IMPROVING SOLUTIONS 2.1. Use of more significant figures 2. 2.Pivoting 2.3. Scaling 3. COMPLEMENTARY TECHNIQUES 3.1. Gauss-Jordan 3.2. LU Decomposition 4. BIBLIOGRAPHY
  • 4. 1. CONVENTIONAL METHODS OF SOLUTION 1.1. MATHEMATICAL BACKGROUND  Matriz An matrix A of mxn is a rectangular array of mn numbers arranged in m rows and n columns. The component or element ij of A, denoted by aij is the number that appears in the row i and column j of A. SCHOOL OF PETROLEUM ENGINEERING
  • 5. Types of matrixes SCHOOL OF PETROLEUM ENGINEERING
  • 6. Types of matrixes SCHOOL OF PETROLEUM ENGINEERING
  • 7. Types of matrixes SCHOOL OF PETROLEUM ENGINEERING
  • 8.
  • 10. Elimination of UnknownsSCHOOL OF PETROLEUM ENGINEERING
  • 11. 1.2.1. Graphical Method A graphical solution is obtainable for two equations by plotting them on Cartesian coordinates with one axis corresponding to x1 and the other to x2, because each equation is a straight line. 2 3 5 a11x1 + a12x2 = b1 a21 x1 + a22x2 = b2 Despejando x2 SCHOOL OF PETROLEUM ENGINEERING
  • 12. 1.2.1. Graphical Method Beyond three equations, graphical methods break down and, consequently, have little practical value for solving simultaneous equations. There are three cases that can pose problems when solving sets of linear equations: 2 3 5 -1/2x1+ x2= 1 -1/2x1 + x2 = 1/2 x2 x2 x2 (-2.3/5)x1+ x2= 1.1 -1/2x1 + x2 = 1 -1/2x1+ x2= 1 -x1+ 2x2= 2 x1 x1 x1 a) No solution b) Infinite solutions c) ill-conditioned system SCHOOL OF PETROLEUM ENGINEERING
  • 13. 1.2.1. Graphical Method EXAMPLE: Let x1 be theabscissa. Solvebothequationsfor x2: 2 3 Withthegraphicalmethodtosolve: Solve: X1=4 ; X2=3 3x1 + 2x2 = 18 - x1 + 2x2 = 2 3x1 + 2x2 = 18 5 - x1 + 2x2 = 2 𝑥2=−32𝑥1+9 𝑥2=12𝑥1+1   SCHOOL OF PETROLEUM ENGINEERING
  • 14. 1.2.2. Cramer’s rule Each unknown in a system of linear algebraic equations may be expressed as a fraction of two determinants with denominator D and with the numerator obtained from D by replacing the column of coefficients of the unknown in question by the constants b1, b2,…,bn. For example, 2 3 5 Gabriel Cramer FUENTE: http://auladeblanca.blogspot.com SCHOOL OF PETROLEUM ENGINEERING
  • 15. 1.2.2. Cramer’s rule EXAMPLE WithCramer’s rule tosolve: 0.3x1+ 0.52x2 + x3= -0.01 0.5x1 + x2 + 1.9x3= 0.67 0.1x1 + 0.3x2 + 0.5x3= -0.44 Solution D=0.30.5210.511.90.10.30.5   2 3 5 1 Towritethedeterminant D: SCHOOL OF PETROLEUM ENGINEERING
  • 16. 1.2.2. Cramer’s rule 2 3 Tosolvetheminors: Evaluatingthedeterminant 2 3 A1=11.90.30.5=1(0.5)-1.9(0.3)=-0.07 A1=0.51.90.10.5=0.5(0.5)-1.9(0.1)=0.06 A1=0.510.10.3=0.5(0.3)-1(0.1)=0.05   These can be used to evaluate the determinant, so: 5 D=0.3(-0.07)-0.52(0.06)+1(0.05) D=-0.0022 SCHOOL OF PETROLEUM ENGINEERING
  • 17. 1.2.2. Cramer’s rule 4 Employing Cramer’s rule: x1=−0.010.5210.6711.9−0.440.30.5−0.0022=0.03278−0.0022=-14.9 x2=0.3−0.0110.50.671.90.1−0.440.5−0.0022=0.0649−0.0022=-29.5 x3=0.30.52−0.010.510.670.10.3−0.445−0.0022=−0.04356−0.0022=19.8   2 3 «For more thanthreeequations, Cramer´s rule becomesimpractcalbecause, as thenumber of equatiomsincreases, thedeterminants are time consumingtoevaluatebyhand» 5 SCHOOL OF PETROLEUM ENGINEERING
  • 18. 1.2.3. Elimination of Unknowns The basic strategy is to multiply the equations by constants so that one of the unknowns will be eliminated when the two equations are combined. The result is a single equation that can be solved for the remaining unknown. 2 3 a11x1 + a12x2 = b1 a21a11x1 + a21a12x2 = b1a21 a21 x1 + a22x2 = b2 a21a11x1 + a22a11x2= b1a11 5 SCHOOL OF PETROLEUM ENGINEERING
  • 19. 1.2.1. Elimination of Unknowns 2 EXAMPLE: Withelimination of unknownse: 3 3x1 + 2x2 = 18 - x1 + 2x2 = 2 5 Usingthelastequations: 𝑥1=218−2(2)32−2(−1)=4  𝑥2=32−18(−1)32−2(−1)=3   Thesevaluesare equalstographicalmethods. SCHOOL OF PETROLEUM ENGINEERING
  • 20. 2. TECHIQUES FOR IMPROVING SOLUTIONS ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 21. 3. COMPLEMENTARY TECHNIQUES 3.1. Gauss-Jordan 3.2. LU Decomposition ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 22. 3.1. GAUSS-JORDAN Gaussian elimination is an algorithm of linear algebra to determine the solutions of a system of linear equations, matrices and inverse found. STEPS 1 To convert linear equation system to banded matrix ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 23. 3.1. GAUSS-JORDAN 2 Go to the leftmost nonzero column 3 If the first line has a zero in this column, swap it with another that does not have ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 24. 3.1. GAUSS-JORDAN 4 Get zeros below the pivot, adding appropriate multiples of row than the row below it ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 25. 3.1. GAUSS-JORDAN 3 Repeat the operations with of the other rows to obtain the higher triangular matrix 3 Starting with the last line is not zero, move up to get the identity matrix. ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 26. 3.1. GAUSS-JORDAN 3 Solution of the system of equations ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 27. 3.1. GAUSS-JORDAN EXAMPLE To find the unknowns of the linear equation system using the method Gauss-Jordan Solution ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 28. 3.1. GAUSS-JORDAN EXAMPLE ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 29. 3.1. GAUSS-JORDAN EXAMPLE ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 30. 3.1. GAUSS-JORDAN EXAMPLE ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 31. 3.2. LU DECOMPOSITION The primary appeal of LU decomposition is that the time-consuming elimination step can be formulated so that it involves only operations on the matrix of coefficients (A), Thus it is well suited for those situations where many right-hand-side vectors (B) must be evaluated for a single value of (A). STEPS 1 The linear equation system can be rearranged to give [A][x]=[B] ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 32. 3.2. LU DECOMPOSITION 2 Assume that there is a lower diagonal matrix with 1’s on the diagonal [L][D]=[B] L=100𝑙1210𝑙13𝑙231   3 To express the linear equation system as an upper triangular system [U][x]=[D] 𝑈=𝑢11𝑢12𝑢130𝑢22𝑢2300𝑢∗𝑥1𝑥2𝑥3=𝑑1𝑑2𝑑3   ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 33. 3.2. LU DECOMPOSITION Summary of steps [A] [X]= [B] [U] [L] [L] [D]= [B] [U] [X]= [D] [X] a) Decomposition b) Forwards c) Backward [ D ] Substitution ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 34. 3.2. LU DECOMPOSITION Consider solving the system of equations by LU decomposition EXAMPLE Solution ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 35. 3.2. LU DECOMPOSITION Ux=y So, Finally, the solution to the linear system is given: ESCUELA DE INGENIERÍA DE PETRÓLEOS
  • 36.
  • 37. GROSSMAN, Stanley l. Algebra lineal. 5ta Edición. Editorial Mc Graw Hill. 2008