SlideShare a Scribd company logo
1 of 1
Download to read offline
GENERAL RECOMMENDATION SYSTEM APPLIED TO
MULTI-ATTRIBUTE PRODUCTION METADATA
KURT DACOSTA, MICHAEL BARONE & MATTHEW WOOLHOUSE
dacostak@mcmaster.ca, baronem@mcmaster.ca, woolhouse@mcmaster.ca
1. OBJECTIVES
Music recommendation algorithms are a unique
challenge which provide potential gains for both
academic and private sectors. Current techniques
apply machine learning due to their speed and
potential accuracy (Boriach, Chandola, & Kumar,
2008). We develop Cadence, a general recommen-
dation algorithm that:
1. Processes categorical production metadata.
2. Recommends using production metadata, a
feature largely unexamined in previous aca-
demic literature.
3. Initial state defined by a set of seed tracks.
4. Considers cognitive aspects such as mem-
ory, recency, feature preference, and
secondary-artist preference.
2. ALGORITHM
Seed Tracks
Generate
Finger-
print
Recommend
Production
Database
Like
Dislike
Figure 2. Algorithm Schema
Cadence builds a neural network to analyze a
user’s preferences:
(a) Seed tracks are collected from a user’s play
history; Table 1.
(b) Play history is analyzed to produce feature
values; Equation 1 and Table 2.
(c) Feature values are converted into a
Listening-Fingerprint; Equation 2, Equation
3 and Table 3.
(d) Fingerprint is correlated with production
data of new tracks. Tracks with highest coef-
ficient are recommended.
(e) If recommendation liked, feature values are
added to play history, and values are up-
dated.
(f) If recommendation disliked, feature values
are supressed and new recommendation
generated.
REFERENCES
Boriach, S., Chandola, V., & Kumar, V. (2008).
Similarity measures for categorical data: A
comparative evaluation. SIAM, 52, 243-254.
Ebbinghaus, H. (1885). Memory: A contribution to
experimental psychology. Columbia Univer-
sity.
6. FUTURE RESEARCH
Future work should focus on algorithm sensitivity. This can be most effectively solved through:
1. Enchanced sample of production metadata.
2. Test algorithm efficacy on real user consumption data.
3. Incorporate a time-based loss function with respect to recency feature of algorithm.
4. Weigh repeated song plays more strongly than novel songs.
ACKNOWLEDGEMENTS
Supported by SSHRC Insight Development Grant
(430-2012-0835), the Arts Research Board, and the
Office VP Research, McMaster University.
5. DATA & REQUIREMENTS
Data:
• Algorithm tested using data collected from
a project developed from Rutgers Informa-
tion Visualization graduate course.
• Dataset contains ca. 2000 songs with pro-
ducer and writer information.
Algorithm Requirements:
• Python 2.7.
• Modules: json, random, operator, numpy,
sys.
4. FORGETTING CURVE
The forgetting curve is a psychological phe-
nomenon which illustrates the effect of memory,
learning, and retention over time (Ebbinghaus,
1885). The algorithm preferences more recent
tracks in the fingerprint, in a manner similar to
the forgetting curve.
3. LISTENING FINGERPRINT
Notation & Equations Exemplar
T : Set of seed tracks for user.
P : Set of people found in T.
R : Set of roles found in T.
Tk(p) : Set of tracks where p assumes role k.
Wk : Role weighting for role k.
Ck(p) : Contribution of person p to role k in T.
Rk(t) : Set of people who assume role k in t.
Person-Role Contribution Equation
Ck(p) =
1
|T|
t∈Tk(p)
1
|Rk(t)|
(1)
Role-Weighting Equation
Wk = S{Ck(p)|p∈P } (2)
Listening-Fingerpring Equation
F = {f | ∀p ∈ P, f =
k∈R
Wk ∗ Ck(p)} (3)
Table 1. Seed User History
Track History Producer Writer
1) We Made You Dr.Dre, Eminem Eminem
2) What’s My Name? Dr.Dre Snoop Dogg
3) Still D.R.E. Dr.Dre, Mel-Man Dr.Dre, Jay-Z
Table 2. Person-Role Contributions
Person Artist Producer Writer
Dr.Dre 1.0 2.0 0.5
Eminem 1.0 0.5 0.5
Snoop Dogg 1.0 0.0 1.0
Jay-Z 0.0 0.0 0.5
Mel-Man 0.0 0.5 0.0
Table 3. Listening Fingerprint
Person Value
Eminem 0.75
Dr.Dre 0.43
Snoop Dogg 0.125
Jay-Z 0.03
Mel-Man 0.03

More Related Content

Similar to KD_MB_MW_poster

DATA MINING USING BUSINESS INTELLIGENCE AND SQL
DATA MINING USING BUSINESS INTELLIGENCE AND SQLDATA MINING USING BUSINESS INTELLIGENCE AND SQL
DATA MINING USING BUSINESS INTELLIGENCE AND SQLIRJET Journal
 
IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...
IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...
IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...Anna Guitart Atienza
 
Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...
Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...
Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...sebastianewert
 
IRJET- Analysis of Music Recommendation System using Machine Learning Alg...
IRJET-  	  Analysis of Music Recommendation System using Machine Learning Alg...IRJET-  	  Analysis of Music Recommendation System using Machine Learning Alg...
IRJET- Analysis of Music Recommendation System using Machine Learning Alg...IRJET Journal
 
Igor Kostiuk “Как приручить музыкальную рекомендательную систему”
Igor Kostiuk “Как приручить музыкальную рекомендательную систему”Igor Kostiuk “Как приручить музыкальную рекомендательную систему”
Igor Kostiuk “Как приручить музыкальную рекомендательную систему”Dakiry
 
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...GeeksLab Odessa
 
Knn a machine learning approach to recognize a musical instrument
Knn  a machine learning approach to recognize a musical instrumentKnn  a machine learning approach to recognize a musical instrument
Knn a machine learning approach to recognize a musical instrumentIJARIIT
 
Music Genre Classification using Machine Learning
Music Genre Classification using Machine LearningMusic Genre Classification using Machine Learning
Music Genre Classification using Machine LearningIRJET Journal
 
Automating Machine Learning - Is it feasible?
Automating Machine Learning - Is it feasible?Automating Machine Learning - Is it feasible?
Automating Machine Learning - Is it feasible?Manuel Martín
 
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...IRJET Journal
 
Audio Classification using Artificial Neural Network with Denoising Algorithm...
Audio Classification using Artificial Neural Network with Denoising Algorithm...Audio Classification using Artificial Neural Network with Denoising Algorithm...
Audio Classification using Artificial Neural Network with Denoising Algorithm...IRJET Journal
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 
Mapreduce Algorithms
Mapreduce AlgorithmsMapreduce Algorithms
Mapreduce AlgorithmsAmund Tveit
 
Scientific
Scientific Scientific
Scientific marpierc
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisStuart Wrigley
 
Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...
Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...
Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...BRNSSPublicationHubI
 
2021 04-20 apache arrow and its impact on the database industry.pptx
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptxAndrew Lamb
 

Similar to KD_MB_MW_poster (20)

DATA MINING USING BUSINESS INTELLIGENCE AND SQL
DATA MINING USING BUSINESS INTELLIGENCE AND SQLDATA MINING USING BUSINESS INTELLIGENCE AND SQL
DATA MINING USING BUSINESS INTELLIGENCE AND SQL
 
IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...
IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...
IEEE CIG 2018 Maastricht, The Netherlands, A Machine-Learning Item Recommenda...
 
Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...
Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...
Large-Scale Capture of Producer-Defined Musical Semantics - Ryan Stables (Sem...
 
IRJET- Analysis of Music Recommendation System using Machine Learning Alg...
IRJET-  	  Analysis of Music Recommendation System using Machine Learning Alg...IRJET-  	  Analysis of Music Recommendation System using Machine Learning Alg...
IRJET- Analysis of Music Recommendation System using Machine Learning Alg...
 
Igor Kostiuk “Как приручить музыкальную рекомендательную систему”
Igor Kostiuk “Как приручить музыкальную рекомендательную систему”Igor Kostiuk “Как приручить музыкальную рекомендательную систему”
Igor Kostiuk “Как приручить музыкальную рекомендательную систему”
 
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
 
Knn a machine learning approach to recognize a musical instrument
Knn  a machine learning approach to recognize a musical instrumentKnn  a machine learning approach to recognize a musical instrument
Knn a machine learning approach to recognize a musical instrument
 
Music Genre Classification using Machine Learning
Music Genre Classification using Machine LearningMusic Genre Classification using Machine Learning
Music Genre Classification using Machine Learning
 
Automating Machine Learning - Is it feasible?
Automating Machine Learning - Is it feasible?Automating Machine Learning - Is it feasible?
Automating Machine Learning - Is it feasible?
 
course description
course descriptioncourse description
course description
 
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
 
Audio Classification using Artificial Neural Network with Denoising Algorithm...
Audio Classification using Artificial Neural Network with Denoising Algorithm...Audio Classification using Artificial Neural Network with Denoising Algorithm...
Audio Classification using Artificial Neural Network with Denoising Algorithm...
 
T26123129
T26123129T26123129
T26123129
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Mapreduce Algorithms
Mapreduce AlgorithmsMapreduce Algorithms
Mapreduce Algorithms
 
Data mining weka
Data mining wekaData mining weka
Data mining weka
 
Scientific
Scientific Scientific
Scientific
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log Analysis
 
Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...
Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...
Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Impro...
 
2021 04-20 apache arrow and its impact on the database industry.pptx
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptx
 

KD_MB_MW_poster

  • 1. GENERAL RECOMMENDATION SYSTEM APPLIED TO MULTI-ATTRIBUTE PRODUCTION METADATA KURT DACOSTA, MICHAEL BARONE & MATTHEW WOOLHOUSE dacostak@mcmaster.ca, baronem@mcmaster.ca, woolhouse@mcmaster.ca 1. OBJECTIVES Music recommendation algorithms are a unique challenge which provide potential gains for both academic and private sectors. Current techniques apply machine learning due to their speed and potential accuracy (Boriach, Chandola, & Kumar, 2008). We develop Cadence, a general recommen- dation algorithm that: 1. Processes categorical production metadata. 2. Recommends using production metadata, a feature largely unexamined in previous aca- demic literature. 3. Initial state defined by a set of seed tracks. 4. Considers cognitive aspects such as mem- ory, recency, feature preference, and secondary-artist preference. 2. ALGORITHM Seed Tracks Generate Finger- print Recommend Production Database Like Dislike Figure 2. Algorithm Schema Cadence builds a neural network to analyze a user’s preferences: (a) Seed tracks are collected from a user’s play history; Table 1. (b) Play history is analyzed to produce feature values; Equation 1 and Table 2. (c) Feature values are converted into a Listening-Fingerprint; Equation 2, Equation 3 and Table 3. (d) Fingerprint is correlated with production data of new tracks. Tracks with highest coef- ficient are recommended. (e) If recommendation liked, feature values are added to play history, and values are up- dated. (f) If recommendation disliked, feature values are supressed and new recommendation generated. REFERENCES Boriach, S., Chandola, V., & Kumar, V. (2008). Similarity measures for categorical data: A comparative evaluation. SIAM, 52, 243-254. Ebbinghaus, H. (1885). Memory: A contribution to experimental psychology. Columbia Univer- sity. 6. FUTURE RESEARCH Future work should focus on algorithm sensitivity. This can be most effectively solved through: 1. Enchanced sample of production metadata. 2. Test algorithm efficacy on real user consumption data. 3. Incorporate a time-based loss function with respect to recency feature of algorithm. 4. Weigh repeated song plays more strongly than novel songs. ACKNOWLEDGEMENTS Supported by SSHRC Insight Development Grant (430-2012-0835), the Arts Research Board, and the Office VP Research, McMaster University. 5. DATA & REQUIREMENTS Data: • Algorithm tested using data collected from a project developed from Rutgers Informa- tion Visualization graduate course. • Dataset contains ca. 2000 songs with pro- ducer and writer information. Algorithm Requirements: • Python 2.7. • Modules: json, random, operator, numpy, sys. 4. FORGETTING CURVE The forgetting curve is a psychological phe- nomenon which illustrates the effect of memory, learning, and retention over time (Ebbinghaus, 1885). The algorithm preferences more recent tracks in the fingerprint, in a manner similar to the forgetting curve. 3. LISTENING FINGERPRINT Notation & Equations Exemplar T : Set of seed tracks for user. P : Set of people found in T. R : Set of roles found in T. Tk(p) : Set of tracks where p assumes role k. Wk : Role weighting for role k. Ck(p) : Contribution of person p to role k in T. Rk(t) : Set of people who assume role k in t. Person-Role Contribution Equation Ck(p) = 1 |T| t∈Tk(p) 1 |Rk(t)| (1) Role-Weighting Equation Wk = S{Ck(p)|p∈P } (2) Listening-Fingerpring Equation F = {f | ∀p ∈ P, f = k∈R Wk ∗ Ck(p)} (3) Table 1. Seed User History Track History Producer Writer 1) We Made You Dr.Dre, Eminem Eminem 2) What’s My Name? Dr.Dre Snoop Dogg 3) Still D.R.E. Dr.Dre, Mel-Man Dr.Dre, Jay-Z Table 2. Person-Role Contributions Person Artist Producer Writer Dr.Dre 1.0 2.0 0.5 Eminem 1.0 0.5 0.5 Snoop Dogg 1.0 0.0 1.0 Jay-Z 0.0 0.0 0.5 Mel-Man 0.0 0.5 0.0 Table 3. Listening Fingerprint Person Value Eminem 0.75 Dr.Dre 0.43 Snoop Dogg 0.125 Jay-Z 0.03 Mel-Man 0.03