SlideShare a Scribd company logo
1 of 1
 
	
  
	
  
	
  
	
  
The	
   CRTS	
   light	
   curves	
   of	
  
269	
   CVs	
   from	
   the	
   Sloan	
  
Digital	
   Sky	
   Survey	
   (SDSS)	
  
were	
   analysed	
   using	
  
Python	
  by	
  ploDng	
  their	
  	
  
light	
  curves.	
  From	
  the	
  light	
  curves	
  the	
  CVs	
  could	
  be	
  characterised	
  
to	
   determine	
   whether	
   they	
   were	
   polar,	
   eclipsing,	
   nova-­‐like	
   or	
  
detached	
  systems.	
  The	
  spectra	
  available	
  from	
  SDSS	
  also	
  allowed	
  
for	
  a	
  further	
  analysis	
  of	
  the	
  CVs	
  by	
  examining	
  characterisJc	
  lines	
  
of	
  the	
  spectra.	
  [3]	
  
	
  
The	
   orbital	
   period	
   was	
   found	
   by	
   two	
   data	
   analysis	
   techniques:	
  
phase	
   dispersion	
   minimizaJon	
   (PDM)	
   and	
   least-­‐squared	
   spectral	
  
analysis	
  (LSSA)	
  .	
  Both	
  methods	
  allowed	
  data	
  to	
  be	
  folded	
  on	
  a	
  trial	
  
period	
  of	
  which,	
  if	
  the	
  data	
  were	
  periodic,	
  it	
  	
  would	
  produce	
  a	
  light	
  
curve	
   with	
   sinusoidal	
   variaJons	
   (Fig	
   3).	
   The	
   two	
   analysis	
  
techniques	
  could	
  then	
  be	
  compared	
  to	
  find	
  the	
  beVer	
  method	
  of	
  
selecJng	
  and	
  obtaining	
  the	
  orbital	
  period.	
  
	
  
	
  
	
  
	
  
2.	
  Method	
  
	
  
	
  
	
  
	
  
	
  
	
  
A	
  large	
  variaJon	
  of	
  CVs	
  were	
  analysed	
  from	
  the	
  data	
  set	
  from	
  CRTS.	
  	
  
This	
  variaJon	
  was	
  mostly	
  due	
  to	
  the	
  accreJon	
  disk,	
  making	
  it	
  harder	
  
to	
  resolve	
  eclipses	
  in	
  the	
  light	
  curves	
  and	
  to	
  fold	
  on	
  a	
  target	
  period.	
  
However,	
  the	
  analysis	
  of	
  the	
  269	
  light	
  curves	
  allowed	
  for	
  many	
  of	
  
them	
  to	
  be	
  characterised	
  as	
  well	
  as	
  a	
  handful	
  of	
  orbital	
  periods	
  to	
  
be	
  obtained.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Cataclysmic	
  variables	
  (CVs)	
  are	
  binary	
  stars	
  that	
  vary	
  in	
  their	
  
brightness	
  in	
  short	
  Jme	
  periods	
  of	
  a	
  few	
  hours.	
  CVs	
  consists	
  
of	
  a	
  very	
  bright	
  white	
  dwarf	
  and	
  an	
  orbiJng	
  red	
  dwarf.	
  As	
  
the	
   red	
   dwarf	
   orbits	
   around	
   the	
   white	
   dwarf	
   periodically,	
  
some	
  eclipses	
  can	
  be	
  seen	
  in	
  their	
  light	
  curve	
  by	
  decreases	
  
in	
   its	
   brightness.	
   Another	
   feature	
   of	
   CVs	
   are	
   bright	
  
outbursts	
  (Fig	
  2)	
  that	
  can	
  frequently	
  occur	
  due	
  to	
  thermal	
  
instability	
  in	
  the	
  accreJon	
  disks	
  thus	
  allowing	
  for	
  CVs	
  to	
  be	
  
detected	
  by	
  CRTS.[1]	
  
	
  
The	
  Catalina	
  real	
  Jme	
  transient	
  survey	
  (CRTS)	
  covers	
  33000	
  
deg2	
  of	
  the	
  sky	
  exploring	
  transient	
  objects	
  using	
  data	
  from	
  3	
  
telescopes.	
  The	
  survey	
  has	
  been	
  running	
  for	
  almost	
  7	
  years,	
  
enough	
  Jme	
  to	
  produce	
  reliable	
  light	
  curves.[2]	
  
	
  
By	
  establishing	
  parameters	
  such	
  as	
  orbital	
  periods	
  and	
  their	
  
stellar	
   masses,	
   a	
   more	
   in	
   depth	
   understanding	
   of	
   their	
  
evoluJon	
  can	
  be	
  formed.	
  The	
  most	
  accurate	
  measurements	
  
come	
  from	
  eclipsing	
  systems.	
  
1.	
  IntroducJon	
  
Eclipsing	
  Cataclysmic	
  Variables	
  from	
  CRTS	
  
	
  
Melissa	
  Liow	
   	
  m.liow@warwick.ac.uk	
  
Supervisors:	
  Elmé	
  Breedt	
  and	
  Boris	
  Gänsicke	
  	
  
Astronomy	
  Group,	
  Department	
  of	
  Physics	
  
	
  
	
  
•  249	
   CVs	
   had	
   complete	
   data	
   available	
   to	
   produce	
   light	
  
curves.	
   30	
   CVs	
   had	
   their	
   periods	
   recovered	
   of	
   which	
  
there	
  were	
  found	
  to	
  be	
  20	
  dwarf	
  novae,	
  6	
  nova-­‐like,	
  3	
  
polar	
  CVs	
  and	
  1	
  detached	
  system.	
  	
  
•  From	
  the	
  30	
  CVs	
  9	
  new	
  periods	
  were	
  obtained.	
  	
  
•  8	
  CVs	
  were	
  found	
  to	
  be	
  eclipsing.	
  
•  PDM	
  was	
  found	
  to	
  be	
  the	
  beVer	
  method	
  of	
  finding	
  the	
  
orbital	
   periods	
   and	
   was	
   more	
   accurate,	
   obtaining	
   7	
  
periods	
  that	
  agreed	
  with	
  previous	
  results.	
  
	
  
3.	
  Results	
  
4.	
  Conclusion	
  
References:	
  	
  
[1]	
  Drake,	
  A.J.	
  et	
  al.	
  First	
  Results	
  from	
  the	
  Catalina	
  Real-­‐Jme	
  Transient	
  Survey	
  (2009).	
  	
  
[2]	
  SDSS	
  data	
  release	
  10,	
  www.sdss3.org,	
  last	
  accessed	
  23/08/14.	
  
[3]	
  C	
  Hellier,	
  Cataclysmic	
  variable	
  –	
  How	
  and	
  why	
  they	
  vary,	
  Springer	
  science	
  &	
  Business	
  media	
  (2001)	
  
	
  
Fig	
  1.	
  The	
  spaJal	
  distribuJon	
  of	
  269	
  
CVs	
  detected	
  by	
  SDSS.	
  	
  
	
  
Fig	
  3.	
  a,	
  b,	
  c,	
  d.	
  (top	
  leg,	
  
clockwise)	
  a)	
  A	
  detached	
  
system	
   with	
   a	
   period	
   of	
  
6.7hrs.	
   The	
   variaJon	
   is	
  
due	
   to	
   one	
   side	
   of	
   the	
  
red	
   dwarf	
   being	
   heated	
  
by	
   the	
   hot	
   white	
   dwarf.	
  
b)	
  An	
  AM	
  Her	
  (polar)	
  CV	
  
with	
  a	
  period	
  of	
  1.75hrs.	
  
Polars	
   do	
   not	
   have	
  
accreJon	
   disks	
   as	
   the	
  
magneJc	
   field	
   of	
   the	
  
white	
  dwarf	
  controls	
  the	
  
flow	
   of	
   material.	
   c)	
   A	
  
dwarf	
   nova	
   CV	
   with	
   a	
  
period	
   of	
   2.77hrs	
   and	
  
many	
   outbursts	
   seen	
   in	
  
its	
   light	
   curve.	
   d)	
   A	
  
deeply	
  eclipsing	
  CV	
  with	
  
a	
  period	
  of	
  3.14hrs.	
  	
  
	
  
	
  
Fig	
   2.	
   The	
   light	
   curve	
  
(leg)	
   of	
   an	
   eclipsing	
   CV	
  
(known	
  as	
  DV	
  UMa)	
  with	
  
two	
   outbursts	
   of	
   low	
  
magnitude.	
   The	
   folded	
  
light	
   curve	
   (right)	
   shows	
  
the	
  system	
  eclipsing	
  at	
  a	
  
period	
  of	
  2.06hrs.	
  	
  	
  	
  	
  
	
  

More Related Content

What's hot

Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...
Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...
Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...Sérgio Sacani
 
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...Sérgio Sacani
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...Sérgio Sacani
 
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...Sérgio Sacani
 
KNAC_Lewis_Banales_Hughes_final
KNAC_Lewis_Banales_Hughes_finalKNAC_Lewis_Banales_Hughes_final
KNAC_Lewis_Banales_Hughes_finalMarcus Hughes
 
Exocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringExocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringSérgio Sacani
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...WellingtonRodrigues2014
 
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Sérgio Sacani
 
A close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_systemA close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_systemSérgio Sacani
 
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...Sérgio Sacani
 
Eso1432a
Eso1432aEso1432a
Eso1432aGOASA
 
A 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constantA 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constantSérgio Sacani
 
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_knownEvidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_knownSérgio Sacani
 
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...Sérgio Sacani
 
Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...
Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...
Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...Sérgio Sacani
 
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Sérgio Sacani
 
Beer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76b
Beer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76bBeer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76b
Beer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76bSérgio Sacani
 

What's hot (19)

Final_Lab
Final_LabFinal_Lab
Final_Lab
 
Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...
Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...
Low surface brightness_imaging_of_the_magellanic_system_imprints_of_tidal_int...
 
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
 
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
 
KNAC_Lewis_Banales_Hughes_final
KNAC_Lewis_Banales_Hughes_finalKNAC_Lewis_Banales_Hughes_final
KNAC_Lewis_Banales_Hughes_final
 
Exocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringExocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ring
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
 
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
 
A close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_systemA close pair_binary_in_a_distant_triple_supermassive_black_hole_system
A close pair_binary_in_a_distant_triple_supermassive_black_hole_system
 
Pre assessment
Pre assessmentPre assessment
Pre assessment
 
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
Thermal structure of_an_exoplanet_atmosphere_from_phase_resolved_emssion_spec...
 
Eso1432a
Eso1432aEso1432a
Eso1432a
 
A 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constantA 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constant
 
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_knownEvidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
 
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
The characterization of_the_gamma_ray_signal_from_the_central_milk_way_a_comp...
 
Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...
Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...
Shock breakout and_early_light_curves_of_type_ii_p_supernovae_observed_with_k...
 
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
 
Beer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76b
Beer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76bBeer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76b
Beer analysis of_kepler_and_co_rot_light_curves_i_discovery_of_kepler_76b
 

Similar to URSS Poster

Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesSérgio Sacani
 
Streamer waves, final version
Streamer waves, final versionStreamer waves, final version
Streamer waves, final versionNicholas Mellor
 
Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.GOASA
 
Spiral Quasar Census
Spiral Quasar CensusSpiral Quasar Census
Spiral Quasar CensusVeekash Patel
 
KIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger Prediction
KIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger PredictionKIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger Prediction
KIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger PredictionSérgio Sacani
 
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetWater vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetGOASA
 
Cosmological parameter
Cosmological parameterCosmological parameter
Cosmological parameterSubhasis Shit
 
The Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary SystemThe Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary SystemSérgio Sacani
 
Microwave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheetMicrowave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheetSérgio Sacani
 
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timingThe mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timingSérgio Sacani
 
An Earth-sized exoplanet with a Mercury-like composition
An Earth-sized exoplanet with a Mercury-like compositionAn Earth-sized exoplanet with a Mercury-like composition
An Earth-sized exoplanet with a Mercury-like compositionSérgio Sacani
 
Term Project Poster
Term Project PosterTerm Project Poster
Term Project PosterSamuel Carey
 
Cpp observation of large cp violation in the neutral b meson system
Cpp observation of large cp violation in the neutral b meson systemCpp observation of large cp violation in the neutral b meson system
Cpp observation of large cp violation in the neutral b meson systemDiego Silva Lemelle
 
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanetWater vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanetSérgio Sacani
 
Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...
Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...
Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...Sérgio Sacani
 
Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...Sérgio Sacani
 
The extremely high albedo of LTT 9779 b revealed by CHEOPS
The extremely high albedo of LTT 9779 b revealed by CHEOPSThe extremely high albedo of LTT 9779 b revealed by CHEOPS
The extremely high albedo of LTT 9779 b revealed by CHEOPSSérgio Sacani
 
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...Sérgio Sacani
 

Similar to URSS Poster (20)

Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
 
Nature12917
Nature12917Nature12917
Nature12917
 
Streamer waves, final version
Streamer waves, final versionStreamer waves, final version
Streamer waves, final version
 
Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.
 
Spiral Quasar Census
Spiral Quasar CensusSpiral Quasar Census
Spiral Quasar Census
 
KIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger Prediction
KIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger PredictionKIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger Prediction
KIC 9832227: Using Vulcan Data to Negate the 2022 Red Nova Merger Prediction
 
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetWater vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
 
Cosmological parameter
Cosmological parameterCosmological parameter
Cosmological parameter
 
The Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary SystemThe Possible Tidal Demise of Kepler’s First Planetary System
The Possible Tidal Demise of Kepler’s First Planetary System
 
Microwave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheetMicrowave imaging of quasi-periodic pulsations at flare current sheet
Microwave imaging of quasi-periodic pulsations at flare current sheet
 
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timingThe mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
 
An Earth-sized exoplanet with a Mercury-like composition
An Earth-sized exoplanet with a Mercury-like compositionAn Earth-sized exoplanet with a Mercury-like composition
An Earth-sized exoplanet with a Mercury-like composition
 
Term Project Poster
Term Project PosterTerm Project Poster
Term Project Poster
 
Cpp observation of large cp violation in the neutral b meson system
Cpp observation of large cp violation in the neutral b meson systemCpp observation of large cp violation in the neutral b meson system
Cpp observation of large cp violation in the neutral b meson system
 
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanetWater vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
 
Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...
Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...
Optical proper motion_measurements_of_the_m87_jet_new_results_from_the_hubble...
 
Final Poster
Final PosterFinal Poster
Final Poster
 
Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...Serendipitous discovery of an extended xray jet without a radio counterpart i...
Serendipitous discovery of an extended xray jet without a radio counterpart i...
 
The extremely high albedo of LTT 9779 b revealed by CHEOPS
The extremely high albedo of LTT 9779 b revealed by CHEOPSThe extremely high albedo of LTT 9779 b revealed by CHEOPS
The extremely high albedo of LTT 9779 b revealed by CHEOPS
 
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
 

URSS Poster

  • 1.           The   CRTS   light   curves   of   269   CVs   from   the   Sloan   Digital   Sky   Survey   (SDSS)   were   analysed   using   Python  by  ploDng  their     light  curves.  From  the  light  curves  the  CVs  could  be  characterised   to   determine   whether   they   were   polar,   eclipsing,   nova-­‐like   or   detached  systems.  The  spectra  available  from  SDSS  also  allowed   for  a  further  analysis  of  the  CVs  by  examining  characterisJc  lines   of  the  spectra.  [3]     The   orbital   period   was   found   by   two   data   analysis   techniques:   phase   dispersion   minimizaJon   (PDM)   and   least-­‐squared   spectral   analysis  (LSSA)  .  Both  methods  allowed  data  to  be  folded  on  a  trial   period  of  which,  if  the  data  were  periodic,  it    would  produce  a  light   curve   with   sinusoidal   variaJons   (Fig   3).   The   two   analysis   techniques  could  then  be  compared  to  find  the  beVer  method  of   selecJng  and  obtaining  the  orbital  period.           2.  Method               A  large  variaJon  of  CVs  were  analysed  from  the  data  set  from  CRTS.     This  variaJon  was  mostly  due  to  the  accreJon  disk,  making  it  harder   to  resolve  eclipses  in  the  light  curves  and  to  fold  on  a  target  period.   However,  the  analysis  of  the  269  light  curves  allowed  for  many  of   them  to  be  characterised  as  well  as  a  handful  of  orbital  periods  to   be  obtained.                   Cataclysmic  variables  (CVs)  are  binary  stars  that  vary  in  their   brightness  in  short  Jme  periods  of  a  few  hours.  CVs  consists   of  a  very  bright  white  dwarf  and  an  orbiJng  red  dwarf.  As   the   red   dwarf   orbits   around   the   white   dwarf   periodically,   some  eclipses  can  be  seen  in  their  light  curve  by  decreases   in   its   brightness.   Another   feature   of   CVs   are   bright   outbursts  (Fig  2)  that  can  frequently  occur  due  to  thermal   instability  in  the  accreJon  disks  thus  allowing  for  CVs  to  be   detected  by  CRTS.[1]     The  Catalina  real  Jme  transient  survey  (CRTS)  covers  33000   deg2  of  the  sky  exploring  transient  objects  using  data  from  3   telescopes.  The  survey  has  been  running  for  almost  7  years,   enough  Jme  to  produce  reliable  light  curves.[2]     By  establishing  parameters  such  as  orbital  periods  and  their   stellar   masses,   a   more   in   depth   understanding   of   their   evoluJon  can  be  formed.  The  most  accurate  measurements   come  from  eclipsing  systems.   1.  IntroducJon   Eclipsing  Cataclysmic  Variables  from  CRTS     Melissa  Liow    m.liow@warwick.ac.uk   Supervisors:  Elmé  Breedt  and  Boris  Gänsicke     Astronomy  Group,  Department  of  Physics       •  249   CVs   had   complete   data   available   to   produce   light   curves.   30   CVs   had   their   periods   recovered   of   which   there  were  found  to  be  20  dwarf  novae,  6  nova-­‐like,  3   polar  CVs  and  1  detached  system.     •  From  the  30  CVs  9  new  periods  were  obtained.     •  8  CVs  were  found  to  be  eclipsing.   •  PDM  was  found  to  be  the  beVer  method  of  finding  the   orbital   periods   and   was   more   accurate,   obtaining   7   periods  that  agreed  with  previous  results.     3.  Results   4.  Conclusion   References:     [1]  Drake,  A.J.  et  al.  First  Results  from  the  Catalina  Real-­‐Jme  Transient  Survey  (2009).     [2]  SDSS  data  release  10,  www.sdss3.org,  last  accessed  23/08/14.   [3]  C  Hellier,  Cataclysmic  variable  –  How  and  why  they  vary,  Springer  science  &  Business  media  (2001)     Fig  1.  The  spaJal  distribuJon  of  269   CVs  detected  by  SDSS.       Fig  3.  a,  b,  c,  d.  (top  leg,   clockwise)  a)  A  detached   system   with   a   period   of   6.7hrs.   The   variaJon   is   due   to   one   side   of   the   red   dwarf   being   heated   by   the   hot   white   dwarf.   b)  An  AM  Her  (polar)  CV   with  a  period  of  1.75hrs.   Polars   do   not   have   accreJon   disks   as   the   magneJc   field   of   the   white  dwarf  controls  the   flow   of   material.   c)   A   dwarf   nova   CV   with   a   period   of   2.77hrs   and   many   outbursts   seen   in   its   light   curve.   d)   A   deeply  eclipsing  CV  with   a  period  of  3.14hrs.         Fig   2.   The   light   curve   (leg)   of   an   eclipsing   CV   (known  as  DV  UMa)  with   two   outbursts   of   low   magnitude.   The   folded   light   curve   (right)   shows   the  system  eclipsing  at  a   period  of  2.06hrs.