SlideShare a Scribd company logo
1 of 1
Download to read offline
Chao-Wei.H and Wu. J. C. S Chi-Hung. L, Catalysts 2, 490 (2012)
Grigorovici. R and Vancu. A Tauc.J, Phys. Status Solidi 15 (1966)
Sing. K.S.W. Gregg.S.J., Adsorption, Surface Area and Porosity, 2nd ed. (1982)
D. Zhao, Huo, Q., Feng, J., Chemlka, B. F. and Stucky, G. D., JACS 120 (24) (1998).
Catalysis Today 51 (1999) 233-254
Porous
Materials
Microporous
<2nm
Mesoporous
2-50nm
Macroporous
>50nm
Background
Motivation
TiO2 is the most researched and used photocatalyst but its bandgap energy is
in the UV region.
Requirements for good photocatalyst:
•1.23 eV is the minimum band gap.
•Hydrophilic
•Slow recombination
•High specific surface area
Bandgap modification of photocatalysts into visible region can improve the
efficiency of photocatalyst.
Hypothesis
Material Synthesis
(TiO2)x(SiO2)1-x x=0.04,0.08,0.1
Characterization
Results
Conclusion
• The surface and bulk of nanoporous materials have different thermal
expansion coefficient.
• Stress in nanoporous glass can be manipulated using this thermal
expansion mismatch.
• We developed a physical method of manipulating the bandgap of
nanoporous glasses for photocatalytic applications.
References
Bandgap Manipulation of Nanoporous Photocatalyst
Mayur Sundararajan and Gang Chen
Department of Physics and Astronomy, Ohio University, Athens, OH 45701
Valence Band
Conduction Band
Reactants
Reduce
Oxidize
Photocatalyst
e
-
e
-
h
+
Bandgap
Energy
Sunlight
CO2
H2O
O2
Starch
Photosynthesis
Photocatalysis: Chemical reaction induced by photoirradiation in the
presence of a photocatalyst.
H2
Photocatalyst
Application:
Water-splitting by solar energy
Ex. TiO2,, ZnS, SrTiO3, CdS, GaP
Mesoporous
glass
Mesopores
Porewall
• The porewalls are amorphous
• High Specific Surface Area
• High Porosity
• The pores may be ordered or disordered
Zeolites
0 100 200 300 400 500 600
0.19140
0.19145
0.19150
0.19155
0.19160
0.19165
0.19170
0.19175
SAXS_peak_position(Å-1)
WAXS_peak_position(Å-1)
Temperature(°C)
SAXS_peak_position(Å-1)
1.562
1.564
1.566
1.568
1.570
1.572
1.574
WAXS_peak_position(Å-1)
Along the pores
Expansion
Perpendicular
to the pores
Contraction
Inter-poredistance(Å-1)
Strainintheporewall(Å-1)
Anisotropic Thermal Expansion
Stress Relaxation
Temperature
Time
RT
Synthesis Temperature
We propose that this stress manipulation
by annealing can be used to modify the
bandgap of a wide bandgap amorphous
material.
M(OR)4
OH
𝐻2 𝑂+
M
OH
𝐻2 𝑂+
𝑂−
OH
M
OH
𝑂−
Basic
Acidic
Metal
Precursor
Condensation
with template
Surfactant
Micelle
Surfactant
Self-assembly
Liquid crystal
Template
Condensation with
metal precursor
Template
Removal
Mesoporous
material
Inorganic Component
Organic
Component
Aging
Metal Precursor
TEOS – Tetra Ethyl Ortho Silicate
Ti(OPr)4 – Titanium Iso-Propoxide
Gas-sorption
• Pore size
• Pore volume
• Surface area
X-ray Scattering
WAXS
(10-50°)
SAXS
(0.1-10°)
X-ray film
d10
60°
Inter-pore
distance
Pore wall
Pore
SAXS WAXS
UV-vis Spectroscopy
Tauc Plot
Tauc Equation
(Abs*E)2 = k(hv-E)
3.50 3.75 4.00 4.25 4.50 4.753.50 3.75 4.00 4.25 4.50 4.753.50 3.75 4.00 4.25 4.50 4.753.50 3.75 4.00 4.25 4.50 4.75
eV
600C - (3.74eV)
(Abs*E)^2
700C - (3.94eV)
900C - (3.87eV)
800C - (4.02eV)
SEM-Energy Dispersive X-ray Spectroscopy
Element
Line
Atom % Atom %
Error
O K 54.28 +/- 1.20
Si K 41.66 +/- 0.43
Ti K 4.06 +/- 0.27
Total 100.00
Bandgap – Tauc Plot
Sample 600C –AS 700C 800C
Surface Area(m2/g) 830 786 796
Pore width(A) 27 27.5 27
Pore wall(nm) 1.8 1.7 1.5
Pore volume(cm3/g) 0.6 0.5 0.5
Bandgap Manipulation Method
Surfactant
CTAB – Cetyl Trimethyl Ammonium Bromide
Sol-gel synthesis:
Cuvette:capitolscientific.com,Gas-sorption:micromerirtics.com,SEM:guillermocapilla.wordpress.com.UV-vis Spectroscopy:nordiscientific.com,Bones:Smithsonian National Museum of Natural History,Zeolites:http://www.zeolite-collection.eu/
600 650 700 750 800 850 900
3.84
3.88
3.92
3.96
4.00
Bandgap(eV)
Temperature(c)
Bandgap vs Temp
Amorphous Crystalline
Intensity(arb.units)
q(nm-1
)
Periodic Pores
SAXS
First sharp diffraction peak(FSDP)
WAXS
Log(Intensity(arb.Units)
4 8 12 16 20 24 28
2.5
3.0
3.5
4.0
4.5
5.0
Intensity(arb.units)
q(nm-1
)
800C
700C
10 15 20 25
Intensity(arb.units)
q(nm-1
)
800C
700C
1.0 1.5 2.0 2.5
Intensity(arb.units)
q(nm-1
)
800C
700C
SAXS/WAXS –Stress Indicator
Log(Intensity(arb.Units)

More Related Content

Viewers also liked

Socialización en la Web y Video Conferencia
Socialización en la Web y Video ConferenciaSocialización en la Web y Video Conferencia
Socialización en la Web y Video ConferenciaJoel Salcedo S
 
Autobiografía
AutobiografíaAutobiografía
Autobiografíakathesami
 
Proceso de socialización.. psicologia social 3 er trimestre
Proceso de socialización.. psicologia social 3 er trimestreProceso de socialización.. psicologia social 3 er trimestre
Proceso de socialización.. psicologia social 3 er trimestreUBA
 
Find a Stylist Eyelash Extensions Salon in Merrick
Find a Stylist Eyelash Extensions Salon in MerrickFind a Stylist Eyelash Extensions Salon in Merrick
Find a Stylist Eyelash Extensions Salon in Merricklashstudio
 
EXTENT-2016: Test Automation and Agile Testing
EXTENT-2016: Test Automation and Agile TestingEXTENT-2016: Test Automation and Agile Testing
EXTENT-2016: Test Automation and Agile TestingIosif Itkin
 

Viewers also liked (7)

Testing in agile
Testing in agileTesting in agile
Testing in agile
 
Socialización en la Web y Video Conferencia
Socialización en la Web y Video ConferenciaSocialización en la Web y Video Conferencia
Socialización en la Web y Video Conferencia
 
Autobiografía
AutobiografíaAutobiografía
Autobiografía
 
Proceso de socialización.. psicologia social 3 er trimestre
Proceso de socialización.. psicologia social 3 er trimestreProceso de socialización.. psicologia social 3 er trimestre
Proceso de socialización.. psicologia social 3 er trimestre
 
Find a Stylist Eyelash Extensions Salon in Merrick
Find a Stylist Eyelash Extensions Salon in MerrickFind a Stylist Eyelash Extensions Salon in Merrick
Find a Stylist Eyelash Extensions Salon in Merrick
 
EXTENT-2016: Test Automation and Agile Testing
EXTENT-2016: Test Automation and Agile TestingEXTENT-2016: Test Automation and Agile Testing
EXTENT-2016: Test Automation and Agile Testing
 
Verzuim advocaten
Verzuim advocatenVerzuim advocaten
Verzuim advocaten
 

Similar to NQPI-2015

Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...Joshua Borycz
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsMohammadreza Nematollahi
 
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...inventionjournals
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Chelsey Crosse
 
Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Weixiang Sun
 
degradation of pollution and photocatalysis
degradation of pollution and photocatalysisdegradation of pollution and photocatalysis
degradation of pollution and photocatalysisPraveen Vaidya
 
Energia r.p.h.chang
Energia r.p.h.changEnergia r.p.h.chang
Energia r.p.h.changCesar Diaz
 
1-s2.0-S2666386422000820-main.pdf
1-s2.0-S2666386422000820-main.pdf1-s2.0-S2666386422000820-main.pdf
1-s2.0-S2666386422000820-main.pdfAsayelSaud1
 
Physica b 08
Physica b 08Physica b 08
Physica b 08aman2395
 
Dennis Butcher_Final Defense_072512
Dennis Butcher_Final Defense_072512Dennis Butcher_Final Defense_072512
Dennis Butcher_Final Defense_072512Dennis Butcher
 

Similar to NQPI-2015 (20)

Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
 
GOMD_2016_mayurtalk
GOMD_2016_mayurtalkGOMD_2016_mayurtalk
GOMD_2016_mayurtalk
 
Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.
 
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
 
Final_version_expo_2014
Final_version_expo_2014Final_version_expo_2014
Final_version_expo_2014
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
 
Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7
 
10.1007_s11082-014-9975-2
10.1007_s11082-014-9975-210.1007_s11082-014-9975-2
10.1007_s11082-014-9975-2
 
degradation of pollution and photocatalysis
degradation of pollution and photocatalysisdegradation of pollution and photocatalysis
degradation of pollution and photocatalysis
 
Faisal presentation.pptx
Faisal presentation.pptxFaisal presentation.pptx
Faisal presentation.pptx
 
Energia r.p.h.chang
Energia r.p.h.changEnergia r.p.h.chang
Energia r.p.h.chang
 
Highly efficient organic devices.
Highly efficient organic devices.Highly efficient organic devices.
Highly efficient organic devices.
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
 
10.1007_s11082-014-0033-x
10.1007_s11082-014-0033-x10.1007_s11082-014-0033-x
10.1007_s11082-014-0033-x
 
1-s2.0-S2666386422000820-main.pdf
1-s2.0-S2666386422000820-main.pdf1-s2.0-S2666386422000820-main.pdf
1-s2.0-S2666386422000820-main.pdf
 
Physica b 08
Physica b 08Physica b 08
Physica b 08
 
Lunar core dynamo
Lunar core dynamoLunar core dynamo
Lunar core dynamo
 
Dennis Butcher_Final Defense_072512
Dennis Butcher_Final Defense_072512Dennis Butcher_Final Defense_072512
Dennis Butcher_Final Defense_072512
 
SNBoseTalk06
SNBoseTalk06SNBoseTalk06
SNBoseTalk06
 

NQPI-2015

  • 1. Chao-Wei.H and Wu. J. C. S Chi-Hung. L, Catalysts 2, 490 (2012) Grigorovici. R and Vancu. A Tauc.J, Phys. Status Solidi 15 (1966) Sing. K.S.W. Gregg.S.J., Adsorption, Surface Area and Porosity, 2nd ed. (1982) D. Zhao, Huo, Q., Feng, J., Chemlka, B. F. and Stucky, G. D., JACS 120 (24) (1998). Catalysis Today 51 (1999) 233-254 Porous Materials Microporous <2nm Mesoporous 2-50nm Macroporous >50nm Background Motivation TiO2 is the most researched and used photocatalyst but its bandgap energy is in the UV region. Requirements for good photocatalyst: •1.23 eV is the minimum band gap. •Hydrophilic •Slow recombination •High specific surface area Bandgap modification of photocatalysts into visible region can improve the efficiency of photocatalyst. Hypothesis Material Synthesis (TiO2)x(SiO2)1-x x=0.04,0.08,0.1 Characterization Results Conclusion • The surface and bulk of nanoporous materials have different thermal expansion coefficient. • Stress in nanoporous glass can be manipulated using this thermal expansion mismatch. • We developed a physical method of manipulating the bandgap of nanoporous glasses for photocatalytic applications. References Bandgap Manipulation of Nanoporous Photocatalyst Mayur Sundararajan and Gang Chen Department of Physics and Astronomy, Ohio University, Athens, OH 45701 Valence Band Conduction Band Reactants Reduce Oxidize Photocatalyst e - e - h + Bandgap Energy Sunlight CO2 H2O O2 Starch Photosynthesis Photocatalysis: Chemical reaction induced by photoirradiation in the presence of a photocatalyst. H2 Photocatalyst Application: Water-splitting by solar energy Ex. TiO2,, ZnS, SrTiO3, CdS, GaP Mesoporous glass Mesopores Porewall • The porewalls are amorphous • High Specific Surface Area • High Porosity • The pores may be ordered or disordered Zeolites 0 100 200 300 400 500 600 0.19140 0.19145 0.19150 0.19155 0.19160 0.19165 0.19170 0.19175 SAXS_peak_position(Å-1) WAXS_peak_position(Å-1) Temperature(°C) SAXS_peak_position(Å-1) 1.562 1.564 1.566 1.568 1.570 1.572 1.574 WAXS_peak_position(Å-1) Along the pores Expansion Perpendicular to the pores Contraction Inter-poredistance(Å-1) Strainintheporewall(Å-1) Anisotropic Thermal Expansion Stress Relaxation Temperature Time RT Synthesis Temperature We propose that this stress manipulation by annealing can be used to modify the bandgap of a wide bandgap amorphous material. M(OR)4 OH 𝐻2 𝑂+ M OH 𝐻2 𝑂+ 𝑂− OH M OH 𝑂− Basic Acidic Metal Precursor Condensation with template Surfactant Micelle Surfactant Self-assembly Liquid crystal Template Condensation with metal precursor Template Removal Mesoporous material Inorganic Component Organic Component Aging Metal Precursor TEOS – Tetra Ethyl Ortho Silicate Ti(OPr)4 – Titanium Iso-Propoxide Gas-sorption • Pore size • Pore volume • Surface area X-ray Scattering WAXS (10-50°) SAXS (0.1-10°) X-ray film d10 60° Inter-pore distance Pore wall Pore SAXS WAXS UV-vis Spectroscopy Tauc Plot Tauc Equation (Abs*E)2 = k(hv-E) 3.50 3.75 4.00 4.25 4.50 4.753.50 3.75 4.00 4.25 4.50 4.753.50 3.75 4.00 4.25 4.50 4.753.50 3.75 4.00 4.25 4.50 4.75 eV 600C - (3.74eV) (Abs*E)^2 700C - (3.94eV) 900C - (3.87eV) 800C - (4.02eV) SEM-Energy Dispersive X-ray Spectroscopy Element Line Atom % Atom % Error O K 54.28 +/- 1.20 Si K 41.66 +/- 0.43 Ti K 4.06 +/- 0.27 Total 100.00 Bandgap – Tauc Plot Sample 600C –AS 700C 800C Surface Area(m2/g) 830 786 796 Pore width(A) 27 27.5 27 Pore wall(nm) 1.8 1.7 1.5 Pore volume(cm3/g) 0.6 0.5 0.5 Bandgap Manipulation Method Surfactant CTAB – Cetyl Trimethyl Ammonium Bromide Sol-gel synthesis: Cuvette:capitolscientific.com,Gas-sorption:micromerirtics.com,SEM:guillermocapilla.wordpress.com.UV-vis Spectroscopy:nordiscientific.com,Bones:Smithsonian National Museum of Natural History,Zeolites:http://www.zeolite-collection.eu/ 600 650 700 750 800 850 900 3.84 3.88 3.92 3.96 4.00 Bandgap(eV) Temperature(c) Bandgap vs Temp Amorphous Crystalline Intensity(arb.units) q(nm-1 ) Periodic Pores SAXS First sharp diffraction peak(FSDP) WAXS Log(Intensity(arb.Units) 4 8 12 16 20 24 28 2.5 3.0 3.5 4.0 4.5 5.0 Intensity(arb.units) q(nm-1 ) 800C 700C 10 15 20 25 Intensity(arb.units) q(nm-1 ) 800C 700C 1.0 1.5 2.0 2.5 Intensity(arb.units) q(nm-1 ) 800C 700C SAXS/WAXS –Stress Indicator Log(Intensity(arb.Units)