SlideShare a Scribd company logo
1 of 4
THE WHY AND HOW OF DNA UNLINKING
Liangkai Hu & Priyanka Soundranayagam
Summary
The momentWatsonandCrick revealedtheirhypothesisforthe structure of the DNA,itwas
immediatelyevidenthowtheirparticularstructure wouldlenditself towardsa“functional elegance”
(Liu,Diebler,Chan,&Zechiedrich,2009).The single strandsof DNA that create the anti-paralleldouble
helix eachserve asa template thatcan be replicatedtocreate anidentical double helix.Scientists
followingthisdiscoveryhave largelyfocusedonthe base sequencingof the strandsthemselvesasthe
mainfactors that affectthe biological processeswithinthe cell.Asexplainedbythe article putforthby
Liu,Deibler,ChanandZechiedrich,thisisanerroneousassumption,inthat“itis now clearthat the DNA
itself playsanactive role”inthose biological processesaswell.Specifically,the topologyof the DNA,and
the misregulationthereincanplayan active role in“regulatingthe abilityof the cell toextractits
information”(Liu,Diebler,Chan,&Zechiedrich,2009).
The article firstexplainshowthe three commontopological misregulations(supercoiling,catenation
and knotting) affectthe functionalityof cells.Itthenputsforthseveral modelsthatattempttoexplain
howthe cellsthemselvespreventthese misregulationsfrombeingtooharmful.The article concludes
witha discussionof howthe DNA’stopological problemsthemselvessignal type-2topoisomerasesinto
resolvingthose verysame problems.
Topological Conformations of DNA
Supercoiling
Supercoilingisthe processbywhich DNA moleculestwisttorelieve the stresscausedbytheir
helical shape.Negativesupercoiling,specifically,allowsforthe maintenance of the DNA ina
“homeostaticallyunderwoundstate”byeithertwistingorwrithing(Liu,Diebler,Chan,&Zechiedrich,
2009). This particulartype of supercoiling,asexplainedinthe article,isessentialtothe functionalityof
the cell.
Firstly,negative supercoilingisresponsible forthe “controlledmeltingof the DNA duplex”,whichis
the onlymethodbywhich DNA polymerases,RNA polymerasesandotherenzymescanaccessthe
nucleotide sequence of eachstrand.Supercoilingalsoallowsforthe “synapsisof distance sites…witha
definedspatialarrangementandorientation”.Thirdly,the chromosomal metabolismdependson
negative supercoilingtoallowfora“precise meansof regulatingDNA metabolism”.The article also
claimsthat “the control of DNA supercoilingcanhave importantconsequencesintermsof evolutionary
fitness”,whichwouldthensuggestevolution favoursincreasednegative supercoilingincells.Finally,the
mostnoteworthyaspectof negative supercoiling(assuggestedbythe article),isthatevenatrace
amountof increase innegative supercoilingwill enhancethe expressionof specificgenes(suchasthe λ
Int protein) significantly(Liu,Diebler,Chan,&Zechiedrich,2009).
There are alsodisadvantagestothisparticulartopological conformation,asexcessive negative
supercoilingcanleadto “an inhibitionof bacterial growthandRNA degradation”.The article emphasizes
however,thatwhetherthe resultsare positiveornegative,itisneverthelessimportantforthe cell that
supercoilingdoesinfactoccur.
Catenation
Catenatesare newlyreplicated,intertwinedDNAs,whichare right-handedparallelinshape.Type-2
topisomerasesare responsiblefor“cleaving”the DNA strandsof these catenates,“passinganother
duplex throughthe transientgate”andthenresealingthe cleavage the gaptheycreated.Thisprocess,
called“decatenation”,isresponsible forunliking“catenatedintermediatesof DNA replication”(Liu,
Diebler,Chan,&Zechiedrich,2009).WhenexperimentingonE.coli,itwas foundthatabsence of this
type-2topoisomeraseimpairedthe separationof replicatedgenetic loci.Inyeast,itleadsto“impaired
chromosome segregationandcell deathatcytokinesis”.These resultswouldsuggestthatlike
supercoiling,the presence of catenates(andthe subsequentdecatenationcarriedoutbytype-2
topoisomerases) canaffectthe functionalityof DNA,genome stabilityanddevelopment(Liu,Diebler,
Chan,& Zechiedrich,2009).
Knotting
KnotsinDNA that resultfroma DNA molecule tangledwithitself canbe evenmore detrimental for
cell functionalitythancatenates.Fortunately,the presence of type-2topoisomerases,the organization
of DNA intonucleosomesandDNA supercoilingensurethatthe DNA staysunknottedina cell.If these
factors were notinplace,the resultingincrease inknotting“blockedDNA replicationand transcription,
increasedmutation,andledtolossof the replicon”.The article proposesalsothatknots“preventsthe
facile returnof differentiatednuclei tothe cell cycle”.Ascanbe seen,thislastconformationof DNA has
a noteworthyeffectonthe abilityof the cell tocarry out itsbiological processes(Liu,Diebler,Chan,&
Zechiedrich,2009).
All three of the potential topological conformations(supercoiling,catenationandknotting),ashas
beenprovenbythe article thusfar,are as importantto the abilityof cellstocarry out DNA replicationas
are the base sequencesof singlestrands.
Models Depicting the Disentanglement Action Carried Out by Type-2 Topoisomerases
A viable theoryforhowthe type-2topoisomerasefunctionsclaimsthatthe enzyme isable to
recognize thathelix-helix juxtapositionsoccurmore frequentlyinDNA thathaseitherbeensupercoiled,
catenatedor knotted.Severalmodelshave beencreatedtodeterminethe accuracyof this theory.
The firstmodel suggestedthatDNA juxtapositionswere “phantomchains” –inother words,the
helix-helix juxtapositionsweresuchthattheyallowedforone chaintofreelypassthroughitself orother
chains.Thismodel,however,wasdisprovenwhenitwasshownthat type-2topoisomerases“donot
turn DNA intophantomchains”.A secondmodel suggestedthatthe type-2topoisomerasesmight
“activelyslide alongthe DNA totrapthe catenane orknot nodesandreduce the effectivesize of the
DNA”.Again,thismodel wasabandoned(Liu,Diebler,Chan,&Zechiedrich,2009).
The thirdhypothesizedmodelwasthe kineticproof-readingmodel,inwhichcollisionsbetween
sequentialtype-2topoisomerase-DNA rationalizedsome of the evidenceof unknottingandunlinking
scientistshave had.However,the model wasinconsistentwithexperimentaldatainitsproposed
suppressionfactor.The nextmodel,the “active bendingmodel”,claimedthatthe type-2
topoisomerases“activelyuntangle DNA bybendingthe DNA gate segment”which wouldthenincrease
the chance of “capturinga second‘transfer’segmentinknottedorlinkedmolecules”.Thismodel is
supportedbythe simulationmentionedbelow,because itinvolvesthe selective openof segment
passage bytopoisomerase II.Nevertheless,itstill needstobe confirmedbyfurtherexperiments,due to
the difficultiesthatlie inthe interpretationof currentexperimentalandcomputational results.
Asthe article explains,the individual modelsabove are useful inthattheycanrationalize “certain
aspectsof type-2topoisomerase actions”,butnone of themare able to comprehensivelyexplainall the
data that scientistshave gatheredthusfaraboutthe enzyme (Liu,Diebler,Chan,&Zechiedrich,2009).
The Juxtaposition-Centric Approach
The article proposesthatthe reasonmanyof the aforementionedmodelsfail tobe comprehensive
isthat theyignore an importantfactor(Buck& Zechiedrich,2004):the role of local information
embeddedinthe substrate of type-2topoisomerase indiscriminatingwhetherDNA strandsare linkedor
unlinkedglobally,giventhe factthattopoisomerase IIissmallerthana DNA molecule inordersof
magnitudes.
To understandthis,atheorycalledjuxtaposition-centricapproachhasbeenputforward.A DNA-
DNA juxtapositionisgeneratedwhentwosegmentsof DNA molecules,be itonthe same strand or on
the differentones,come close enoughsothatthe difference betweenthemisaboutsmallerthanthe
diameterof a type-2topoisomerase molecule[37] (Buck& Zechiedrich,2004). Onlyinthissmall distance
can a topoisomerase IIfunctiontograspbothstrandsto decatenate ordeknot(Bruce,Johnson,Lewis,
Raff,Roberts& Walter,2008). One may come up withtwoassumptionsonjuxtaposition:one isthatall
existinghelix-helix juxtapositionsare the same,regardlesswhetherthe twosegmentsare unlinkedorin
a catenationor a knot;anotherone is that differentjuxtapositionisformedwhenachainissupercoiled,
linkedorknotted,comparedtowhen itislinear,relaxedorunknotted(Buck&Zechiedrich,2004).Of
the laterassumption,basically,there are three typesof juxtapositionproposed:hooked,half-hooked
and free (Liu,Zechiedrich,&Chan,2006a).
Everytime whenasegmentpassage isopenedbytopoisomeraseIIona specificjuxtapositioncan
eitherresultinanunlinkedstatusof DNA standsora linkedone.Lattice conformationalenumeration
demonstratedbyZhirongLiuandetal. has suggestthatthere is90% of chance that globally unlinked
DNA strands become linkedwhenasegmentpassage isopenedonafree juxtaposition,whereas85%of
probabilitythatthe strandsbecome unlinkedonahookedjuxtaposition(Liu,Zechiedrich,&Chan,
2006b). Additionally,the enumerationwasalsousedtosimulate the realisticinteractionsoccurring
whena segmentpassage isopenedoneachjuxtapositionmediatedbytopoisomerase II.
Inreality,atopological equilibriumisestablishedbetweenthe populationof catenanes orknotsand
unlinkedDNA segments.However,the equilibriumwill shiftinpresence of topoisomerase II.The result
isillustratedbyincorporatingtwonewfactors,whichare linkreductionfactor(RL) andknotreduction
factor(RK) (Liu,Zechiedrich,&Chan,2006a). Justas theirname implies,the higherthe value of RLand
RK is,the more probable itisthat the equilibriumwillbe shiftedtowardsthe decatenatingordeknotting
side,andvice versa.Furthermore,RLandRK are bothchain length(n) dependent,withahigh
probabilityof unlinkingforhookedandhalf-hookedjuxtaposition(linkingforfree juxtaposition) atlow
value of n, andlowprobabilityathighvalue of n.A relatedstudyhasalsoshownthat the unknotting
potential (indicatedbyRK) isalsoinfluencedbythe stiffnessof the chain(Liu,Diebler,Chan,&
Zechiedrich,2009),withthe effectenhancingasthe stiffnessincreases(exceptforfree juxtaposition).
AnotherresearchalsoshowsthatDNA supercoilingmayimprovethe efficiencyindecatenating,butnot
indeknotting(Buck&Zechiedrich,2004).
Throughthe discussionabove,one mayclearlysee how topoisomeraseIImakesuse of the global
informationembeddedinlocal juxtapositiongeometriestoselectivelydisentangle DNA strands,rather
than entangle them,forbothcatenanesandknots.
The Impact on DNA Topology by Biological Processes
As discussedinthe secondpart,some DNA global topology,suchasknotsandcatenanes,mayhave
a great impacton biological processes, suchascreatinganimpasse toDNA andRNA polymerasesbya
tightknot.These effectscanbe detrimental orevenlethaltoa cell andmustbe amelioratedby
topoisomeraseIIintime.Buthowcan a cell deal withthembefore the reparationtakesplace? As
indicatedinthe article,manybiological activitiescanindeedrelieve thistopological stressby
themselves.Asshowninthe experimentdone byVologodskii ,ithas beenproventhatmanyforcesexist
invivo,suchas the slidingof polymerasesalongthe DNA,tostretchthe two endsof DNA strands and
therefore localize the knotsonit(Vologodakii,2006).Thislocalizationof knotsmaybe deemedasa
cell’sdefence againstDNA knotting,inthatthe knotscouldbe localizedtothe non-codingsequenceson
DNA and consequentlyminimize the negative effectsof it.
Asfor the DNA supercoiling,itsconformationisgreatlyaffectedbybiological activities.Itseffecton
enhancedgene expressioncouldbe impairedbythe bindingof nucleoid-associationproteinsin
prokaryotesorhistone proteinsineukaryotes,asexplainedinthe article.Anotherstudyreviewedinthis
article alsosuggestthatthere isa type of general topological barrierincellsthatcanimpede the
translocationof DNA supercoil andmaybe knotsaswell.
Ultimately,the discussionof experimental resultsinthe article hasprovidedevidence of atleast
some reciprocal interactions.Thisconsequentlysuggestsanintimate relationshipbetweenDNA global
topologyandbiological activitiesassociatedwithDNA.
Citation
Buck G. R., & ZechiedrichE.L.,(2004). DNA DisentanglingbyType-2Topoisomerases.JMol Biol,340,
933-939.
Liu Z.R.,ZechiedrichE.L.,&Chan H.S.,(2006a). Topological informationembodiedinlocal juxtaposition
geometryprovidesastatistical mechanical basisforunknottingbytype IIDNA topoisomerases.JMol
Biol,361, 268-285.
Liu Z.R.,ZechiedrichE.L.,&Chan H.S.,(2006b). Inferringglobal topologyfromlocal juxtaposition
geometry:interlinkingpolymerringsandramificationsfortopoisomerase action.BiophysJ,90,2344-
2355.
Vologodskii A.(2006).BrownianDynamicsSimulationof KnotDiffusionalongaStretchedDNA Molecule.
BiophysJ,90, 1594-1597.
Zhirong,L.,Deibler,R.W.,Hue,S. C., & Zechiedrich,L.(2009). SURVEY ANDSUMMARY: The whyand
howof DNA unlinking.NucleicAcidsResearch,37,661-671.

More Related Content

What's hot

Unraveling signal transduction networks through data integration
Unraveling signal transduction networks through data integrationUnraveling signal transduction networks through data integration
Unraveling signal transduction networks through data integrationLars Juhl Jensen
 
Cytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZCytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZCYTOO
 
Dinamica membrana 3decadas_cellmbr-vereb2003
Dinamica membrana 3decadas_cellmbr-vereb2003Dinamica membrana 3decadas_cellmbr-vereb2003
Dinamica membrana 3decadas_cellmbr-vereb2003Tamara Jorquiera
 
Large-scale integration of data and text
Large-scale integration of data and textLarge-scale integration of data and text
Large-scale integration of data and textLars Juhl Jensen
 
Prokaryotic and eukaryotic microorganisms
Prokaryotic and eukaryotic microorganismsProkaryotic and eukaryotic microorganisms
Prokaryotic and eukaryotic microorganismsNithyaNandapal
 
Epigenetics /certified fixed orthodontic courses by Indian dental academy
Epigenetics /certified fixed orthodontic courses by Indian dental academy Epigenetics /certified fixed orthodontic courses by Indian dental academy
Epigenetics /certified fixed orthodontic courses by Indian dental academy Indian dental academy
 
Faculty470 zoo102-kust20201-l13-v1-meiosis
Faculty470 zoo102-kust20201-l13-v1-meiosisFaculty470 zoo102-kust20201-l13-v1-meiosis
Faculty470 zoo102-kust20201-l13-v1-meiosisnoor ulakbar
 
Stephen Friend Nature Genetics Colloquium 2012-03-24
Stephen Friend Nature Genetics Colloquium 2012-03-24Stephen Friend Nature Genetics Colloquium 2012-03-24
Stephen Friend Nature Genetics Colloquium 2012-03-24Sage Base
 

What's hot (10)

Unraveling signal transduction networks through data integration
Unraveling signal transduction networks through data integrationUnraveling signal transduction networks through data integration
Unraveling signal transduction networks through data integration
 
Cells
CellsCells
Cells
 
Cytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZCytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZ
 
Dinamica membrana 3decadas_cellmbr-vereb2003
Dinamica membrana 3decadas_cellmbr-vereb2003Dinamica membrana 3decadas_cellmbr-vereb2003
Dinamica membrana 3decadas_cellmbr-vereb2003
 
Large-scale integration of data and text
Large-scale integration of data and textLarge-scale integration of data and text
Large-scale integration of data and text
 
Southern blotting
Southern blottingSouthern blotting
Southern blotting
 
Prokaryotic and eukaryotic microorganisms
Prokaryotic and eukaryotic microorganismsProkaryotic and eukaryotic microorganisms
Prokaryotic and eukaryotic microorganisms
 
Epigenetics /certified fixed orthodontic courses by Indian dental academy
Epigenetics /certified fixed orthodontic courses by Indian dental academy Epigenetics /certified fixed orthodontic courses by Indian dental academy
Epigenetics /certified fixed orthodontic courses by Indian dental academy
 
Faculty470 zoo102-kust20201-l13-v1-meiosis
Faculty470 zoo102-kust20201-l13-v1-meiosisFaculty470 zoo102-kust20201-l13-v1-meiosis
Faculty470 zoo102-kust20201-l13-v1-meiosis
 
Stephen Friend Nature Genetics Colloquium 2012-03-24
Stephen Friend Nature Genetics Colloquium 2012-03-24Stephen Friend Nature Genetics Colloquium 2012-03-24
Stephen Friend Nature Genetics Colloquium 2012-03-24
 

Similar to THE WHY AND HOW OF DNA UNLINKING

Molecular biology
Molecular biologyMolecular biology
Molecular biology22050522
 
Cowcatcher' enzyme fixes single strand dna and key
Cowcatcher' enzyme fixes single strand dna and keyCowcatcher' enzyme fixes single strand dna and key
Cowcatcher' enzyme fixes single strand dna and key22050522
 
Epigenetics of the Developing BrainFrances A. Cham pagne .docx
Epigenetics of the Developing BrainFrances A. Cham pagne .docxEpigenetics of the Developing BrainFrances A. Cham pagne .docx
Epigenetics of the Developing BrainFrances A. Cham pagne .docxSALU18
 
Genes in ContextGene–Environment Interplay and the Origins o
Genes in ContextGene–Environment Interplay and the Origins oGenes in ContextGene–Environment Interplay and the Origins o
Genes in ContextGene–Environment Interplay and the Origins oMatthewTennant613
 
Super coil, cot curve, c value pardox
Super coil, cot curve, c value pardoxSuper coil, cot curve, c value pardox
Super coil, cot curve, c value pardoxmanoj kumar
 
Molecular biology
Molecular biologyMolecular biology
Molecular biology43556181
 
Liang_Shiochee_ArestyPoster_FINAL
Liang_Shiochee_ArestyPoster_FINALLiang_Shiochee_ArestyPoster_FINAL
Liang_Shiochee_ArestyPoster_FINALShiochee Liang
 
Plegable Luisa Fda Naranjo P
Plegable Luisa Fda Naranjo PPlegable Luisa Fda Naranjo P
Plegable Luisa Fda Naranjo PLuisaNaranjoP
 
Molecular biology
Molecular biologyMolecular biology
Molecular biologyUE
 
Phylogenetics Questions Answers
Phylogenetics Questions Answers Phylogenetics Questions Answers
Phylogenetics Questions Answers Zohaib HUSSAIN
 
DNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUES
DNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUESDNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUES
DNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUESijbbjournal
 

Similar to THE WHY AND HOW OF DNA UNLINKING (20)

plegabe de molecular
plegabe de molecularplegabe de molecular
plegabe de molecular
 
1 DNA Genes.docx
1 DNA Genes.docx1 DNA Genes.docx
1 DNA Genes.docx
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Molecular biology
Molecular biologyMolecular biology
Molecular biology
 
Cowcatcher' enzyme fixes single strand dna and key
Cowcatcher' enzyme fixes single strand dna and keyCowcatcher' enzyme fixes single strand dna and key
Cowcatcher' enzyme fixes single strand dna and key
 
Epigenetics of the Developing BrainFrances A. Cham pagne .docx
Epigenetics of the Developing BrainFrances A. Cham pagne .docxEpigenetics of the Developing BrainFrances A. Cham pagne .docx
Epigenetics of the Developing BrainFrances A. Cham pagne .docx
 
cell nucleus session 1
 cell nucleus session 1 cell nucleus session 1
cell nucleus session 1
 
Folding Aleja Ramírez
Folding Aleja RamírezFolding Aleja Ramírez
Folding Aleja Ramírez
 
Essay About Dna
Essay About DnaEssay About Dna
Essay About Dna
 
Genes in ContextGene–Environment Interplay and the Origins o
Genes in ContextGene–Environment Interplay and the Origins oGenes in ContextGene–Environment Interplay and the Origins o
Genes in ContextGene–Environment Interplay and the Origins o
 
Super coil, cot curve, c value pardox
Super coil, cot curve, c value pardoxSuper coil, cot curve, c value pardox
Super coil, cot curve, c value pardox
 
Molecular biology
Molecular biologyMolecular biology
Molecular biology
 
Nucleic acids
Nucleic acidsNucleic acids
Nucleic acids
 
Liang_Shiochee_ArestyPoster_FINAL
Liang_Shiochee_ArestyPoster_FINALLiang_Shiochee_ArestyPoster_FINAL
Liang_Shiochee_ArestyPoster_FINAL
 
Plegable Luisa Fda Naranjo P
Plegable Luisa Fda Naranjo PPlegable Luisa Fda Naranjo P
Plegable Luisa Fda Naranjo P
 
Molecular biology
Molecular biologyMolecular biology
Molecular biology
 
Phylogenetics Questions Answers
Phylogenetics Questions Answers Phylogenetics Questions Answers
Phylogenetics Questions Answers
 
DNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUES
DNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUESDNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUES
DNA IMAGE SEGMENTATION – A COMPARISON OF EDGE DETECTION TECHNIQUES
 
Rosalind Franklin Dna Replication
Rosalind Franklin Dna ReplicationRosalind Franklin Dna Replication
Rosalind Franklin Dna Replication
 
Dna modifiable tool
Dna modifiable toolDna modifiable tool
Dna modifiable tool
 

THE WHY AND HOW OF DNA UNLINKING

  • 1. THE WHY AND HOW OF DNA UNLINKING Liangkai Hu & Priyanka Soundranayagam Summary The momentWatsonandCrick revealedtheirhypothesisforthe structure of the DNA,itwas immediatelyevidenthowtheirparticularstructure wouldlenditself towardsa“functional elegance” (Liu,Diebler,Chan,&Zechiedrich,2009).The single strandsof DNA that create the anti-paralleldouble helix eachserve asa template thatcan be replicatedtocreate anidentical double helix.Scientists followingthisdiscoveryhave largelyfocusedonthe base sequencingof the strandsthemselvesasthe mainfactors that affectthe biological processeswithinthe cell.Asexplainedbythe article putforthby Liu,Deibler,ChanandZechiedrich,thisisanerroneousassumption,inthat“itis now clearthat the DNA itself playsanactive role”inthose biological processesaswell.Specifically,the topologyof the DNA,and the misregulationthereincanplayan active role in“regulatingthe abilityof the cell toextractits information”(Liu,Diebler,Chan,&Zechiedrich,2009). The article firstexplainshowthe three commontopological misregulations(supercoiling,catenation and knotting) affectthe functionalityof cells.Itthenputsforthseveral modelsthatattempttoexplain howthe cellsthemselvespreventthese misregulationsfrombeingtooharmful.The article concludes witha discussionof howthe DNA’stopological problemsthemselvessignal type-2topoisomerasesinto resolvingthose verysame problems. Topological Conformations of DNA Supercoiling Supercoilingisthe processbywhich DNA moleculestwisttorelieve the stresscausedbytheir helical shape.Negativesupercoiling,specifically,allowsforthe maintenance of the DNA ina “homeostaticallyunderwoundstate”byeithertwistingorwrithing(Liu,Diebler,Chan,&Zechiedrich, 2009). This particulartype of supercoiling,asexplainedinthe article,isessentialtothe functionalityof the cell. Firstly,negative supercoilingisresponsible forthe “controlledmeltingof the DNA duplex”,whichis the onlymethodbywhich DNA polymerases,RNA polymerasesandotherenzymescanaccessthe nucleotide sequence of eachstrand.Supercoilingalsoallowsforthe “synapsisof distance sites…witha definedspatialarrangementandorientation”.Thirdly,the chromosomal metabolismdependson negative supercoilingtoallowfora“precise meansof regulatingDNA metabolism”.The article also claimsthat “the control of DNA supercoilingcanhave importantconsequencesintermsof evolutionary fitness”,whichwouldthensuggestevolution favoursincreasednegative supercoilingincells.Finally,the mostnoteworthyaspectof negative supercoiling(assuggestedbythe article),isthatevenatrace amountof increase innegative supercoilingwill enhancethe expressionof specificgenes(suchasthe λ Int protein) significantly(Liu,Diebler,Chan,&Zechiedrich,2009). There are alsodisadvantagestothisparticulartopological conformation,asexcessive negative supercoilingcanleadto “an inhibitionof bacterial growthandRNA degradation”.The article emphasizes however,thatwhetherthe resultsare positiveornegative,itisneverthelessimportantforthe cell that supercoilingdoesinfactoccur.
  • 2. Catenation Catenatesare newlyreplicated,intertwinedDNAs,whichare right-handedparallelinshape.Type-2 topisomerasesare responsiblefor“cleaving”the DNA strandsof these catenates,“passinganother duplex throughthe transientgate”andthenresealingthe cleavage the gaptheycreated.Thisprocess, called“decatenation”,isresponsible forunliking“catenatedintermediatesof DNA replication”(Liu, Diebler,Chan,&Zechiedrich,2009).WhenexperimentingonE.coli,itwas foundthatabsence of this type-2topoisomeraseimpairedthe separationof replicatedgenetic loci.Inyeast,itleadsto“impaired chromosome segregationandcell deathatcytokinesis”.These resultswouldsuggestthatlike supercoiling,the presence of catenates(andthe subsequentdecatenationcarriedoutbytype-2 topoisomerases) canaffectthe functionalityof DNA,genome stabilityanddevelopment(Liu,Diebler, Chan,& Zechiedrich,2009). Knotting KnotsinDNA that resultfroma DNA molecule tangledwithitself canbe evenmore detrimental for cell functionalitythancatenates.Fortunately,the presence of type-2topoisomerases,the organization of DNA intonucleosomesandDNA supercoilingensurethatthe DNA staysunknottedina cell.If these factors were notinplace,the resultingincrease inknotting“blockedDNA replicationand transcription, increasedmutation,andledtolossof the replicon”.The article proposesalsothatknots“preventsthe facile returnof differentiatednuclei tothe cell cycle”.Ascanbe seen,thislastconformationof DNA has a noteworthyeffectonthe abilityof the cell tocarry out itsbiological processes(Liu,Diebler,Chan,& Zechiedrich,2009). All three of the potential topological conformations(supercoiling,catenationandknotting),ashas beenprovenbythe article thusfar,are as importantto the abilityof cellstocarry out DNA replicationas are the base sequencesof singlestrands. Models Depicting the Disentanglement Action Carried Out by Type-2 Topoisomerases A viable theoryforhowthe type-2topoisomerasefunctionsclaimsthatthe enzyme isable to recognize thathelix-helix juxtapositionsoccurmore frequentlyinDNA thathaseitherbeensupercoiled, catenatedor knotted.Severalmodelshave beencreatedtodeterminethe accuracyof this theory. The firstmodel suggestedthatDNA juxtapositionswere “phantomchains” –inother words,the helix-helix juxtapositionsweresuchthattheyallowedforone chaintofreelypassthroughitself orother chains.Thismodel,however,wasdisprovenwhenitwasshownthat type-2topoisomerases“donot turn DNA intophantomchains”.A secondmodel suggestedthatthe type-2topoisomerasesmight “activelyslide alongthe DNA totrapthe catenane orknot nodesandreduce the effectivesize of the DNA”.Again,thismodel wasabandoned(Liu,Diebler,Chan,&Zechiedrich,2009). The thirdhypothesizedmodelwasthe kineticproof-readingmodel,inwhichcollisionsbetween sequentialtype-2topoisomerase-DNA rationalizedsome of the evidenceof unknottingandunlinking scientistshave had.However,the model wasinconsistentwithexperimentaldatainitsproposed suppressionfactor.The nextmodel,the “active bendingmodel”,claimedthatthe type-2 topoisomerases“activelyuntangle DNA bybendingthe DNA gate segment”which wouldthenincrease the chance of “capturinga second‘transfer’segmentinknottedorlinkedmolecules”.Thismodel is supportedbythe simulationmentionedbelow,because itinvolvesthe selective openof segment
  • 3. passage bytopoisomerase II.Nevertheless,itstill needstobe confirmedbyfurtherexperiments,due to the difficultiesthatlie inthe interpretationof currentexperimentalandcomputational results. Asthe article explains,the individual modelsabove are useful inthattheycanrationalize “certain aspectsof type-2topoisomerase actions”,butnone of themare able to comprehensivelyexplainall the data that scientistshave gatheredthusfaraboutthe enzyme (Liu,Diebler,Chan,&Zechiedrich,2009). The Juxtaposition-Centric Approach The article proposesthatthe reasonmanyof the aforementionedmodelsfail tobe comprehensive isthat theyignore an importantfactor(Buck& Zechiedrich,2004):the role of local information embeddedinthe substrate of type-2topoisomerase indiscriminatingwhetherDNA strandsare linkedor unlinkedglobally,giventhe factthattopoisomerase IIissmallerthana DNA molecule inordersof magnitudes. To understandthis,atheorycalledjuxtaposition-centricapproachhasbeenputforward.A DNA- DNA juxtapositionisgeneratedwhentwosegmentsof DNA molecules,be itonthe same strand or on the differentones,come close enoughsothatthe difference betweenthemisaboutsmallerthanthe diameterof a type-2topoisomerase molecule[37] (Buck& Zechiedrich,2004). Onlyinthissmall distance can a topoisomerase IIfunctiontograspbothstrandsto decatenate ordeknot(Bruce,Johnson,Lewis, Raff,Roberts& Walter,2008). One may come up withtwoassumptionsonjuxtaposition:one isthatall existinghelix-helix juxtapositionsare the same,regardlesswhetherthe twosegmentsare unlinkedorin a catenationor a knot;anotherone is that differentjuxtapositionisformedwhenachainissupercoiled, linkedorknotted,comparedtowhen itislinear,relaxedorunknotted(Buck&Zechiedrich,2004).Of the laterassumption,basically,there are three typesof juxtapositionproposed:hooked,half-hooked and free (Liu,Zechiedrich,&Chan,2006a). Everytime whenasegmentpassage isopenedbytopoisomeraseIIona specificjuxtapositioncan eitherresultinanunlinkedstatusof DNA standsora linkedone.Lattice conformationalenumeration demonstratedbyZhirongLiuandetal. has suggestthatthere is90% of chance that globally unlinked DNA strands become linkedwhenasegmentpassage isopenedonafree juxtaposition,whereas85%of probabilitythatthe strandsbecome unlinkedonahookedjuxtaposition(Liu,Zechiedrich,&Chan, 2006b). Additionally,the enumerationwasalsousedtosimulate the realisticinteractionsoccurring whena segmentpassage isopenedoneachjuxtapositionmediatedbytopoisomerase II. Inreality,atopological equilibriumisestablishedbetweenthe populationof catenanes orknotsand unlinkedDNA segments.However,the equilibriumwill shiftinpresence of topoisomerase II.The result isillustratedbyincorporatingtwonewfactors,whichare linkreductionfactor(RL) andknotreduction factor(RK) (Liu,Zechiedrich,&Chan,2006a). Justas theirname implies,the higherthe value of RLand RK is,the more probable itisthat the equilibriumwillbe shiftedtowardsthe decatenatingordeknotting side,andvice versa.Furthermore,RLandRK are bothchain length(n) dependent,withahigh probabilityof unlinkingforhookedandhalf-hookedjuxtaposition(linkingforfree juxtaposition) atlow value of n, andlowprobabilityathighvalue of n.A relatedstudyhasalsoshownthat the unknotting potential (indicatedbyRK) isalsoinfluencedbythe stiffnessof the chain(Liu,Diebler,Chan,& Zechiedrich,2009),withthe effectenhancingasthe stiffnessincreases(exceptforfree juxtaposition). AnotherresearchalsoshowsthatDNA supercoilingmayimprovethe efficiencyindecatenating,butnot indeknotting(Buck&Zechiedrich,2004).
  • 4. Throughthe discussionabove,one mayclearlysee how topoisomeraseIImakesuse of the global informationembeddedinlocal juxtapositiongeometriestoselectivelydisentangle DNA strands,rather than entangle them,forbothcatenanesandknots. The Impact on DNA Topology by Biological Processes As discussedinthe secondpart,some DNA global topology,suchasknotsandcatenanes,mayhave a great impacton biological processes, suchascreatinganimpasse toDNA andRNA polymerasesbya tightknot.These effectscanbe detrimental orevenlethaltoa cell andmustbe amelioratedby topoisomeraseIIintime.Buthowcan a cell deal withthembefore the reparationtakesplace? As indicatedinthe article,manybiological activitiescanindeedrelieve thistopological stressby themselves.Asshowninthe experimentdone byVologodskii ,ithas beenproventhatmanyforcesexist invivo,suchas the slidingof polymerasesalongthe DNA,tostretchthe two endsof DNA strands and therefore localize the knotsonit(Vologodakii,2006).Thislocalizationof knotsmaybe deemedasa cell’sdefence againstDNA knotting,inthatthe knotscouldbe localizedtothe non-codingsequenceson DNA and consequentlyminimize the negative effectsof it. Asfor the DNA supercoiling,itsconformationisgreatlyaffectedbybiological activities.Itseffecton enhancedgene expressioncouldbe impairedbythe bindingof nucleoid-associationproteinsin prokaryotesorhistone proteinsineukaryotes,asexplainedinthe article.Anotherstudyreviewedinthis article alsosuggestthatthere isa type of general topological barrierincellsthatcanimpede the translocationof DNA supercoil andmaybe knotsaswell. Ultimately,the discussionof experimental resultsinthe article hasprovidedevidence of atleast some reciprocal interactions.Thisconsequentlysuggestsanintimate relationshipbetweenDNA global topologyandbiological activitiesassociatedwithDNA. Citation Buck G. R., & ZechiedrichE.L.,(2004). DNA DisentanglingbyType-2Topoisomerases.JMol Biol,340, 933-939. Liu Z.R.,ZechiedrichE.L.,&Chan H.S.,(2006a). Topological informationembodiedinlocal juxtaposition geometryprovidesastatistical mechanical basisforunknottingbytype IIDNA topoisomerases.JMol Biol,361, 268-285. Liu Z.R.,ZechiedrichE.L.,&Chan H.S.,(2006b). Inferringglobal topologyfromlocal juxtaposition geometry:interlinkingpolymerringsandramificationsfortopoisomerase action.BiophysJ,90,2344- 2355. Vologodskii A.(2006).BrownianDynamicsSimulationof KnotDiffusionalongaStretchedDNA Molecule. BiophysJ,90, 1594-1597. Zhirong,L.,Deibler,R.W.,Hue,S. C., & Zechiedrich,L.(2009). SURVEY ANDSUMMARY: The whyand howof DNA unlinking.NucleicAcidsResearch,37,661-671.