SlideShare a Scribd company logo
1 of 1
Download to read offline
BACKGROUND	
  
Cape	
  Romain	
  is	
  one	
  of	
  four	
  cuspate	
  forelands	
  along	
  the	
  
Mid-­‐Atlan8c	
  Coast,	
  which	
  are	
  characterized	
  by	
  a	
  triangular	
  
shape	
  that	
  is	
  nearly	
  perpendicular	
  to	
  the	
  shoreline	
  (Hayes	
  et	
  
al.,	
  2008).	
  Cuspate	
  forelands	
  are	
  most	
  commonly	
  formed	
  
where	
  two	
  opposing	
  wind	
  direc8ons	
  converge,	
  resul8ng	
  in	
  
converging	
  waves	
  that	
  mold	
  the	
  sediment	
  into	
  this	
  
morphology	
  (Hayes	
  et	
  al.,	
  2008).	
  Cape	
  Romain	
  is	
  
characterized	
  by	
  an	
  eroding	
  headland,	
  elonga8ng	
  spits	
  on	
  
the	
  flanks	
  and	
  an	
  overall	
  erosional	
  nature.	
  The	
  two	
  lateral	
  
flanks	
  are	
  rela8vely	
  symmetric	
  and	
  converge	
  at	
  just	
  over	
  a	
  
90°	
  angle,	
  uncommon	
  for	
  cape	
  morphology.	
  The	
  outer	
  
shore	
  of	
  Cape	
  Romain	
  is	
  one	
  of	
  the	
  most	
  erosional	
  
coastlines	
  in	
  the	
  state	
  of	
  South	
  Carolina.	
  	
  
Tidal	
  and	
  wave	
  energy	
  are	
  important	
  to	
  the	
  morphology	
  of	
  
Cape	
  Romain.	
  Due	
  to	
  its	
  micro-­‐	
  to	
  meso-­‐8dal	
  seNng,	
  the	
  
8des	
  and	
  waves	
  influence	
  Cape	
  Romain,	
  with	
  wave	
  heights	
  
approximately	
  1.2	
  m,	
  and	
  mean	
  8dal	
  range	
  of	
  1.76	
  m	
  (Hayes	
  
and	
  Michel,	
  2008).	
  Cape	
  Romain’s	
  modern	
  cuspate	
  foreland	
  
morphology	
  and	
  lateral	
  spreading	
  is	
  greatly	
  affected	
  by	
  
wind	
  and	
  current	
  direc8on,	
  and	
  is	
  accelerated	
  by	
  hurricane	
  
storm	
  surges	
  (Morton	
  and	
  Miller	
  2005).	
  A	
  study	
  of	
  the	
  
coastal	
  changes	
  of	
  this	
  cuspate	
  foreland	
  was	
  completed	
  
using	
  Google	
  Earth	
  historical	
  imagery	
  from	
  the	
  years	
  1989,	
  
1994,	
  2005,	
  2011,	
  and	
  2014	
  (Figure	
  3).	
  
ABSTRACT	
  
Cape	
  Romain	
  is	
  a	
  prominent	
  cuspate	
  foreland	
  on	
  the	
  South	
  Carolina	
  coast,	
  located	
  approximately	
  35	
  
miles	
  north	
  of	
  Charleston	
  (Figures	
  1	
  &	
  2).	
  A	
  thorough	
  study	
  using	
  Google	
  Earth	
  imagery	
  was	
  completed	
  
in	
  order	
  to	
  determine	
  the	
  geomorphologic	
  changes	
  of	
  the	
  shoreline	
  from	
  1989	
  to	
  2014.	
  Major	
  factors	
  
that	
  have	
  affected	
  the	
  shape	
  of	
  Cape	
  Romain	
  include	
  storm	
  surges	
  and	
  hurricanes,	
  offshore	
  
morphology,	
  diverging	
  wind	
  paerns,	
  and	
  less	
  recently,	
  hard	
  structures	
  placed	
  to	
  the	
  north	
  of	
  the	
  cape.	
  
Qualita8ve	
  data	
  were	
  analyzed	
  from	
  historical	
  imagery,	
  and	
  quan8ta8ve	
  analyses	
  of	
  shoreline	
  changes	
  
were	
  made	
  using	
  Google	
  Earth	
  measurement	
  tools.	
  This	
  study	
  is	
  crucial	
  for	
  use	
  in	
  managing	
  the	
  
Na8onal	
  Wildlife	
  Refuge	
  located	
  at	
  Cape	
  Romain,	
  and	
  understanding	
  the	
  effects	
  of	
  the	
  cuspate	
  
forelands’	
  changing	
  morphology	
  on	
  the	
  nearby	
  barrier	
  islands.	
  
METHODS	
  	
  
•  Historical	
  imagery	
  viewed	
  from	
  Google	
  Earth	
  Pro	
  from	
  1989,	
  1994,	
  
2005,	
  2011,	
  and	
  2014.	
  
•  Reference	
  lines	
  were	
  drawn	
  parallel	
  to	
  the	
  beach	
  of	
  the	
  north	
  and	
  
south	
  flanks	
  of	
  the	
  cape	
  using	
  the	
  “Add	
  Path”	
  tool	
  on	
  Google	
  Earth	
  
(Figure	
  4).	
  
•  Transects	
  were	
  drawn	
  perpendicular	
  to	
  the	
  reference	
  lines	
  at	
  560	
  
m	
  intervals,	
  from	
  reference	
  line	
  to	
  vegeta8on	
  boundary	
  (Figure	
  5).	
  
•  Measurements	
  were	
  taken	
  from	
  reference	
  lines,	
  along	
  transects,	
  
to	
  the	
  berm	
  (wet/dry	
  line)	
  and	
  to	
  vegeta8on.	
  
•  The	
  “Polygon”	
  tool	
  was	
  used	
  to	
  outline	
  the	
  beach	
  in	
  each	
  historical	
  
image	
  (Figure	
  3)	
  and	
  determine	
  the	
  area	
  of	
  beach	
  (Figure	
  6).	
  
•  Measurements	
  were	
  output	
  into	
  tables	
  in	
  Excel,	
  where	
  
quan8ta8ve	
  data	
  were	
  studied	
  and	
  graphs	
  were	
  made	
  for	
  
visualizing	
  the	
  data	
  (Figures	
  7-­‐10).	
  
RESULTS	
  
Data	
  from	
  transects	
  show	
  a	
  landward	
  migra8ng	
  shoreline.	
  The	
  western	
  end	
  of	
  the	
  south	
  flank	
  has	
  a	
  more	
  significant	
  landward	
  migra8on	
  
than	
  the	
  eastern	
  end,	
  while	
  the	
  largest	
  amount	
  of	
  overall	
  landward	
  migra8on	
  is	
  in	
  the	
  center	
  of	
  the	
  flank	
  as	
  seen	
  in	
  figure	
  9.	
  Transect	
  8S	
  
shows	
  a	
  total	
  erosion	
  of	
  186	
  m,	
  the	
  most	
  of	
  each	
  transect	
  measure;	
  this	
  equates	
  to	
  a	
  rate	
  of	
  over	
  7	
  m/yr	
  in	
  this	
  25	
  year	
  study.	
  The	
  
quan8ta8ve	
  data	
  at	
  the	
  south	
  flank	
  show	
  significant	
  variance	
  in	
  the	
  amount	
  of	
  beach	
  cover	
  throughout	
  the	
  period	
  of	
  the	
  study.	
  In	
  1994,	
  the	
  
beach	
  land	
  cover	
  decreased	
  over	
  400,000	
  m2,	
  equa8ng	
  to	
  16	
  m2/yr.	
  The	
  north	
  flank	
  of	
  Cape	
  Romain	
  is	
  qualita8vely	
  more	
  variable	
  than	
  the	
  
southern	
  por8on	
  previously	
  discussed.	
  Data	
  show	
  a	
  general	
  retreat	
  in	
  shoreline	
  along	
  with	
  an	
  overall	
  migra8on	
  to	
  the	
  northeast.	
  The	
  
quan8ta8ve	
  data	
  of	
  the	
  north	
  flank	
  of	
  Cape	
  Romain	
  is	
  not	
  as	
  complex	
  as	
  the	
  south	
  flank.	
  Transects	
  4N-­‐10N	
  show	
  the	
  greatest	
  amount	
  of	
  
retreat,	
  in	
  which	
  5N	
  and	
  6N	
  are	
  breached	
  by	
  2014.	
  Transect	
  7N	
  shows	
  the	
  largest	
  amount	
  of	
  retreat	
  with	
  471	
  m	
  erosion	
  equa8ng	
  to	
  almost	
  
19	
  m/yr.	
  	
  The	
  beach	
  area	
  decreases	
  for	
  several	
  years,	
  approximately	
  269,908	
  m2	
  un8l	
  2011	
  when	
  the	
  area	
  of	
  beach	
  begins	
  to	
  increase	
  
steadily	
  throughout	
  the	
  remainder	
  of	
  the	
  study.	
  The	
  area	
  of	
  beach	
  cover	
  on	
  the	
  north	
  flank	
  increases	
  approximately	
  149,661	
  m2	
  from	
  June,	
  
2011	
  to	
  2014.	
  
DISCUSSION	
  &	
  CONCLUSIONS	
  
During	
  the	
  study	
  period	
  1989	
  to	
  2014,	
  the	
  morphology	
  of	
  Cape	
  Romain	
  has	
  been	
  severely	
  affected	
  by	
  hurricanes.	
  The	
  north	
  flank	
  was	
  greatly	
  impacted	
  by	
  three	
  hurricanes:	
  Hurricane	
  Hugo	
  
in	
  September	
  of	
  1989;	
  Hurricane	
  Irene	
  in	
  August	
  of	
  2011;	
  and	
  Hurricane	
  Sandy	
  in	
  September	
  of	
  2012.	
  Hurricane	
  Hugo	
  redirected	
  the	
  en8re	
  direc8on	
  of	
  the	
  main	
  inlet	
  of	
  the	
  cuspate	
  
foreland.	
  Hurricane	
  Irene	
  created	
  three	
  new	
  small	
  inlets	
  along	
  the	
  north	
  flank	
  at	
  transects	
  3N,	
  5N	
  and	
  7N.	
  One	
  year	
  later	
  Hurricane	
  Sandy	
  opened	
  up	
  much	
  of	
  the	
  north	
  flank	
  crea8ng	
  on	
  
large	
  inlet	
  in	
  the	
  middle	
  of	
  it	
  as	
  seen	
  in	
  figure	
  10	
  at	
  transects	
  5N,	
  6N	
  and	
  7N.	
  	
  
Aside	
  from	
  natural	
  causes,	
  hard	
  structures	
  to	
  the	
  north	
  of	
  Cape	
  Romain	
  have	
  had	
  historic	
  influence	
  on	
  the	
  morphology	
  and	
  sediment	
  budget.	
  Though	
  these	
  hard	
  structures	
  were	
  installed	
  
many	
  years	
  before	
  the	
  study,	
  they	
  s8ll	
  have	
  effect	
  on	
  the	
  sediment	
  transport	
  today,	
  starving	
  the	
  cape	
  of	
  much	
  needed	
  sediment.	
  Overall,	
  the	
  north	
  flank	
  of	
  Cape	
  Romain	
  is	
  eroding	
  much	
  
more	
  rapidly	
  than	
  the	
  south	
  flank.	
  Erosion	
  of	
  the	
  north	
  flank	
  is	
  accelerated	
  by	
  it’s	
  posi8on,	
  exposing	
  it	
  to	
  erosion	
  from	
  orienta8on	
  of	
  wave	
  and	
  wind	
  driven	
  currents,	
  which	
  affect	
  lioral	
  
transport.	
  Addi8onally,	
  hurricane’s	
  counterclockwise	
  circula8on	
  accelerates	
  nearshore	
  currents	
  and	
  transport	
  of	
  sediment	
  to	
  the	
  southwest,	
  accelera8ng	
  erosion	
  on	
  the	
  north	
  flank.	
  
Erosion	
  of	
  the	
  flanks	
  of	
  Cape	
  Romain	
  can	
  severely	
  affect	
  the	
  backbarrier,	
  leaving	
  abundant	
  organisms	
  exposed.	
  Due	
  to	
  the	
  biodiversity	
  of	
  the	
  Na8onal	
  Wildlife	
  Refuge	
  area,	
  steps	
  must	
  be	
  
taken	
  to	
  determine	
  causes	
  for	
  severe	
  erosion,	
  and	
  possible	
  solu8ons	
  for	
  mi8ga8ng	
  future	
  erosion.	
  Further	
  research	
  should	
  include	
  profiles	
  of	
  the	
  north	
  and	
  south	
  flank	
  with	
  an	
  accurate	
  
measure	
  of	
  erosion	
  with	
  regards	
  to	
  eleva8on,	
  to	
  determine	
  quan8ta8ve	
  volumetric	
  data.	
  Aside	
  from	
  this,	
  offshore	
  shoals	
  should	
  be	
  measured	
  to	
  determine	
  proximity	
  of	
  welding,	
  height	
  
and	
  size.	
  These	
  shoals,	
  as	
  stated	
  above,	
  are	
  sediment	
  sinks,	
  and	
  rather	
  than	
  welding	
  onto	
  the	
  barrier,	
  sit	
  close	
  to	
  shore.	
  	
  
Cape	
  Romain	
  is	
  one	
  of	
  the	
  most	
  rapidly	
  eroding	
  sec8on	
  of	
  beach	
  along	
  the	
  east	
  coast	
  of	
  the	
  United	
  States.	
  The	
  balance	
  of	
  sediment	
  influx	
  and	
  oullux	
  is	
  not	
  sufficient	
  to	
  keep	
  the	
  cape	
  from	
  
disintegra8ng.	
  	
  Ac8on	
  must	
  be	
  taken	
  to	
  protect	
  this	
  area,	
  as	
  many	
  factors	
  will	
  be	
  impacted.	
  
Quan8fying	
  Coastal	
  Change	
  of	
  Cape	
  Romain	
  using	
  Google	
  Earth	
  from	
  1989	
  to	
  2014	
  
Kori	
  Ktona,	
  Kris8n	
  Hughes,	
  and	
  Dr.	
  Leslie	
  Sauer	
  
Department	
  of	
  Geology	
  and	
  Environmental	
  Sciences	
  
Figure	
  2.	
  
Loca8on	
  of	
  
study	
  area,	
  
Cape	
  Romain	
  
is	
  35	
  miles	
  
north	
  of	
  
Charleston,	
  
SC.	
  
Figure	
  1.	
  	
  Overview	
  of	
  loca8on	
  of	
  study	
  
area,	
  between	
  Myrtle	
  Beach,	
  SC	
  and	
  
Charleston,	
  SC	
  

More Related Content

What's hot

Targeting Critical Ephemeral Gully Erosion Sites in a Watershed - Buman
Targeting Critical Ephemeral Gully Erosion Sites in a Watershed - BumanTargeting Critical Ephemeral Gully Erosion Sites in a Watershed - Buman
Targeting Critical Ephemeral Gully Erosion Sites in a Watershed - BumanSoil and Water Conservation Society
 
Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.
Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.
Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.IJRES Journal
 
Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...
Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...
Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...Chris Parry
 
Schneider - Impact of Largelandslide
Schneider - Impact of LargelandslideSchneider - Impact of Largelandslide
Schneider - Impact of Largelandslideceriuniroma
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Alexander Decker
 
Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...
Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...
Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...RI_FMA
 
GEOTECHNICAL INVESTIGATIONS
GEOTECHNICAL INVESTIGATIONSGEOTECHNICAL INVESTIGATIONS
GEOTECHNICAL INVESTIGATIONSKYI KHIN
 
Tectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland BasinTectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland BasinZiaulHaque95
 
Abstract_LundSnee_2013_Stanford_MS_thesis-libre
Abstract_LundSnee_2013_Stanford_MS_thesis-libreAbstract_LundSnee_2013_Stanford_MS_thesis-libre
Abstract_LundSnee_2013_Stanford_MS_thesis-libreJens-Erik Lund Snee
 
A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...
A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...
A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...Dario Chisari
 
Timing of oceans on Mars from shoreline deformation
Timing of oceans on Mars from shoreline deformationTiming of oceans on Mars from shoreline deformation
Timing of oceans on Mars from shoreline deformationSérgio Sacani
 
E042028035
E042028035E042028035
E042028035inventy
 
Once A Super Continent Final Draft
Once A Super Continent Final DraftOnce A Super Continent Final Draft
Once A Super Continent Final DraftJesse Jones
 
TECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINSTECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINSZiaulHaque95
 

What's hot (18)

Targeting Critical Ephemeral Gully Erosion Sites in a Watershed - Buman
Targeting Critical Ephemeral Gully Erosion Sites in a Watershed - BumanTargeting Critical Ephemeral Gully Erosion Sites in a Watershed - Buman
Targeting Critical Ephemeral Gully Erosion Sites in a Watershed - Buman
 
Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.
Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.
Artificial Recharge to Alluvial Aquifer, Northeastern Nuba Mountains, Sudan.
 
Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...
Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...
Parry_2010_Arctic_Days_iMAGINE_Tromso_Opening_of_the_ North_ Atlantic_&_Norwe...
 
Zuni spring inventory publication
Zuni spring inventory publicationZuni spring inventory publication
Zuni spring inventory publication
 
Schneider - Impact of Largelandslide
Schneider - Impact of LargelandslideSchneider - Impact of Largelandslide
Schneider - Impact of Largelandslide
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...
 
Michaelsen_final
Michaelsen_finalMichaelsen_final
Michaelsen_final
 
Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...
Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...
Shoreline Change Maps and Projected Shoreline Change for the RI Shoreline_RIF...
 
GEOTECHNICAL INVESTIGATIONS
GEOTECHNICAL INVESTIGATIONSGEOTECHNICAL INVESTIGATIONS
GEOTECHNICAL INVESTIGATIONS
 
Tectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland BasinTectonics and Sedimentation of Foreland Basin
Tectonics and Sedimentation of Foreland Basin
 
Abstract_LundSnee_2013_Stanford_MS_thesis-libre
Abstract_LundSnee_2013_Stanford_MS_thesis-libreAbstract_LundSnee_2013_Stanford_MS_thesis-libre
Abstract_LundSnee_2013_Stanford_MS_thesis-libre
 
A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...
A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...
A Comparison of Structural Styles and Prospectivity along the Atlantic Margin...
 
Sedimentary Facies And Petroleum System Of San Sai Oil Field, Fang Basin
Sedimentary Facies And Petroleum System Of San Sai Oil Field, Fang BasinSedimentary Facies And Petroleum System Of San Sai Oil Field, Fang Basin
Sedimentary Facies And Petroleum System Of San Sai Oil Field, Fang Basin
 
Timing of oceans on Mars from shoreline deformation
Timing of oceans on Mars from shoreline deformationTiming of oceans on Mars from shoreline deformation
Timing of oceans on Mars from shoreline deformation
 
E042028035
E042028035E042028035
E042028035
 
Once A Super Continent Final Draft
Once A Super Continent Final DraftOnce A Super Continent Final Draft
Once A Super Continent Final Draft
 
PRIMERA EVIDENCIA DE DEPÓSITOS DE PALEO-TSUNAMIS DE UN GRANDE ACONTECIMIENTO ...
PRIMERA EVIDENCIA DE DEPÓSITOS DE PALEO-TSUNAMIS DE UN GRANDE ACONTECIMIENTO ...PRIMERA EVIDENCIA DE DEPÓSITOS DE PALEO-TSUNAMIS DE UN GRANDE ACONTECIMIENTO ...
PRIMERA EVIDENCIA DE DEPÓSITOS DE PALEO-TSUNAMIS DE UN GRANDE ACONTECIMIENTO ...
 
TECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINSTECTONICS OF SEDIMENTARY BASINS
TECTONICS OF SEDIMENTARY BASINS
 

Viewers also liked

Doing citizen science in sensational salt marshes
Doing citizen science in sensational salt marshesDoing citizen science in sensational salt marshes
Doing citizen science in sensational salt marshesDawn Bazely
 
Coastal Systems - Salt Marsh Vegetation
Coastal Systems - Salt Marsh VegetationCoastal Systems - Salt Marsh Vegetation
Coastal Systems - Salt Marsh Vegetationvzt00
 
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...George Dumitrache
 
Igcse geog dune succession
Igcse geog dune succession Igcse geog dune succession
Igcse geog dune succession Guerillateacher
 
L11 salt marshes ap
L11 salt marshes apL11 salt marshes ap
L11 salt marshes apandypinks
 
Coastal Revision Ppt
Coastal Revision PptCoastal Revision Ppt
Coastal Revision PptJames Foster
 
Sand Dune Ecosystems
Sand Dune EcosystemsSand Dune Ecosystems
Sand Dune Ecosystemsjacksonthree
 

Viewers also liked (8)

Doing citizen science in sensational salt marshes
Doing citizen science in sensational salt marshesDoing citizen science in sensational salt marshes
Doing citizen science in sensational salt marshes
 
Delta
DeltaDelta
Delta
 
Coastal Systems - Salt Marsh Vegetation
Coastal Systems - Salt Marsh VegetationCoastal Systems - Salt Marsh Vegetation
Coastal Systems - Salt Marsh Vegetation
 
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
 
Igcse geog dune succession
Igcse geog dune succession Igcse geog dune succession
Igcse geog dune succession
 
L11 salt marshes ap
L11 salt marshes apL11 salt marshes ap
L11 salt marshes ap
 
Coastal Revision Ppt
Coastal Revision PptCoastal Revision Ppt
Coastal Revision Ppt
 
Sand Dune Ecosystems
Sand Dune EcosystemsSand Dune Ecosystems
Sand Dune Ecosystems
 

Similar to Hughes-Ktona_CapeRomain_DraftPoster-DocEdits

Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...
Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...
Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...David Fratantoni
 
AAG Poster April 2015
AAG Poster April 2015AAG Poster April 2015
AAG Poster April 2015Karen Zelzer
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Negril Research Paper
Negril Research PaperNegril Research Paper
Negril Research PaperChad Morris
 
ba_senechal_ics2013
ba_senechal_ics2013ba_senechal_ics2013
ba_senechal_ics2013Antoine BA
 
Climate Change and Maritime Sector Essay Sample
Climate Change and Maritime Sector Essay SampleClimate Change and Maritime Sector Essay Sample
Climate Change and Maritime Sector Essay Sampleessayprime
 
Rob Thieler, Changing Climate, Changing Coasts
Rob Thieler, Changing Climate, Changing CoastsRob Thieler, Changing Climate, Changing Coasts
Rob Thieler, Changing Climate, Changing Coastsriseagrant
 
Annals of Limnology and Oceanography
Annals of Limnology and OceanographyAnnals of Limnology and Oceanography
Annals of Limnology and Oceanographypeertechzpublication
 
Annals of Limnology and Oceanography
Annals of Limnology and OceanographyAnnals of Limnology and Oceanography
Annals of Limnology and Oceanographypeertechzpublication
 
Moin CR Italy_Gath LR
Moin CR Italy_Gath LRMoin CR Italy_Gath LR
Moin CR Italy_Gath LREldon Gath
 
Sea level changes
Sea  level  changesSea  level  changes
Sea level changesPramoda Raj
 
ENVM3200Report_42853288_GregForster
ENVM3200Report_42853288_GregForsterENVM3200Report_42853288_GregForster
ENVM3200Report_42853288_GregForsterGreg Forster
 
Beach surf zone morphodynamics muy bueno
Beach surf zone morphodynamics muy buenoBeach surf zone morphodynamics muy bueno
Beach surf zone morphodynamics muy buenoEdgar Bernabe
 
BEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdf
BEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdfBEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdf
BEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdfEdgarEduardoCervante1
 

Similar to Hughes-Ktona_CapeRomain_DraftPoster-DocEdits (20)

Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...
Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...
Circulation of the North Atlantic Ocean During the 1990's as Determine by Lag...
 
AAG Poster April 2015
AAG Poster April 2015AAG Poster April 2015
AAG Poster April 2015
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Negril Research Paper
Negril Research PaperNegril Research Paper
Negril Research Paper
 
ARTICLE
ARTICLEARTICLE
ARTICLE
 
ba_senechal_ics2013
ba_senechal_ics2013ba_senechal_ics2013
ba_senechal_ics2013
 
Climate Change and Maritime Sector Essay Sample
Climate Change and Maritime Sector Essay SampleClimate Change and Maritime Sector Essay Sample
Climate Change and Maritime Sector Essay Sample
 
Rob Thieler, Changing Climate, Changing Coasts
Rob Thieler, Changing Climate, Changing CoastsRob Thieler, Changing Climate, Changing Coasts
Rob Thieler, Changing Climate, Changing Coasts
 
Annals of Limnology and Oceanography
Annals of Limnology and OceanographyAnnals of Limnology and Oceanography
Annals of Limnology and Oceanography
 
Annals of Limnology and Oceanography
Annals of Limnology and OceanographyAnnals of Limnology and Oceanography
Annals of Limnology and Oceanography
 
Moin CR Italy_Gath LR
Moin CR Italy_Gath LRMoin CR Italy_Gath LR
Moin CR Italy_Gath LR
 
Bornman et al 2016
Bornman et al 2016Bornman et al 2016
Bornman et al 2016
 
Sikha presenation
Sikha presenationSikha presenation
Sikha presenation
 
Sea level changes
Sea  level  changesSea  level  changes
Sea level changes
 
Hedley et al
Hedley et alHedley et al
Hedley et al
 
1 a shakhova_final
1 a shakhova_final1 a shakhova_final
1 a shakhova_final
 
S11076243_FIELD_REPORT
S11076243_FIELD_REPORTS11076243_FIELD_REPORT
S11076243_FIELD_REPORT
 
ENVM3200Report_42853288_GregForster
ENVM3200Report_42853288_GregForsterENVM3200Report_42853288_GregForster
ENVM3200Report_42853288_GregForster
 
Beach surf zone morphodynamics muy bueno
Beach surf zone morphodynamics muy buenoBeach surf zone morphodynamics muy bueno
Beach surf zone morphodynamics muy bueno
 
BEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdf
BEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdfBEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdf
BEACH SURF ZONE MORPHODYNAMICS-MUY BUENO.pdf
 

Hughes-Ktona_CapeRomain_DraftPoster-DocEdits

  • 1. BACKGROUND   Cape  Romain  is  one  of  four  cuspate  forelands  along  the   Mid-­‐Atlan8c  Coast,  which  are  characterized  by  a  triangular   shape  that  is  nearly  perpendicular  to  the  shoreline  (Hayes  et   al.,  2008).  Cuspate  forelands  are  most  commonly  formed   where  two  opposing  wind  direc8ons  converge,  resul8ng  in   converging  waves  that  mold  the  sediment  into  this   morphology  (Hayes  et  al.,  2008).  Cape  Romain  is   characterized  by  an  eroding  headland,  elonga8ng  spits  on   the  flanks  and  an  overall  erosional  nature.  The  two  lateral   flanks  are  rela8vely  symmetric  and  converge  at  just  over  a   90°  angle,  uncommon  for  cape  morphology.  The  outer   shore  of  Cape  Romain  is  one  of  the  most  erosional   coastlines  in  the  state  of  South  Carolina.     Tidal  and  wave  energy  are  important  to  the  morphology  of   Cape  Romain.  Due  to  its  micro-­‐  to  meso-­‐8dal  seNng,  the   8des  and  waves  influence  Cape  Romain,  with  wave  heights   approximately  1.2  m,  and  mean  8dal  range  of  1.76  m  (Hayes   and  Michel,  2008).  Cape  Romain’s  modern  cuspate  foreland   morphology  and  lateral  spreading  is  greatly  affected  by   wind  and  current  direc8on,  and  is  accelerated  by  hurricane   storm  surges  (Morton  and  Miller  2005).  A  study  of  the   coastal  changes  of  this  cuspate  foreland  was  completed   using  Google  Earth  historical  imagery  from  the  years  1989,   1994,  2005,  2011,  and  2014  (Figure  3).   ABSTRACT   Cape  Romain  is  a  prominent  cuspate  foreland  on  the  South  Carolina  coast,  located  approximately  35   miles  north  of  Charleston  (Figures  1  &  2).  A  thorough  study  using  Google  Earth  imagery  was  completed   in  order  to  determine  the  geomorphologic  changes  of  the  shoreline  from  1989  to  2014.  Major  factors   that  have  affected  the  shape  of  Cape  Romain  include  storm  surges  and  hurricanes,  offshore   morphology,  diverging  wind  paerns,  and  less  recently,  hard  structures  placed  to  the  north  of  the  cape.   Qualita8ve  data  were  analyzed  from  historical  imagery,  and  quan8ta8ve  analyses  of  shoreline  changes   were  made  using  Google  Earth  measurement  tools.  This  study  is  crucial  for  use  in  managing  the   Na8onal  Wildlife  Refuge  located  at  Cape  Romain,  and  understanding  the  effects  of  the  cuspate   forelands’  changing  morphology  on  the  nearby  barrier  islands.   METHODS     •  Historical  imagery  viewed  from  Google  Earth  Pro  from  1989,  1994,   2005,  2011,  and  2014.   •  Reference  lines  were  drawn  parallel  to  the  beach  of  the  north  and   south  flanks  of  the  cape  using  the  “Add  Path”  tool  on  Google  Earth   (Figure  4).   •  Transects  were  drawn  perpendicular  to  the  reference  lines  at  560   m  intervals,  from  reference  line  to  vegeta8on  boundary  (Figure  5).   •  Measurements  were  taken  from  reference  lines,  along  transects,   to  the  berm  (wet/dry  line)  and  to  vegeta8on.   •  The  “Polygon”  tool  was  used  to  outline  the  beach  in  each  historical   image  (Figure  3)  and  determine  the  area  of  beach  (Figure  6).   •  Measurements  were  output  into  tables  in  Excel,  where   quan8ta8ve  data  were  studied  and  graphs  were  made  for   visualizing  the  data  (Figures  7-­‐10).   RESULTS   Data  from  transects  show  a  landward  migra8ng  shoreline.  The  western  end  of  the  south  flank  has  a  more  significant  landward  migra8on   than  the  eastern  end,  while  the  largest  amount  of  overall  landward  migra8on  is  in  the  center  of  the  flank  as  seen  in  figure  9.  Transect  8S   shows  a  total  erosion  of  186  m,  the  most  of  each  transect  measure;  this  equates  to  a  rate  of  over  7  m/yr  in  this  25  year  study.  The   quan8ta8ve  data  at  the  south  flank  show  significant  variance  in  the  amount  of  beach  cover  throughout  the  period  of  the  study.  In  1994,  the   beach  land  cover  decreased  over  400,000  m2,  equa8ng  to  16  m2/yr.  The  north  flank  of  Cape  Romain  is  qualita8vely  more  variable  than  the   southern  por8on  previously  discussed.  Data  show  a  general  retreat  in  shoreline  along  with  an  overall  migra8on  to  the  northeast.  The   quan8ta8ve  data  of  the  north  flank  of  Cape  Romain  is  not  as  complex  as  the  south  flank.  Transects  4N-­‐10N  show  the  greatest  amount  of   retreat,  in  which  5N  and  6N  are  breached  by  2014.  Transect  7N  shows  the  largest  amount  of  retreat  with  471  m  erosion  equa8ng  to  almost   19  m/yr.    The  beach  area  decreases  for  several  years,  approximately  269,908  m2  un8l  2011  when  the  area  of  beach  begins  to  increase   steadily  throughout  the  remainder  of  the  study.  The  area  of  beach  cover  on  the  north  flank  increases  approximately  149,661  m2  from  June,   2011  to  2014.   DISCUSSION  &  CONCLUSIONS   During  the  study  period  1989  to  2014,  the  morphology  of  Cape  Romain  has  been  severely  affected  by  hurricanes.  The  north  flank  was  greatly  impacted  by  three  hurricanes:  Hurricane  Hugo   in  September  of  1989;  Hurricane  Irene  in  August  of  2011;  and  Hurricane  Sandy  in  September  of  2012.  Hurricane  Hugo  redirected  the  en8re  direc8on  of  the  main  inlet  of  the  cuspate   foreland.  Hurricane  Irene  created  three  new  small  inlets  along  the  north  flank  at  transects  3N,  5N  and  7N.  One  year  later  Hurricane  Sandy  opened  up  much  of  the  north  flank  crea8ng  on   large  inlet  in  the  middle  of  it  as  seen  in  figure  10  at  transects  5N,  6N  and  7N.     Aside  from  natural  causes,  hard  structures  to  the  north  of  Cape  Romain  have  had  historic  influence  on  the  morphology  and  sediment  budget.  Though  these  hard  structures  were  installed   many  years  before  the  study,  they  s8ll  have  effect  on  the  sediment  transport  today,  starving  the  cape  of  much  needed  sediment.  Overall,  the  north  flank  of  Cape  Romain  is  eroding  much   more  rapidly  than  the  south  flank.  Erosion  of  the  north  flank  is  accelerated  by  it’s  posi8on,  exposing  it  to  erosion  from  orienta8on  of  wave  and  wind  driven  currents,  which  affect  lioral   transport.  Addi8onally,  hurricane’s  counterclockwise  circula8on  accelerates  nearshore  currents  and  transport  of  sediment  to  the  southwest,  accelera8ng  erosion  on  the  north  flank.   Erosion  of  the  flanks  of  Cape  Romain  can  severely  affect  the  backbarrier,  leaving  abundant  organisms  exposed.  Due  to  the  biodiversity  of  the  Na8onal  Wildlife  Refuge  area,  steps  must  be   taken  to  determine  causes  for  severe  erosion,  and  possible  solu8ons  for  mi8ga8ng  future  erosion.  Further  research  should  include  profiles  of  the  north  and  south  flank  with  an  accurate   measure  of  erosion  with  regards  to  eleva8on,  to  determine  quan8ta8ve  volumetric  data.  Aside  from  this,  offshore  shoals  should  be  measured  to  determine  proximity  of  welding,  height   and  size.  These  shoals,  as  stated  above,  are  sediment  sinks,  and  rather  than  welding  onto  the  barrier,  sit  close  to  shore.     Cape  Romain  is  one  of  the  most  rapidly  eroding  sec8on  of  beach  along  the  east  coast  of  the  United  States.  The  balance  of  sediment  influx  and  oullux  is  not  sufficient  to  keep  the  cape  from   disintegra8ng.    Ac8on  must  be  taken  to  protect  this  area,  as  many  factors  will  be  impacted.   Quan8fying  Coastal  Change  of  Cape  Romain  using  Google  Earth  from  1989  to  2014   Kori  Ktona,  Kris8n  Hughes,  and  Dr.  Leslie  Sauer   Department  of  Geology  and  Environmental  Sciences   Figure  2.   Loca8on  of   study  area,   Cape  Romain   is  35  miles   north  of   Charleston,   SC.   Figure  1.    Overview  of  loca8on  of  study   area,  between  Myrtle  Beach,  SC  and   Charleston,  SC