SlideShare a Scribd company logo
1 of 16
Download to read offline
1/16
Data analysis workflow using Scikit-learn
leewayhertz.com/data-analysis-workflow-using-scikit-learn
Imagine a large retail chain with a profound lack of understanding regarding customer
behavior and preferences and grappling with declining sales. The company is desperate
to up its sales performance and regain its competitive edge. The traditional approaches
and strategies that once worked seem insufficient in the face of evolving consumer trends
and intensified market competition. Thankfully, data analysis can offer the company a way
forward.
Harnessing the power of data analysis, the company can unlock a wealth of information
hidden within its vast data stores. The company can attain valuable insights into customer
preferences, needs, and purchase patterns by carefully examining and interpreting
customer data, including purchase history, demographic information, and browsing
behavior. These insights can serve as the basis for strategic decision-making, enabling
the company to tailor its products, marketing campaigns, and overall customer
experience to align with customers’ needs and expectations.
The example cited above underscores the crucial role of data analysis in enabling
businesses to uncover meaningful insights from their data repositories. With proper data
analysis, organizations can identify key customer segments and target them with
personalized marketing messages and offers. By understanding each segment’s specific
needs and preferences, it can craft compelling value propositions that resonate with
customers, driving engagement and conversion rates. Moreover, data analysis can help
uncover cross-selling and upselling opportunities, allowing the company to maximize
revenue from existing customers.
2/16
This article offers a comprehensive guide on data analysis, touching upon its importance,
types, techniques, and workflow, among other key aspects.
What is data analysis?
Importance of data analysis in business decision making
Types of data analysis
The process of data analysis: Understanding with an example
Data analysis vs. data science
Machine learning in data science
Data analysis workflow using Scikit-learn
Tools used in data analysis
Data security and ethics
What is data analysis?
Data analysis is the process of analyzing, cleaning, transforming, and modeling data to
uncover useful information and draw conclusions from it to support decision-making. It
involves applying various statistical and analytical techniques to uncover patterns,
relationships, and insights from raw data. Data analysis is crucial in extracting meaningful
insights from large and complex datasets, enabling organizations to make informed
decisions, solve problems, and identify opportunities for improvement. It encompasses
tasks such as data cleaning, exploratory data analysis, statistical modeling, predictive
modeling, and data interpretation. Data analysis plays a vital role in transforming raw data
into actionable knowledge that drives evidence-based decision-making.
Experts who conduct data analysis are commonly known as data analysts. Data analysts
gather data from various sources and analyze them based on several aspects to produce
a comprehensive report that can help businesses make data-driven decisions to improve
their business performance.
Importance of data analysis in business decision making
Data analysis plays a crucial role in decision-making across various domains and
industries. Here are some key reasons why data analysis is important in decision-making:
1. Insight generation: Data analysis helps uncover patterns, trends, and relationships
within data that may not be immediately apparent. By analyzing data, decision
makers gain valuable insights that can inform strategic choices, identify
opportunities, and mitigate risks.
2. Evidence-based decision-making: Data analysis provides a factual basis for
decision-making. It allows decision-makers to rely on objective data rather than
depending solely on intuition or personal biases. This leads to more informed and
rational decision-making processes.
3/16
3. Performance evaluation: Data analysis enables organizations to measure and
evaluate their performance against key metrics and goals. By analyzing data,
decision-makers can identify areas of improvement, track progress, and make data-
driven adjustments to achieve desired outcomes.
4. Risk assessment and management: Data analysis helps identify potential risks
and uncertainties. By analyzing historical data and using statistical models, decision
makers can assess the likelihood and impact of risks, enabling them to develop
appropriate risk management strategies.
5. Resource optimization: Data analysis helps optimize the allocation and utilization
of resources. By analyzing data on resource utilization, costs, and efficiency,
decision makers can identify areas of waste, inefficiencies, or underutilization,
leading to better resource allocation and improved operational performance.
6. Customer insights: Data analysis enables organizations to understand customer
behavior, preferences, and needs. By analyzing customer data, decision-makers
can identify patterns, segment customers, and personalize offerings, improving
customer satisfaction and retention.
7. Competitive advantage: Effective data analysis provides organizations with a
competitive edge. By leveraging data insights, organizations can identify market
trends, consumer preferences, and emerging opportunities, allowing them to make
proactive decisions and stay ahead of the competition.
Data analysis empowers decision-makers to make more informed, evidence-based
decisions, optimize resources, mitigate risks, and gain a competitive advantage in today’s
data-driven world.
Types of data analysis
Data analysis encompasses a variety of techniques and approaches that can be used to
extract insights and derive meaning from data. Here are some common types of data
analysis:
1. Descriptive analysis: This type of analysis focuses on summarizing and describing
the main characteristics of a dataset. It involves calculating basic statistics such as
mean, median, and standard deviation, as well as creating visualizations like charts
and graphs to present the data meaningfully.
2. Inferential analysis: Inferential analysis is used to make inferences and draw
conclusions about a larger population based on a sample of data. It involves
statistical techniques such as hypothesis testing, confidence intervals, and
regression analysis to uncover relationships, test hypotheses, and make
predictions.
3. Exploratory analysis: Exploratory analysis involves examining data to discover
patterns, relationships, and insights that were previously unknown. It often involves
visualizations, data mining techniques, and data exploration tools to uncover hidden
trends and generate new hypotheses for further investigation.
4/16
4. Predictive analysis: Predictive analysis uses historical data to forecast or predict
future outcomes. It involves techniques such as regression analysis, time series
analysis, and machine learning algorithms to build models that can predict patterns
and relationships observed in the data.
5. Prescriptive analysis: Prescriptive analysis goes beyond prediction and provides
recommendations or actions to optimize outcomes. It combines predictive models
with optimization techniques to suggest the best course of action in multiple
scenarios. It is typically used in fields like supply chain management, resource
allocation, and decision optimization.
6. Diagnostic analysis: Diagnostic analysis aims to understand the reasons or
causes behind certain events or outcomes. It involves investigating data to identify
factors or variables contributing to a particular result. Techniques such as root
cause analysis and correlation analysis are often used in diagnostic analysis.
7. Text analysis: Text analysis involves analyzing unstructured text data, like
customer reviews, social media posts, or survey responses. Using natural language
processing (NLP) techniques, it extracts meaning, sentiment, and key themes from
text data.
Based on the objective and nature of the data, different analysis techniques may be
employed to gain insights and inform decision-making.
Contact LeewayHertz's data analytics experts today!
Unleash the power of your data and make data-driven decisions
Learn More
The process of data analysis: Understanding with an example
The data analysis process can vary from task to task and company to company. However,
for the sake of better comprehension, we are presenting a generic data analysis process
followed by most data analysts.
Problem definition
This initial step involves clearly defining the problem or objective of the analysis.
Understanding the context, goals, and requirements is important to ensure that the
analysis aligns with the desired outcomes. For example, let’s consider a retail company
that wants to analyze customer purchase data to identify factors influencing customer
churn. The problem is defined as understanding the drivers of customer churn and
developing strategies to reduce it.
Data collection
Once the problem is defined, move on to gathering relevant data. In our example, the
retail company collects data on customer purchases, demographics, loyalty program
participation, customer complaints, and other relevant information. The data can be
5/16
gathered from several sources such as transactional databases, customer relationship
management (CRM) systems, or surveys. It’s important to ensure the data collected is of
good quality, relevant to the problem and covers an appropriate time period.
Data cleaning and preprocessing
Raw data often contains errors, missing values, duplicates, or inconsistencies, which
must be addressed in this step. Data cleaning involves handling missing data by imputing
or removing it based on the analysis requirements. Duplicate records are identified and
removed to avoid biases. In our example, data cleaning may involve identifying missing
values in customer demographic information and deciding how to handle them, such as
imputing missing values based on other available data.
Exploratory Data Analysis (EDA)
EDA involves exploring and understanding the data through summary statistics,
visualizations, and descriptive analysis techniques. This step helps uncover patterns,
relationships, and insights within the data. In our example, EDA may involve:
Analyzing customer churn rates based on different customer segments.
Visualizing purchase patterns over time.
Identifying correlations between customer complaints and churn.
Data modeling and analysis
In this step, statistical or machine learning models are built to analyze the data, answer
specific questions, or make predictions. Depending on the problem, regression,
classification, clustering, or time series analysis techniques can be used. In our example,
a classification model like logistic regression or a decision tree can be built to predict
customer churn based on customer attributes, purchase history, and other relevant
factors.
6/16
Iteration &
Refinement
Data Collection Data Preprocessing
Problem
Definition
DBMs Streams
Data Warehouses
Handling Missing Data
Filtering Outliers
Fixing Structured Errors
Data
Modeling &
Analysis
Communication
& Visualization
Interpretation
& Insights
EDA
LeewayHertz
Interpretation and insights
After analyzing the data and running the models, it’s crucial to interpret the results and
derive meaningful insights. This involves understanding the implications of the findings of
the analysis in the context of the problem and making data-driven recommendations. In
our example, the interpretation could involve identifying key factors contributing to
customer churns, such as low purchase frequency or recent negative customer
interactions, and recommending targeted retention strategies to address these factors.
Communication and visualization
Once the insights are derived, it’s essential to communicate the findings to stakeholders
effectively. Visualizations, reports, dashboards, or presentations can be used to present
the analysis results clearly and understandably. In our example, visualizations can be
created to showcase churn rates across different customer segments or demonstrate
specific factors’ impact on churn probability.
Iteration and refinement
The data analysis process is often iterative, requiring refinement and improvement. This
step involves reviewing the analysis process, evaluating model performance, and
incorporating feedback to enhance the analysis. It may also involve revisiting earlier steps
to gather additional data or modifying the analysis approach based on new insights or
requirements.
Data analysis vs. data science
7/16
Data analysis and data science are related fields that involve working with data to gain
insights and make informed decisions. While there is some overlap between both, they
have distinct focuses and approaches.
Data analysis encompasses the systematic examination, cleansing, transformation, and
modeling of data to uncover valuable insights, make informed conclusions, and facilitate
decision-making processes. It involves using various statistical and analytical techniques
to explore data, identify patterns, and extract insights. Data analysts typically work with
structured data and employ tools such as spreadsheets, SQL, and statistical software to
perform their analyses. Their primary goal is to understand historical data and provide
insights based on past trends and patterns.
Data science, on the contrary, is a broader and more interdisciplinary field that
encompasses data analysis and other areas such as machine learning, statistics, and
computer science Data scientists not only analyze data but also develop and deploy
predictive models, build data pipelines, and create algorithms to solve complex problems.
They work with large and often unstructured datasets, utilize advanced analytics
techniques, and strongly focus on developing and implementing data-driven solutions.
Data science involves a combination of programming skills, mathematical/statistical
knowledge, and domain expertise to extract valuable insights and drive decision-making.
Hence, data analysis is a subset of data science that focuses on extracting insights and
making decisions based on historical data using statistical and analytical techniques.
Data science, on the other hand, encompasses a broader set of skills and techniques,
including data analysis, machine learning, and algorithm development, to solve complex
problems and derive actionable insights from data.
Machine learning in data science
In data science, machine learning is used to extract valuable insights and patterns from
large volumes of data, automate processes, and make accurate predictions or
classifications.
Here are some key concepts and techniques in machine learning that are frequently used
in data science:
1. Supervised learning: This is a subcategory of ML where AI models are trained on
labeled data, meaning the input data is accompanied by corresponding output
labels or target variables. The model learns from the labeled examples and can
make predictions or classifications on unseen data.
2. Unsupervised learning: Contrary to supervised learning, unsupervised learning
involves training models on unlabeled data. The aim is to discover patterns,
structures, or relationships within the data without explicit target variables.
Clustering and dimensionality reduction are common unsupervised learning
techniques.
8/16
3. Regression: Regression models are used when the target variable is continuous
and aims to predict a numeric value. Linear, polynomial, and decision tree
regression are common regression techniques.
4. Classification: Classification is used when the target variable is categorical, and
the goal is to assign data points to predefined classes or categories. Examples
include logistic regression, decision trees, random forests, and Support Vector
Machines (SVM).
5. Clustering: Clustering algorithms group similar data points together based on their
inherent characteristics or similarities. K-means clustering and hierarchical
clustering are popular clustering techniques used in data science.
6. Dimensionality reduction: When dealing with high-dimensional data,
dimensionality reduction techniques are employed to reduce the number of features
while preserving essential information. Principal Component Analysis (PCA) and t-
SNE (t-Distributed Stochastic Neighbor Embedding) are widely used dimensionality
reduction methods.
7. Deep learning: Deep learning is a specialized branch of machine learning that
relies on the utilization of artificial neural networks. These networks draw inspiration
from the intricate structure and functioning of the human brain. Deep learning
encompasses sophisticated neural networks such as Recurrent Neural Networks
(RNNs) and Convolutional Neural Networks (CNNs) that can automatically learn
hierarchical representations from complex data like images, text, and time series.
8. Ensemble methods: Combining multiple models to improve prediction accuracy
and robustness. Bagging (e.g., random forests) and boosting (e.g., AdaBoost,
gradient boosting) are the two most commonly used ensemble methods.
9. Feature engineering: Feature engineering involves selecting, transforming, and
creating meaningful features from raw data to improve the performance of machine
learning models. It is a critical step in data preprocessing and can significantly
impact model effectiveness.
10. Evaluation and validation: To assess the performance of machine learning
models, various evaluation metrics like accuracy, precision, recall, and F1 score are
used. Validation techniques such as cross-validation and train-test splits are
employed to estimate how well a model generalizes to unseen data.
Let us guide you through a concise data analysis workflow using the scikit-learn Python
library. The process comprises three key steps: data preprocessing, model selection and
training, parameter tuning, and model evaluation. Let us go through each step to
understand the data analysis workflow in detail.
Data preprocessing
This step involves selecting relevant features, normalizing the data, and ensuring class
balance. These techniques help prepare the data for effective analysis.
Load the dataset
First, we need to load the dataset that we need to analyze.
9/16
To begin the analysis, we will load the dataset using the Pandas library in Python. For this
demonstration, we will use the heart.csv dataset, which is available in the Kaggle
repository. This dataset will serve as our foundation for the analysis.
import pandas as pd
df = pd.read_csv('source/heart.csv')
df.head()
If you want to retrieve the dimensions or shape of the DataFrame, you can run the
following code:
df.shape
Features selection
Next, we split the dataset’s columns into input (X) and output (Y) variables. In this step,
we assign all the columns except the output column as the input features.
features = []
for column in df.columns:
if column != 'output':
features.append(column)
features
X = df[features]
Y = df['output']
To determine the minimum set of input features, we employ the pandas DataFrame’s
corr() function to calculate the Pearson correlation coefficient among the features. This
coefficient helps identify the strength and direction of the linear relationship between pairs
of features. By analyzing these correlations, we can determine which features are most
strongly correlated and select a reduced set of input features for further analysis.
X.corr()
Data normalization
Run the following to generate descriptive statistics of the DataFrame.
X.describe()
Next, we can perform data normalization using the MinMaxScaler() function from the
scikit-learn library and store the scaled values in the corresponding columns of the
DataFrame X. Before applying the scaler, it is necessary to fit it to the data using the fit()
function. Once fitted, the transformation can be applied using the transform() function. It’s
important to note that the input data must be reshaped into the format (-1,1) before
passing it as an input parameter to the scaler.
from sklearn.preprocessing import MinMaxScaler
for column in X.columns:
feature = np.array(X[column]).reshape(-1,1)
scaler = MinMaxScaler()
10/16
scaler.fit(feature)
feature_scaled = scaler.transform(feature)
X[column] = feature_scaled.reshape(1,-1)[0]
Next, you can run the code ‘X.describe()’ again to view the normalized data.
Split the dataset into training and test sets
Now, we proceed to split the dataset into two components: a training and a test set. The
test set will account for 20% of the entire dataset. To accomplish this, we utilize the
train_test_split() function provided by scikit-learn.
By splitting the data in this manner, we can use the training set to train our model,
allowing it to learn patterns and relationships within the data. Subsequently, we can
assess the performance of the trained model on the test set, which contains unseen data.
This evaluation will help us understand how well the model generalizes to new data and
provides insights into its overall performance.
import numpy as np
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.20, random_state=42)
Balancing
Next, verify whether the dataset is balanced by examining the representation of output
classes in the training set. We aim to determine if the classes are equally represented or
if there is an imbalance. To achieve this, we utilize the value_counts() function, which
calculates the number of records in each output class.
y_train.value_counts()
If the output classes are not balanced, balance it using imblearn library
from imblearn.over_sampling import RandomOverSampler
over_sampler = RandomOverSampler(random_state=42)
X_bal_over, y_bal_over = over_sampler.fit_resample(X_train, y_train)
Calculate the number of records in each class using the value_counts() function, which
allows us to determine the distribution of samples across different classes.
y_bal_over.value_counts()
Next, do the under sampling via the RandomUnderSampler() model.
from imblearn.under_sampling import RandomUnderSampler
under_sampler = RandomUnderSampler(random_state=42)
X_bal_under, y_bal_under = under_sampler.fit_resample(X_train, y_train)
y_bal_under.value_counts()
Model selection and training
11/16
Here, we explore different machine learning models to select the one apt for the specific
purpose. We would be moving forward with the KNeighborsClassifier model and training
them firstly with the imbalanced data.
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
y_score = model.predict_proba(X_test)
Next, calculate the performance of the model, especially the roc_curve() and the
precision_recall() and then plot them.
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from scikitplot.metrics import plot_roc,auc
from scikitplot.metrics import plot_precision_recall
fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])
# Plot metrics
plot_roc(y_test, y_score)
plt.show()
plot_precision_recall(y_test, y_score)
plt.show()
Next, recalculate the same using oversampling for balancing the data. The following
codes help assess the model’s performance and evaluate its ability to discriminate
between different classes.
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_bal_over, y_bal_over)
y_score = model.predict_proba(X_test)
fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])
# Plot metrics
plot_roc(y_test, y_score)
plt.show()
plot_precision_recall(y_test, y_score)
plt.show()
Lastly, we train the model using under-sampled data, where instances from the majority
class are reduced to match the number of instances in the minority class.
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_bal_under, y_bal_under)
y_score = model.predict_proba(X_test)
fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])
# Plot metrics
plot_roc(y_test, y_score)
plt.show()
plot_precision_recall(y_test, y_score)
plt.show()
12/16
Parameter tuning and model evaluation
Finally, we need to enhance the performance of the model by searching for the best
parameters. To accomplish this, we utilize the GridSearchCV mechanism provided by the
scikit-learn library.
from sklearn.model_selection import GridSearchCV
model = KNeighborsClassifier()
param_grid = {
'n_neighbors': np.arange(2,8),
'algorithm' : ['auto', 'ball_tree', 'kd_tree', 'brute'],
'metric' : ['euclidean','manhattan','chebyshev','minkowski']
}
grid = GridSearchCV(model, param_grid = param_grid)
grid.fit(X_train, y_train)
best_estimator = grid.best_estimator_
best_estimator
With the best estimator in hand, we proceed to evaluate the algorithm’s performance.
This involves using the model to predict the test set, calculate ROC curve metrics, and
then visualize the ROC and precision-recall curves using the provided plotting functions.
These steps allow for assessing the model’s performance and provide insights into its
ability to discriminate between different classes.
best_estimator.fit(X_train, y_train)
y_score = best_estimator.predict_proba(X_test)
fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1])
plot_roc(y_test, y_score)
plt.show()
plot_precision_recall(y_test, y_score)
plt.show()
Iterate this evaluation step repeatedly until the model reaches an optimized performance.
You can access the whole set of codes in this GitHub repository.
Tools used in data analysis
There are several tools commonly used in data analysis. Here are the most prominent
ones:
Python
Python is a versatile programming language with many libraries and frameworks
especially designed for data analysis, such as NumPy, Pandas, Matplotlib, and scikit-
learn. It provides multiple tools and functionalities for data manipulation, visualization,
statistical analysis, and machine learning.
R
13/16
R is a programming language particularly designed for statistical computing and data
analysis. It offers a comprehensive set of packages and libraries for data manipulation,
visualization, statistical modeling, and machine learning. R is widely used in data science
and analytics and has a strong focus on statistical analysis.
SQL
SQL elaborated as Structured Query Language, is a standard programming language for
managing and querying relational databases. It is used for tasks like data extraction,
transformation, and loading (ETL), data querying, and database management. SQL is
particularly useful for working with large datasets and performing complex database
operations.
Excel
Microsoft Excel is a famous spreadsheet application that is widely used to analyze and
manipulate data. It offers a range of in-built functions and features for performing
calculations, data sorting, filtering, and basic statistical analysis. Excel is often used for
smaller datasets or quick exploratory analysis tasks.
Tableau
Tableau is a robust data visualization and business intelligence tool. It allows users to
create interactive and visually appealing charts, graphs, and dashboards from various
data sources. Tableau enables users to explore and analyze data intuitively and user-
friendly, making it suitable for data analysis and data-driven decision-making.
MATLAB
MATLAB is a programming language and environment commonly used in scientific and
engineering fields for numerical computation, data analysis, and modeling. It offers a
range of in-built functions and toolboxes for performing advanced mathematical and
statistical analysis, data visualization, and algorithm development.
Jupyter Notebooks
Jupyter Notebooks is an open-source web application allowing users to generate and
share documents that contain live code, visualizations, and explanatory text. It supports
multiple programming languages, including Python, R, and Julia, making it a versatile tool
for data analysis, exploratory data analysis (EDA), and collaborative research.
These tools offer various features and capabilities for different aspects of data analysis,
and the choice of tool depends on the specific requirements, preferences, and expertise
of the data analyst or scientist.
Data security and ethics
14/16
Data security and ethics are crucial aspects of working with data, especially in the context
of data analysis and data science. Let us explore each of these areas:
1. Data security: Data security involves protecting data from unauthorized access,
use, disclosure, alteration, or destruction. It is essential to ensure data
confidentiality, integrity, and availability throughout its lifecycle. Here are some key
considerations for data security:
Access control: Implementing measures to control access to data, including
authentication, authorization, and role-based access controls. This allows only
authorized individuals to access sensitive data.
Data encryption: Using encryption techniques to secure data during
transmission and storage. Encryption helps protect data from being
intercepted or accessed by unauthorized parties.
Data backups and disaster recovery: Regularly backing up data and having
mechanisms in place to recover data in case of a system failure, data loss, or
cyberattack.
Secure data storage: It involves utilizing secure storage solutions, such as
encrypted databases or cloud services with robust security measures, to
protect data from unauthorized access.
Data anonymization: Removing Personally Identifiable Information (PII) or
any sensitive data that can be connected to individuals, ensuring that data
cannot be traced back to specific individuals.
Monitoring and logging: Implementing systems to monitor data access,
detect unusual activity or breaches, and maintain logs for auditing purposes.
Employee training and awareness: Providing training and raising
awareness among employees about data security best practices, such as
strong password management, phishing prevention, and safe data handling.
15/16
2. Data ethics: Data ethics refers to the responsible and ethical usage of data,
ensuring that data analysis and data science practices are conducted in a manner
that respects privacy, fairness, transparency, and accountability. Here are some key
considerations for data ethics:
Privacy protection: Respecting privacy rights and ensuring that data
collection, storage, and analysis comply with applicable privacy laws and
regulations. Minimizing the collection and retention of personally identifiable
information to the extent required for the intended purpose.
Informed consent: Obtaining informed consent from individuals whose data
is being collected, providing clear details about how their data will be used and
assuring they have the chance to opt out or withdraw consent.
Fairness and bias mitigation: Taking steps to mitigate bias in data analysis
and modeling, ensuring that algorithms and models do not discriminate or
disadvantage specific groups of people based on aspects like race, gender, or
socioeconomic status.
Transparency: Being transparent about data collection and usage practices,
providing clear explanations of data analysis methods, and ensuring that
individuals have visibility into how their data is being used.
Accountability and governance: Establishing governance frameworks and
policies that define roles, responsibilities, and accountability for data handling,
ensuring that ethical guidelines are followed, and addressing any potential
ethical concerns or issues.
Responsible data sharing: Ensuring that data is shared appropriately, with
proper safeguards and anonymization techniques to protect privacy and
prevent unauthorized access or misuse.
Data bias and interpretability: Being aware of potential biases in the data
and interpreting the results responsibly and accurately, avoiding
misrepresentation or misinterpretation of the findings.
Data security and ethics are critical components of responsible data management. By
implementing robust security measures and adhering to ethical principles, organizations
can ensure the protection of data, respect individuals’ privacy rights, and maintain trust in
their data analysis and data science practices.
Endnote
Data analysis is pivotal in unlocking valuable insights and driving informed decision-
making in today’s data-driven world. Organizations and individuals can gain a deeper
understanding of trends, patterns, and correlations that can lead to significant advantages
through the systematic examination, interpretation, and modeling of large datasets. Data
analysis allows us to uncover hidden opportunities, identify potential risks, optimize
processes, and enhance performance across various sectors, including healthcare,
finance, and research. By harnessing the power of data analysis tools and techniques, we
can make data-driven decisions, improve business outcomes, and pave the way for
innovation and progress. However, it is crucial to approach data analysis with care,
16/16
ensuring data quality, maintaining ethical standards, and considering potential biases or
limitations in order to derive accurate and reliable insights. In this era of abundant data,
mastering the art of data analysis is becoming increasingly essential for individuals and
organizations seeking to stay competitive and thrive in the digital age.
Don’t overlook the valuable insights concealed within your data. Collaborate with
LeewayHertz’s data analysts and scientists to uncover valuable patterns and trends in
your data that can help shape your business decisions.

More Related Content

Similar to leewayhertz.com-Data analysis workflow using Scikit-learn.pdf

Data Mining Presentation for College Harsh.pptx
Data Mining Presentation for College Harsh.pptxData Mining Presentation for College Harsh.pptx
Data Mining Presentation for College Harsh.pptxhp41112004
 
Data Analysis and Analytics.pdf
Data Analysis and Analytics.pdfData Analysis and Analytics.pdf
Data Analysis and Analytics.pdfrohitgautam105831
 
Data Analysis - Approach & Techniques
Data Analysis - Approach & TechniquesData Analysis - Approach & Techniques
Data Analysis - Approach & TechniquesInvenkLearn
 
Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...
Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...
Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...Attitude Tally Academy
 
Business intelligence and analytics
Business intelligence and analyticsBusiness intelligence and analytics
Business intelligence and analyticsYogesh Supekar
 
DATAFICATION - Datafication refers to the transformation of various aspects
DATAFICATION - Datafication refers to the transformation of various aspectsDATAFICATION - Datafication refers to the transformation of various aspects
DATAFICATION - Datafication refers to the transformation of various aspectsincmagazineseo
 
Unveiling the Power of Data Analytics.pdf
Unveiling the Power of Data Analytics.pdfUnveiling the Power of Data Analytics.pdf
Unveiling the Power of Data Analytics.pdfJyoti Sharma
 
Presentation in Strategic Plannin and Management.pptx
Presentation in Strategic Plannin and Management.pptxPresentation in Strategic Plannin and Management.pptx
Presentation in Strategic Plannin and Management.pptxYRREHCPARCON
 
Data Analysis Methods 101 - Turning Raw Data Into Actionable Insights
Data Analysis Methods 101 - Turning Raw Data Into Actionable InsightsData Analysis Methods 101 - Turning Raw Data Into Actionable Insights
Data Analysis Methods 101 - Turning Raw Data Into Actionable InsightsDataSpace Academy
 
Data Analytics for E-Commerce: Driving Growth with Expert Training
Data Analytics for E-Commerce: Driving Growth with Expert TrainingData Analytics for E-Commerce: Driving Growth with Expert Training
Data Analytics for E-Commerce: Driving Growth with Expert TrainingUncodemy
 
Data-driven HR reshaping the business landscape
Data-driven HR reshaping the business landscapeData-driven HR reshaping the business landscape
Data-driven HR reshaping the business landscapeElizaPeter1
 
Marketing and HR Analytics
Marketing and HR AnalyticsMarketing and HR Analytics
Marketing and HR AnalyticsVadivelM9
 
Business Decision-Making and Data Analytics
 Business Decision-Making and Data Analytics Business Decision-Making and Data Analytics
Business Decision-Making and Data AnalyticsCiente
 
What Are the Challenges and Opportunities in Big Data Analytics.pdf
What Are the Challenges and Opportunities in Big Data Analytics.pdfWhat Are the Challenges and Opportunities in Big Data Analytics.pdf
What Are the Challenges and Opportunities in Big Data Analytics.pdfMr. Business Magazine
 

Similar to leewayhertz.com-Data analysis workflow using Scikit-learn.pdf (20)

Data Mining Presentation for College Harsh.pptx
Data Mining Presentation for College Harsh.pptxData Mining Presentation for College Harsh.pptx
Data Mining Presentation for College Harsh.pptx
 
Data Analysis and Analytics.pdf
Data Analysis and Analytics.pdfData Analysis and Analytics.pdf
Data Analysis and Analytics.pdf
 
Data Analysis - Approach & Techniques
Data Analysis - Approach & TechniquesData Analysis - Approach & Techniques
Data Analysis - Approach & Techniques
 
Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...
Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...
Data-Analytics-Essentials-Building-a-Foundation-for-Informed-Business-Choices...
 
Business intelligence and analytics
Business intelligence and analyticsBusiness intelligence and analytics
Business intelligence and analytics
 
Data Mining
Data MiningData Mining
Data Mining
 
DATAFICATION - Datafication refers to the transformation of various aspects
DATAFICATION - Datafication refers to the transformation of various aspectsDATAFICATION - Datafication refers to the transformation of various aspects
DATAFICATION - Datafication refers to the transformation of various aspects
 
Unveiling the Power of Data Analytics.pdf
Unveiling the Power of Data Analytics.pdfUnveiling the Power of Data Analytics.pdf
Unveiling the Power of Data Analytics.pdf
 
Presentation in Strategic Plannin and Management.pptx
Presentation in Strategic Plannin and Management.pptxPresentation in Strategic Plannin and Management.pptx
Presentation in Strategic Plannin and Management.pptx
 
Data Analysis Methods 101 - Turning Raw Data Into Actionable Insights
Data Analysis Methods 101 - Turning Raw Data Into Actionable InsightsData Analysis Methods 101 - Turning Raw Data Into Actionable Insights
Data Analysis Methods 101 - Turning Raw Data Into Actionable Insights
 
Datamining
DataminingDatamining
Datamining
 
Datamining
DataminingDatamining
Datamining
 
Dat analytics all verticals
Dat analytics all verticalsDat analytics all verticals
Dat analytics all verticals
 
Insurance value chain
Insurance value chainInsurance value chain
Insurance value chain
 
Data Analytics for E-Commerce: Driving Growth with Expert Training
Data Analytics for E-Commerce: Driving Growth with Expert TrainingData Analytics for E-Commerce: Driving Growth with Expert Training
Data Analytics for E-Commerce: Driving Growth with Expert Training
 
Data-driven HR reshaping the business landscape
Data-driven HR reshaping the business landscapeData-driven HR reshaping the business landscape
Data-driven HR reshaping the business landscape
 
Data analytics
Data analyticsData analytics
Data analytics
 
Marketing and HR Analytics
Marketing and HR AnalyticsMarketing and HR Analytics
Marketing and HR Analytics
 
Business Decision-Making and Data Analytics
 Business Decision-Making and Data Analytics Business Decision-Making and Data Analytics
Business Decision-Making and Data Analytics
 
What Are the Challenges and Opportunities in Big Data Analytics.pdf
What Are the Challenges and Opportunities in Big Data Analytics.pdfWhat Are the Challenges and Opportunities in Big Data Analytics.pdf
What Are the Challenges and Opportunities in Big Data Analytics.pdf
 

More from KristiLBurns

leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...
leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...
leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...KristiLBurns
 
leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...
leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...
leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...KristiLBurns
 
leewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdf
leewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdfleewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdf
leewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdfKristiLBurns
 
leewayhertz.com-AI in networking Redefining digital connectivity and efficien...
leewayhertz.com-AI in networking Redefining digital connectivity and efficien...leewayhertz.com-AI in networking Redefining digital connectivity and efficien...
leewayhertz.com-AI in networking Redefining digital connectivity and efficien...KristiLBurns
 
leewayhertz.com-AI in procurement Redefining efficiency through automation.pdf
leewayhertz.com-AI in procurement Redefining efficiency through automation.pdfleewayhertz.com-AI in procurement Redefining efficiency through automation.pdf
leewayhertz.com-AI in procurement Redefining efficiency through automation.pdfKristiLBurns
 
leewayhertz.com-AI in production planning Pioneering innovation in the heart ...
leewayhertz.com-AI in production planning Pioneering innovation in the heart ...leewayhertz.com-AI in production planning Pioneering innovation in the heart ...
leewayhertz.com-AI in production planning Pioneering innovation in the heart ...KristiLBurns
 
leewayhertz.com-Federated learning Unlocking the potential of secure distribu...
leewayhertz.com-Federated learning Unlocking the potential of secure distribu...leewayhertz.com-Federated learning Unlocking the potential of secure distribu...
leewayhertz.com-Federated learning Unlocking the potential of secure distribu...KristiLBurns
 
leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...
leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...
leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...KristiLBurns
 
leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...
leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...
leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...KristiLBurns
 
leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...
leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...
leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...KristiLBurns
 
leewayhertz.com-How to build a generative AI solution From prototyping to pro...
leewayhertz.com-How to build a generative AI solution From prototyping to pro...leewayhertz.com-How to build a generative AI solution From prototyping to pro...
leewayhertz.com-How to build a generative AI solution From prototyping to pro...KristiLBurns
 
leewayhertz.com-The future of production Generative AI in manufacturing.pdf
leewayhertz.com-The future of production Generative AI in manufacturing.pdfleewayhertz.com-The future of production Generative AI in manufacturing.pdf
leewayhertz.com-The future of production Generative AI in manufacturing.pdfKristiLBurns
 
leewayhertz.com-AI use cases and applications in private equity principal inv...
leewayhertz.com-AI use cases and applications in private equity principal inv...leewayhertz.com-AI use cases and applications in private equity principal inv...
leewayhertz.com-AI use cases and applications in private equity principal inv...KristiLBurns
 
leewayhertz.com-The role of AI in logistics and supply chain.pdf
leewayhertz.com-The role of AI in logistics and supply chain.pdfleewayhertz.com-The role of AI in logistics and supply chain.pdf
leewayhertz.com-The role of AI in logistics and supply chain.pdfKristiLBurns
 
leewayhertz.com-AI in the workplace Transforming todays work dynamics.pdf
leewayhertz.com-AI in the workplace Transforming todays work dynamics.pdfleewayhertz.com-AI in the workplace Transforming todays work dynamics.pdf
leewayhertz.com-AI in the workplace Transforming todays work dynamics.pdfKristiLBurns
 
leewayhertz.com-AI in knowledge management Paving the way for transformative ...
leewayhertz.com-AI in knowledge management Paving the way for transformative ...leewayhertz.com-AI in knowledge management Paving the way for transformative ...
leewayhertz.com-AI in knowledge management Paving the way for transformative ...KristiLBurns
 
leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...
leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...
leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...KristiLBurns
 
leewayhertz.com-How AI-driven development is reshaping the tech landscape.pdf
leewayhertz.com-How AI-driven development is reshaping the tech landscape.pdfleewayhertz.com-How AI-driven development is reshaping the tech landscape.pdf
leewayhertz.com-How AI-driven development is reshaping the tech landscape.pdfKristiLBurns
 
leewayhertz.com-AI in market research Charting a course from raw data to stra...
leewayhertz.com-AI in market research Charting a course from raw data to stra...leewayhertz.com-AI in market research Charting a course from raw data to stra...
leewayhertz.com-AI in market research Charting a course from raw data to stra...KristiLBurns
 
leewayhertz.com-AI in web3 How AI manifests in the world of web3.pdf
leewayhertz.com-AI in web3 How AI manifests in the world of web3.pdfleewayhertz.com-AI in web3 How AI manifests in the world of web3.pdf
leewayhertz.com-AI in web3 How AI manifests in the world of web3.pdfKristiLBurns
 

More from KristiLBurns (20)

leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...
leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...
leewayhertz.com-AI-powered dynamic pricing solutions Optimizing revenue in re...
 
leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...
leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...
leewayhertz.com-Automated invoice processing Leveraging AI for Accounts Payab...
 
leewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdf
leewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdfleewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdf
leewayhertz.com-Predicting the pulse of the market AI in trend analysis.pdf
 
leewayhertz.com-AI in networking Redefining digital connectivity and efficien...
leewayhertz.com-AI in networking Redefining digital connectivity and efficien...leewayhertz.com-AI in networking Redefining digital connectivity and efficien...
leewayhertz.com-AI in networking Redefining digital connectivity and efficien...
 
leewayhertz.com-AI in procurement Redefining efficiency through automation.pdf
leewayhertz.com-AI in procurement Redefining efficiency through automation.pdfleewayhertz.com-AI in procurement Redefining efficiency through automation.pdf
leewayhertz.com-AI in procurement Redefining efficiency through automation.pdf
 
leewayhertz.com-AI in production planning Pioneering innovation in the heart ...
leewayhertz.com-AI in production planning Pioneering innovation in the heart ...leewayhertz.com-AI in production planning Pioneering innovation in the heart ...
leewayhertz.com-AI in production planning Pioneering innovation in the heart ...
 
leewayhertz.com-Federated learning Unlocking the potential of secure distribu...
leewayhertz.com-Federated learning Unlocking the potential of secure distribu...leewayhertz.com-Federated learning Unlocking the potential of secure distribu...
leewayhertz.com-Federated learning Unlocking the potential of secure distribu...
 
leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...
leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...
leewayhertz.com-AI in product lifecycle management A paradigm shift in innova...
 
leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...
leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...
leewayhertz.com-Named Entity Recognition NER Unveiling the value in unstructu...
 
leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...
leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...
leewayhertz.com-AI in Master Data Management MDM Pioneering next-generation d...
 
leewayhertz.com-How to build a generative AI solution From prototyping to pro...
leewayhertz.com-How to build a generative AI solution From prototyping to pro...leewayhertz.com-How to build a generative AI solution From prototyping to pro...
leewayhertz.com-How to build a generative AI solution From prototyping to pro...
 
leewayhertz.com-The future of production Generative AI in manufacturing.pdf
leewayhertz.com-The future of production Generative AI in manufacturing.pdfleewayhertz.com-The future of production Generative AI in manufacturing.pdf
leewayhertz.com-The future of production Generative AI in manufacturing.pdf
 
leewayhertz.com-AI use cases and applications in private equity principal inv...
leewayhertz.com-AI use cases and applications in private equity principal inv...leewayhertz.com-AI use cases and applications in private equity principal inv...
leewayhertz.com-AI use cases and applications in private equity principal inv...
 
leewayhertz.com-The role of AI in logistics and supply chain.pdf
leewayhertz.com-The role of AI in logistics and supply chain.pdfleewayhertz.com-The role of AI in logistics and supply chain.pdf
leewayhertz.com-The role of AI in logistics and supply chain.pdf
 
leewayhertz.com-AI in the workplace Transforming todays work dynamics.pdf
leewayhertz.com-AI in the workplace Transforming todays work dynamics.pdfleewayhertz.com-AI in the workplace Transforming todays work dynamics.pdf
leewayhertz.com-AI in the workplace Transforming todays work dynamics.pdf
 
leewayhertz.com-AI in knowledge management Paving the way for transformative ...
leewayhertz.com-AI in knowledge management Paving the way for transformative ...leewayhertz.com-AI in knowledge management Paving the way for transformative ...
leewayhertz.com-AI in knowledge management Paving the way for transformative ...
 
leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...
leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...
leewayhertz.com-AI in accounting and auditing Blazing new trails in financial...
 
leewayhertz.com-How AI-driven development is reshaping the tech landscape.pdf
leewayhertz.com-How AI-driven development is reshaping the tech landscape.pdfleewayhertz.com-How AI-driven development is reshaping the tech landscape.pdf
leewayhertz.com-How AI-driven development is reshaping the tech landscape.pdf
 
leewayhertz.com-AI in market research Charting a course from raw data to stra...
leewayhertz.com-AI in market research Charting a course from raw data to stra...leewayhertz.com-AI in market research Charting a course from raw data to stra...
leewayhertz.com-AI in market research Charting a course from raw data to stra...
 
leewayhertz.com-AI in web3 How AI manifests in the world of web3.pdf
leewayhertz.com-AI in web3 How AI manifests in the world of web3.pdfleewayhertz.com-AI in web3 How AI manifests in the world of web3.pdf
leewayhertz.com-AI in web3 How AI manifests in the world of web3.pdf
 

Recently uploaded

Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...
Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...
Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...Ayesha Khan
 
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝thapagita
 
NASHIK CALL GIRL 92628*71154 NASHIK CALL
NASHIK CALL GIRL 92628*71154 NASHIK CALLNASHIK CALL GIRL 92628*71154 NASHIK CALL
NASHIK CALL GIRL 92628*71154 NASHIK CALLNiteshKumar82226
 
(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)riyaescorts54
 
Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7
Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7
Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7Ayesha Khan
 
Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝Lipikasharma29
 
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...aakahthapa70
 
Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...
Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...
Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...aakahthapa70
 
100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712
100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712
100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712Delhi Escorts Service
 
Call Girls In Naraina (Delhi) +91-9667422720 Escorts Service
Call Girls In Naraina (Delhi) +91-9667422720 Escorts ServiceCall Girls In Naraina (Delhi) +91-9667422720 Escorts Service
Call Girls In Naraina (Delhi) +91-9667422720 Escorts ServiceLipikasharma29
 
Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝Lipikasharma29
 
▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂
▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂
▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂door45step
 
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋Sheetaleventcompany
 
Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...
Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...
Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...Ayesha Khan
 
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...aakahthapa70
 
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash PaymentCall Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Paymentaakahthapa70
 
Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝
Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝
Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝thapagita
 
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...Delhi Escorts Service
 
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In KarachiCall Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In KarachiAyesha Khan
 
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...aakahthapa70
 

Recently uploaded (20)

Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...
Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...
Call Girls In Islamabad || 03274885999 || 24/7 Service Islamabad Call Girls &...
 
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
Call Girls in Majnu ka Tilla Delhi 💯 Call Us 🔝9711014705🔝
 
NASHIK CALL GIRL 92628*71154 NASHIK CALL
NASHIK CALL GIRL 92628*71154 NASHIK CALLNASHIK CALL GIRL 92628*71154 NASHIK CALL
NASHIK CALL GIRL 92628*71154 NASHIK CALL
 
(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 88 (NOIDA ESCORTS)
 
Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7
Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7
Call Girls In Lahore || 03010449222 ||Lahore Call Girl Available 24/7
 
Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Janakpuri Delhi 💯 Call Us 🔝9667422720🔝
 
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
 
Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...
Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...
Call Girls In {Green Park Delhi} 9667938988 Indian Russian High Profile Girls...
 
100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712
100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712
100% Real Call Girls In New Ashok Nagar Delhi | Just Call 9711911712
 
Call Girls In Naraina (Delhi) +91-9667422720 Escorts Service
Call Girls In Naraina (Delhi) +91-9667422720 Escorts ServiceCall Girls In Naraina (Delhi) +91-9667422720 Escorts Service
Call Girls In Naraina (Delhi) +91-9667422720 Escorts Service
 
Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝
Call Girls in Chattarpur Delhi 💯 Call Us 🔝9667422720🔝
 
▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂
▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂
▶ ●─Cash On Delivery Call Girls In ( Sector 63 Noida )꧁❀⎝8375860717⎠❀꧂
 
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
💚😋Bangalore Escort Service Call Girls, â‚č5000 To 25K With AC💚😋
 
Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...
Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...
Call Girls In Islamabad ***03255523555*** Red Hot Call Girls In Islamabad Esc...
 
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
Call Girls In {Aerocity Delhi} 98733@20244 Indian Russian High Profile Girls ...
 
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash PaymentCall Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
Call Girls In {Aerocity Delhi} 9667938988 Cheap Price Your Budget & Cash Payment
 
Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝
Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝
Call Girls In Dwarka Delhi 💯Call Us 🔝9711014705🔝
 
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
100% Real Call Girls In Hazrat Nizamuddin Railway Station Delhi | Just Call 9...
 
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In KarachiCall Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
Call Girls In Karachi || 03070433345 || Sexy & Affordable Call Girls In Karachi
 
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
Call Girls In {Laxmi Nagar Delhi} 9667938988 Indian Russian High Profile Girl...
 

leewayhertz.com-Data analysis workflow using Scikit-learn.pdf

  • 1. 1/16 Data analysis workflow using Scikit-learn leewayhertz.com/data-analysis-workflow-using-scikit-learn Imagine a large retail chain with a profound lack of understanding regarding customer behavior and preferences and grappling with declining sales. The company is desperate to up its sales performance and regain its competitive edge. The traditional approaches and strategies that once worked seem insufficient in the face of evolving consumer trends and intensified market competition. Thankfully, data analysis can offer the company a way forward. Harnessing the power of data analysis, the company can unlock a wealth of information hidden within its vast data stores. The company can attain valuable insights into customer preferences, needs, and purchase patterns by carefully examining and interpreting customer data, including purchase history, demographic information, and browsing behavior. These insights can serve as the basis for strategic decision-making, enabling the company to tailor its products, marketing campaigns, and overall customer experience to align with customers’ needs and expectations. The example cited above underscores the crucial role of data analysis in enabling businesses to uncover meaningful insights from their data repositories. With proper data analysis, organizations can identify key customer segments and target them with personalized marketing messages and offers. By understanding each segment’s specific needs and preferences, it can craft compelling value propositions that resonate with customers, driving engagement and conversion rates. Moreover, data analysis can help uncover cross-selling and upselling opportunities, allowing the company to maximize revenue from existing customers.
  • 2. 2/16 This article offers a comprehensive guide on data analysis, touching upon its importance, types, techniques, and workflow, among other key aspects. What is data analysis? Importance of data analysis in business decision making Types of data analysis The process of data analysis: Understanding with an example Data analysis vs. data science Machine learning in data science Data analysis workflow using Scikit-learn Tools used in data analysis Data security and ethics What is data analysis? Data analysis is the process of analyzing, cleaning, transforming, and modeling data to uncover useful information and draw conclusions from it to support decision-making. It involves applying various statistical and analytical techniques to uncover patterns, relationships, and insights from raw data. Data analysis is crucial in extracting meaningful insights from large and complex datasets, enabling organizations to make informed decisions, solve problems, and identify opportunities for improvement. It encompasses tasks such as data cleaning, exploratory data analysis, statistical modeling, predictive modeling, and data interpretation. Data analysis plays a vital role in transforming raw data into actionable knowledge that drives evidence-based decision-making. Experts who conduct data analysis are commonly known as data analysts. Data analysts gather data from various sources and analyze them based on several aspects to produce a comprehensive report that can help businesses make data-driven decisions to improve their business performance. Importance of data analysis in business decision making Data analysis plays a crucial role in decision-making across various domains and industries. Here are some key reasons why data analysis is important in decision-making: 1. Insight generation: Data analysis helps uncover patterns, trends, and relationships within data that may not be immediately apparent. By analyzing data, decision makers gain valuable insights that can inform strategic choices, identify opportunities, and mitigate risks. 2. Evidence-based decision-making: Data analysis provides a factual basis for decision-making. It allows decision-makers to rely on objective data rather than depending solely on intuition or personal biases. This leads to more informed and rational decision-making processes.
  • 3. 3/16 3. Performance evaluation: Data analysis enables organizations to measure and evaluate their performance against key metrics and goals. By analyzing data, decision-makers can identify areas of improvement, track progress, and make data- driven adjustments to achieve desired outcomes. 4. Risk assessment and management: Data analysis helps identify potential risks and uncertainties. By analyzing historical data and using statistical models, decision makers can assess the likelihood and impact of risks, enabling them to develop appropriate risk management strategies. 5. Resource optimization: Data analysis helps optimize the allocation and utilization of resources. By analyzing data on resource utilization, costs, and efficiency, decision makers can identify areas of waste, inefficiencies, or underutilization, leading to better resource allocation and improved operational performance. 6. Customer insights: Data analysis enables organizations to understand customer behavior, preferences, and needs. By analyzing customer data, decision-makers can identify patterns, segment customers, and personalize offerings, improving customer satisfaction and retention. 7. Competitive advantage: Effective data analysis provides organizations with a competitive edge. By leveraging data insights, organizations can identify market trends, consumer preferences, and emerging opportunities, allowing them to make proactive decisions and stay ahead of the competition. Data analysis empowers decision-makers to make more informed, evidence-based decisions, optimize resources, mitigate risks, and gain a competitive advantage in today’s data-driven world. Types of data analysis Data analysis encompasses a variety of techniques and approaches that can be used to extract insights and derive meaning from data. Here are some common types of data analysis: 1. Descriptive analysis: This type of analysis focuses on summarizing and describing the main characteristics of a dataset. It involves calculating basic statistics such as mean, median, and standard deviation, as well as creating visualizations like charts and graphs to present the data meaningfully. 2. Inferential analysis: Inferential analysis is used to make inferences and draw conclusions about a larger population based on a sample of data. It involves statistical techniques such as hypothesis testing, confidence intervals, and regression analysis to uncover relationships, test hypotheses, and make predictions. 3. Exploratory analysis: Exploratory analysis involves examining data to discover patterns, relationships, and insights that were previously unknown. It often involves visualizations, data mining techniques, and data exploration tools to uncover hidden trends and generate new hypotheses for further investigation.
  • 4. 4/16 4. Predictive analysis: Predictive analysis uses historical data to forecast or predict future outcomes. It involves techniques such as regression analysis, time series analysis, and machine learning algorithms to build models that can predict patterns and relationships observed in the data. 5. Prescriptive analysis: Prescriptive analysis goes beyond prediction and provides recommendations or actions to optimize outcomes. It combines predictive models with optimization techniques to suggest the best course of action in multiple scenarios. It is typically used in fields like supply chain management, resource allocation, and decision optimization. 6. Diagnostic analysis: Diagnostic analysis aims to understand the reasons or causes behind certain events or outcomes. It involves investigating data to identify factors or variables contributing to a particular result. Techniques such as root cause analysis and correlation analysis are often used in diagnostic analysis. 7. Text analysis: Text analysis involves analyzing unstructured text data, like customer reviews, social media posts, or survey responses. Using natural language processing (NLP) techniques, it extracts meaning, sentiment, and key themes from text data. Based on the objective and nature of the data, different analysis techniques may be employed to gain insights and inform decision-making. Contact LeewayHertz's data analytics experts today! Unleash the power of your data and make data-driven decisions Learn More The process of data analysis: Understanding with an example The data analysis process can vary from task to task and company to company. However, for the sake of better comprehension, we are presenting a generic data analysis process followed by most data analysts. Problem definition This initial step involves clearly defining the problem or objective of the analysis. Understanding the context, goals, and requirements is important to ensure that the analysis aligns with the desired outcomes. For example, let’s consider a retail company that wants to analyze customer purchase data to identify factors influencing customer churn. The problem is defined as understanding the drivers of customer churn and developing strategies to reduce it. Data collection Once the problem is defined, move on to gathering relevant data. In our example, the retail company collects data on customer purchases, demographics, loyalty program participation, customer complaints, and other relevant information. The data can be
  • 5. 5/16 gathered from several sources such as transactional databases, customer relationship management (CRM) systems, or surveys. It’s important to ensure the data collected is of good quality, relevant to the problem and covers an appropriate time period. Data cleaning and preprocessing Raw data often contains errors, missing values, duplicates, or inconsistencies, which must be addressed in this step. Data cleaning involves handling missing data by imputing or removing it based on the analysis requirements. Duplicate records are identified and removed to avoid biases. In our example, data cleaning may involve identifying missing values in customer demographic information and deciding how to handle them, such as imputing missing values based on other available data. Exploratory Data Analysis (EDA) EDA involves exploring and understanding the data through summary statistics, visualizations, and descriptive analysis techniques. This step helps uncover patterns, relationships, and insights within the data. In our example, EDA may involve: Analyzing customer churn rates based on different customer segments. Visualizing purchase patterns over time. Identifying correlations between customer complaints and churn. Data modeling and analysis In this step, statistical or machine learning models are built to analyze the data, answer specific questions, or make predictions. Depending on the problem, regression, classification, clustering, or time series analysis techniques can be used. In our example, a classification model like logistic regression or a decision tree can be built to predict customer churn based on customer attributes, purchase history, and other relevant factors.
  • 6. 6/16 Iteration & Refinement Data Collection Data Preprocessing Problem Definition DBMs Streams Data Warehouses Handling Missing Data Filtering Outliers Fixing Structured Errors Data Modeling & Analysis Communication & Visualization Interpretation & Insights EDA LeewayHertz Interpretation and insights After analyzing the data and running the models, it’s crucial to interpret the results and derive meaningful insights. This involves understanding the implications of the findings of the analysis in the context of the problem and making data-driven recommendations. In our example, the interpretation could involve identifying key factors contributing to customer churns, such as low purchase frequency or recent negative customer interactions, and recommending targeted retention strategies to address these factors. Communication and visualization Once the insights are derived, it’s essential to communicate the findings to stakeholders effectively. Visualizations, reports, dashboards, or presentations can be used to present the analysis results clearly and understandably. In our example, visualizations can be created to showcase churn rates across different customer segments or demonstrate specific factors’ impact on churn probability. Iteration and refinement The data analysis process is often iterative, requiring refinement and improvement. This step involves reviewing the analysis process, evaluating model performance, and incorporating feedback to enhance the analysis. It may also involve revisiting earlier steps to gather additional data or modifying the analysis approach based on new insights or requirements. Data analysis vs. data science
  • 7. 7/16 Data analysis and data science are related fields that involve working with data to gain insights and make informed decisions. While there is some overlap between both, they have distinct focuses and approaches. Data analysis encompasses the systematic examination, cleansing, transformation, and modeling of data to uncover valuable insights, make informed conclusions, and facilitate decision-making processes. It involves using various statistical and analytical techniques to explore data, identify patterns, and extract insights. Data analysts typically work with structured data and employ tools such as spreadsheets, SQL, and statistical software to perform their analyses. Their primary goal is to understand historical data and provide insights based on past trends and patterns. Data science, on the contrary, is a broader and more interdisciplinary field that encompasses data analysis and other areas such as machine learning, statistics, and computer science Data scientists not only analyze data but also develop and deploy predictive models, build data pipelines, and create algorithms to solve complex problems. They work with large and often unstructured datasets, utilize advanced analytics techniques, and strongly focus on developing and implementing data-driven solutions. Data science involves a combination of programming skills, mathematical/statistical knowledge, and domain expertise to extract valuable insights and drive decision-making. Hence, data analysis is a subset of data science that focuses on extracting insights and making decisions based on historical data using statistical and analytical techniques. Data science, on the other hand, encompasses a broader set of skills and techniques, including data analysis, machine learning, and algorithm development, to solve complex problems and derive actionable insights from data. Machine learning in data science In data science, machine learning is used to extract valuable insights and patterns from large volumes of data, automate processes, and make accurate predictions or classifications. Here are some key concepts and techniques in machine learning that are frequently used in data science: 1. Supervised learning: This is a subcategory of ML where AI models are trained on labeled data, meaning the input data is accompanied by corresponding output labels or target variables. The model learns from the labeled examples and can make predictions or classifications on unseen data. 2. Unsupervised learning: Contrary to supervised learning, unsupervised learning involves training models on unlabeled data. The aim is to discover patterns, structures, or relationships within the data without explicit target variables. Clustering and dimensionality reduction are common unsupervised learning techniques.
  • 8. 8/16 3. Regression: Regression models are used when the target variable is continuous and aims to predict a numeric value. Linear, polynomial, and decision tree regression are common regression techniques. 4. Classification: Classification is used when the target variable is categorical, and the goal is to assign data points to predefined classes or categories. Examples include logistic regression, decision trees, random forests, and Support Vector Machines (SVM). 5. Clustering: Clustering algorithms group similar data points together based on their inherent characteristics or similarities. K-means clustering and hierarchical clustering are popular clustering techniques used in data science. 6. Dimensionality reduction: When dealing with high-dimensional data, dimensionality reduction techniques are employed to reduce the number of features while preserving essential information. Principal Component Analysis (PCA) and t- SNE (t-Distributed Stochastic Neighbor Embedding) are widely used dimensionality reduction methods. 7. Deep learning: Deep learning is a specialized branch of machine learning that relies on the utilization of artificial neural networks. These networks draw inspiration from the intricate structure and functioning of the human brain. Deep learning encompasses sophisticated neural networks such as Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) that can automatically learn hierarchical representations from complex data like images, text, and time series. 8. Ensemble methods: Combining multiple models to improve prediction accuracy and robustness. Bagging (e.g., random forests) and boosting (e.g., AdaBoost, gradient boosting) are the two most commonly used ensemble methods. 9. Feature engineering: Feature engineering involves selecting, transforming, and creating meaningful features from raw data to improve the performance of machine learning models. It is a critical step in data preprocessing and can significantly impact model effectiveness. 10. Evaluation and validation: To assess the performance of machine learning models, various evaluation metrics like accuracy, precision, recall, and F1 score are used. Validation techniques such as cross-validation and train-test splits are employed to estimate how well a model generalizes to unseen data. Let us guide you through a concise data analysis workflow using the scikit-learn Python library. The process comprises three key steps: data preprocessing, model selection and training, parameter tuning, and model evaluation. Let us go through each step to understand the data analysis workflow in detail. Data preprocessing This step involves selecting relevant features, normalizing the data, and ensuring class balance. These techniques help prepare the data for effective analysis. Load the dataset First, we need to load the dataset that we need to analyze.
  • 9. 9/16 To begin the analysis, we will load the dataset using the Pandas library in Python. For this demonstration, we will use the heart.csv dataset, which is available in the Kaggle repository. This dataset will serve as our foundation for the analysis. import pandas as pd df = pd.read_csv('source/heart.csv') df.head() If you want to retrieve the dimensions or shape of the DataFrame, you can run the following code: df.shape Features selection Next, we split the dataset’s columns into input (X) and output (Y) variables. In this step, we assign all the columns except the output column as the input features. features = [] for column in df.columns: if column != 'output': features.append(column) features X = df[features] Y = df['output'] To determine the minimum set of input features, we employ the pandas DataFrame’s corr() function to calculate the Pearson correlation coefficient among the features. This coefficient helps identify the strength and direction of the linear relationship between pairs of features. By analyzing these correlations, we can determine which features are most strongly correlated and select a reduced set of input features for further analysis. X.corr() Data normalization Run the following to generate descriptive statistics of the DataFrame. X.describe() Next, we can perform data normalization using the MinMaxScaler() function from the scikit-learn library and store the scaled values in the corresponding columns of the DataFrame X. Before applying the scaler, it is necessary to fit it to the data using the fit() function. Once fitted, the transformation can be applied using the transform() function. It’s important to note that the input data must be reshaped into the format (-1,1) before passing it as an input parameter to the scaler. from sklearn.preprocessing import MinMaxScaler for column in X.columns: feature = np.array(X[column]).reshape(-1,1) scaler = MinMaxScaler()
  • 10. 10/16 scaler.fit(feature) feature_scaled = scaler.transform(feature) X[column] = feature_scaled.reshape(1,-1)[0] Next, you can run the code ‘X.describe()’ again to view the normalized data. Split the dataset into training and test sets Now, we proceed to split the dataset into two components: a training and a test set. The test set will account for 20% of the entire dataset. To accomplish this, we utilize the train_test_split() function provided by scikit-learn. By splitting the data in this manner, we can use the training set to train our model, allowing it to learn patterns and relationships within the data. Subsequently, we can assess the performance of the trained model on the test set, which contains unseen data. This evaluation will help us understand how well the model generalizes to new data and provides insights into its overall performance. import numpy as np from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.20, random_state=42) Balancing Next, verify whether the dataset is balanced by examining the representation of output classes in the training set. We aim to determine if the classes are equally represented or if there is an imbalance. To achieve this, we utilize the value_counts() function, which calculates the number of records in each output class. y_train.value_counts() If the output classes are not balanced, balance it using imblearn library from imblearn.over_sampling import RandomOverSampler over_sampler = RandomOverSampler(random_state=42) X_bal_over, y_bal_over = over_sampler.fit_resample(X_train, y_train) Calculate the number of records in each class using the value_counts() function, which allows us to determine the distribution of samples across different classes. y_bal_over.value_counts() Next, do the under sampling via the RandomUnderSampler() model. from imblearn.under_sampling import RandomUnderSampler under_sampler = RandomUnderSampler(random_state=42) X_bal_under, y_bal_under = under_sampler.fit_resample(X_train, y_train) y_bal_under.value_counts() Model selection and training
  • 11. 11/16 Here, we explore different machine learning models to select the one apt for the specific purpose. We would be moving forward with the KNeighborsClassifier model and training them firstly with the imbalanced data. from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) model.fit(X_train, y_train) y_score = model.predict_proba(X_test) Next, calculate the performance of the model, especially the roc_curve() and the precision_recall() and then plot them. import matplotlib.pyplot as plt from sklearn.metrics import roc_curve from scikitplot.metrics import plot_roc,auc from scikitplot.metrics import plot_precision_recall fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1]) # Plot metrics plot_roc(y_test, y_score) plt.show() plot_precision_recall(y_test, y_score) plt.show() Next, recalculate the same using oversampling for balancing the data. The following codes help assess the model’s performance and evaluate its ability to discriminate between different classes. model = KNeighborsClassifier(n_neighbors=3) model.fit(X_bal_over, y_bal_over) y_score = model.predict_proba(X_test) fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1]) # Plot metrics plot_roc(y_test, y_score) plt.show() plot_precision_recall(y_test, y_score) plt.show() Lastly, we train the model using under-sampled data, where instances from the majority class are reduced to match the number of instances in the minority class. model = KNeighborsClassifier(n_neighbors=3) model.fit(X_bal_under, y_bal_under) y_score = model.predict_proba(X_test) fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1]) # Plot metrics plot_roc(y_test, y_score) plt.show() plot_precision_recall(y_test, y_score) plt.show()
  • 12. 12/16 Parameter tuning and model evaluation Finally, we need to enhance the performance of the model by searching for the best parameters. To accomplish this, we utilize the GridSearchCV mechanism provided by the scikit-learn library. from sklearn.model_selection import GridSearchCV model = KNeighborsClassifier() param_grid = { 'n_neighbors': np.arange(2,8), 'algorithm' : ['auto', 'ball_tree', 'kd_tree', 'brute'], 'metric' : ['euclidean','manhattan','chebyshev','minkowski'] } grid = GridSearchCV(model, param_grid = param_grid) grid.fit(X_train, y_train) best_estimator = grid.best_estimator_ best_estimator With the best estimator in hand, we proceed to evaluate the algorithm’s performance. This involves using the model to predict the test set, calculate ROC curve metrics, and then visualize the ROC and precision-recall curves using the provided plotting functions. These steps allow for assessing the model’s performance and provide insights into its ability to discriminate between different classes. best_estimator.fit(X_train, y_train) y_score = best_estimator.predict_proba(X_test) fpr0, tpr0, thresholds = roc_curve(y_test, y_score[:, 1]) plot_roc(y_test, y_score) plt.show() plot_precision_recall(y_test, y_score) plt.show() Iterate this evaluation step repeatedly until the model reaches an optimized performance. You can access the whole set of codes in this GitHub repository. Tools used in data analysis There are several tools commonly used in data analysis. Here are the most prominent ones: Python Python is a versatile programming language with many libraries and frameworks especially designed for data analysis, such as NumPy, Pandas, Matplotlib, and scikit- learn. It provides multiple tools and functionalities for data manipulation, visualization, statistical analysis, and machine learning. R
  • 13. 13/16 R is a programming language particularly designed for statistical computing and data analysis. It offers a comprehensive set of packages and libraries for data manipulation, visualization, statistical modeling, and machine learning. R is widely used in data science and analytics and has a strong focus on statistical analysis. SQL SQL elaborated as Structured Query Language, is a standard programming language for managing and querying relational databases. It is used for tasks like data extraction, transformation, and loading (ETL), data querying, and database management. SQL is particularly useful for working with large datasets and performing complex database operations. Excel Microsoft Excel is a famous spreadsheet application that is widely used to analyze and manipulate data. It offers a range of in-built functions and features for performing calculations, data sorting, filtering, and basic statistical analysis. Excel is often used for smaller datasets or quick exploratory analysis tasks. Tableau Tableau is a robust data visualization and business intelligence tool. It allows users to create interactive and visually appealing charts, graphs, and dashboards from various data sources. Tableau enables users to explore and analyze data intuitively and user- friendly, making it suitable for data analysis and data-driven decision-making. MATLAB MATLAB is a programming language and environment commonly used in scientific and engineering fields for numerical computation, data analysis, and modeling. It offers a range of in-built functions and toolboxes for performing advanced mathematical and statistical analysis, data visualization, and algorithm development. Jupyter Notebooks Jupyter Notebooks is an open-source web application allowing users to generate and share documents that contain live code, visualizations, and explanatory text. It supports multiple programming languages, including Python, R, and Julia, making it a versatile tool for data analysis, exploratory data analysis (EDA), and collaborative research. These tools offer various features and capabilities for different aspects of data analysis, and the choice of tool depends on the specific requirements, preferences, and expertise of the data analyst or scientist. Data security and ethics
  • 14. 14/16 Data security and ethics are crucial aspects of working with data, especially in the context of data analysis and data science. Let us explore each of these areas: 1. Data security: Data security involves protecting data from unauthorized access, use, disclosure, alteration, or destruction. It is essential to ensure data confidentiality, integrity, and availability throughout its lifecycle. Here are some key considerations for data security: Access control: Implementing measures to control access to data, including authentication, authorization, and role-based access controls. This allows only authorized individuals to access sensitive data. Data encryption: Using encryption techniques to secure data during transmission and storage. Encryption helps protect data from being intercepted or accessed by unauthorized parties. Data backups and disaster recovery: Regularly backing up data and having mechanisms in place to recover data in case of a system failure, data loss, or cyberattack. Secure data storage: It involves utilizing secure storage solutions, such as encrypted databases or cloud services with robust security measures, to protect data from unauthorized access. Data anonymization: Removing Personally Identifiable Information (PII) or any sensitive data that can be connected to individuals, ensuring that data cannot be traced back to specific individuals. Monitoring and logging: Implementing systems to monitor data access, detect unusual activity or breaches, and maintain logs for auditing purposes. Employee training and awareness: Providing training and raising awareness among employees about data security best practices, such as strong password management, phishing prevention, and safe data handling.
  • 15. 15/16 2. Data ethics: Data ethics refers to the responsible and ethical usage of data, ensuring that data analysis and data science practices are conducted in a manner that respects privacy, fairness, transparency, and accountability. Here are some key considerations for data ethics: Privacy protection: Respecting privacy rights and ensuring that data collection, storage, and analysis comply with applicable privacy laws and regulations. Minimizing the collection and retention of personally identifiable information to the extent required for the intended purpose. Informed consent: Obtaining informed consent from individuals whose data is being collected, providing clear details about how their data will be used and assuring they have the chance to opt out or withdraw consent. Fairness and bias mitigation: Taking steps to mitigate bias in data analysis and modeling, ensuring that algorithms and models do not discriminate or disadvantage specific groups of people based on aspects like race, gender, or socioeconomic status. Transparency: Being transparent about data collection and usage practices, providing clear explanations of data analysis methods, and ensuring that individuals have visibility into how their data is being used. Accountability and governance: Establishing governance frameworks and policies that define roles, responsibilities, and accountability for data handling, ensuring that ethical guidelines are followed, and addressing any potential ethical concerns or issues. Responsible data sharing: Ensuring that data is shared appropriately, with proper safeguards and anonymization techniques to protect privacy and prevent unauthorized access or misuse. Data bias and interpretability: Being aware of potential biases in the data and interpreting the results responsibly and accurately, avoiding misrepresentation or misinterpretation of the findings. Data security and ethics are critical components of responsible data management. By implementing robust security measures and adhering to ethical principles, organizations can ensure the protection of data, respect individuals’ privacy rights, and maintain trust in their data analysis and data science practices. Endnote Data analysis is pivotal in unlocking valuable insights and driving informed decision- making in today’s data-driven world. Organizations and individuals can gain a deeper understanding of trends, patterns, and correlations that can lead to significant advantages through the systematic examination, interpretation, and modeling of large datasets. Data analysis allows us to uncover hidden opportunities, identify potential risks, optimize processes, and enhance performance across various sectors, including healthcare, finance, and research. By harnessing the power of data analysis tools and techniques, we can make data-driven decisions, improve business outcomes, and pave the way for innovation and progress. However, it is crucial to approach data analysis with care,
  • 16. 16/16 ensuring data quality, maintaining ethical standards, and considering potential biases or limitations in order to derive accurate and reliable insights. In this era of abundant data, mastering the art of data analysis is becoming increasingly essential for individuals and organizations seeking to stay competitive and thrive in the digital age. Don’t overlook the valuable insights concealed within your data. Collaborate with LeewayHertz’s data analysts and scientists to uncover valuable patterns and trends in your data that can help shape your business decisions.