SlideShare a Scribd company logo
The University of Western Ontario
DEPARTMENT OF CIVIL AND
ENVIRONMENTAL ENGINEERING
ENVIRONMENTAL ENGINEERING
Instructor
Instructor
M. Hesham El Naggar, Ph.D., P. Eng
M. Hesham El Naggar, Ph.D., P. Eng., MASCE, FEIC 
., MASCE, FEIC 
es a agga , , g
es a agga , , g , SC , C
, SC , C
Professor and Research Director
Professor and Research Director
Geotechnical Research Centre
Geotechnical Research Centre
1
Chapter 4
RESPONSE OF FOUNDATIONS TO HARMONIC EXCITATION
RESPONSE OF RIGID FOUNDATIONS IN ONE DEGREE OF FREEDOM
The governing equation of the motion is obtained by considering the equilibrium of the 
excitation force and the system reaction forces including elastic, damping and inertia 
forces, i.e.: 
(4.1)
t
i
Pe
kv
v
c
v
m 


 


Because the excitation force is complex, the response is also complex. The imaginary 
part of the solution will be labeled by i and can be deleted if only the real part of the 
excitation force is of interest. The particular integral that gives the steady‐state 
solution is:
solution is:
v(t) = vceit (4.2)
where vc is a complex amplitude, vc = v1+iv2. Substitution of Eq. 4.5 in Eq. 4.4 
yields
vc(‐2m + ic + k) = P  4.3)
3
From this, the complex amplitude of the response is 
1
where
(4.4)
 P
i
c
i
m
k
vc 






 2
1
1 (4.5)
 
c
i
m
k
i






 2
1
is known as the admittance (or transfer function) of the system.
The reciprocal of (i) defines the impedance of the system.
(4.6)
 
c
i
m
k
i






 2
1
4
The particular solution for the governing equation is
(4 .7)
 
)
(
2
2
2
2
)
( 





 t
i
t
i
i
e
k
P
Pe
r
e
t
v
If the real vibration amplitude is denoted by
  2
2
2
2

 
 c
m
k
r
P
(4.8a)
the real response described by the real part of Eq 4 7 is
  2
2
2
2
c
m
k
P
v

 


the real response, described by the real part of Eq. 4.7, is
v(t) = v cos (t+)  (4.8b)
5
th l lit d f th b itt
the real amplitude of the response can be rewritten as:
(4.9)



st
v
D
k
P
v 








2
2
2
2
4
1
1
in which vst = P/k = the static displacement and  = dynamic amplification (or
magnification) factor


D







 2
0
2
2
0
4
1
magnification) factor,
(4.10)
2
2
2
2
2
2
4
1
1



D









This factor is equal to the ratio of the amplitude of the response to the static 
displacement
2
0
2
0
4
1


D







displacement. 
6
The phase shift 
The phase shift
(4.11)
2
0
1
2
arctan















D
The particular solution describing the steady‐state response to the real excitation 
force given by Eq. 4.1 is
0




force given by Eq. 4.1 is
v(t) = v cos (t + ) (4.12)
The complete solution, including the transient part is
( ) ( ) t i ( ’  ) (4 13)
v(t) = v cos (t + ) + v0 e‐t sin (’
0t + 0) (4.13)
in which v0 and 0 are integration constants depending on initial conditions.
7
Dimensionless Response to Harmonic Loads 
(dynamic amplification factor and phase shift)
Fig. 1a) constant force excitation
8
Fig.1 b) quadratic excitation
9
Example for Machine Foundation Response Analysis
Fig. 2 Example Used with Piles and Without Piles in the analysis (1ft = 0.3048m) 
10
Fig. 3 Vertical Response of (A) Pile Foundation, (B) Embedded Pile Foundation, (C) 
Shallow Foundation, and (D) Embedded  Shallow Foundation
11
Fig. 4 Vertical Response of a (1) Embedded Pile Foundation with Parabolic Soil 
Profile, and (2) Embedded Pile Foundation with Homogeneous Soil Profile and (3) 
Shallow Foundation Without Embedment 
12
Fig 5 Torsional Response of (1) Pile Foundation and (2) Shallow Foundation
Fig. 5 Torsional Response of (1) Pile Foundation and (2) Shallow Foundation 
13
COUPLED RESPONSE OF RIGID FOUNDATIONS IN 2 DOF
Fig. 6 Rigid foundations’ motion in space is described by three translations and three 
rotations, i.e., they have six degrees of freedom (generally coupled).
14
Examples of Coupled Response
Fig. 7 Horizontal Component of Coupled Footing Response to Horizontal Load. ( (Bx
/ R3 5 81 B I / R5 3 46 ( ) d l l i )
= m /pR3
x = 5.81, B = I / pR5
 = 3.46; (+) = modal analysis)
15
Fig. 8 Rocking Component of Coupled Footing Response to Horizontal Load. 
16
Fig. 9 Horizontal and Rocking Components of Coupled Response of Embedded
Foundation for Different Shear Wave Velocities of Soil (e /R = 0.4, granular soil)
17
Fig. 10 Effect of Soil Stiffness on Horizontal Component of Coupled
Response of Pile Foundation
18
DESIGN PROCEDURE
It is a trial and error procedure which proceeds as follows:
It is a trial‐and‐error procedure, which proceeds as follows:
1) Estimate the dynamic loads. 
2) Establish the soil profile and determine the soil properties
2) Establish the soil profile and determine the soil properties 
required for the analysis (Shear modulus, mass density, 
Poisson’s ratio and material damping ratio).
3) Select the type and trial dimensions of the foundation and 
with clients input, establish the performance criteria. 
4) Compute the dynamic response of the trial foundation (step 
3) supported by the given soil profile (step 2) due to the 
estimated load (step 1) and compare the response with the
estimated load (step 1) and compare the response with the 
performance criteria.  If the response is not satisfactory, 
modify the dimensions of the foundation (step 3), repeat   
the analysis until satisfactory design is achieved. 
19
DESIGN INFORMATION
To carry out the design of a foundation system to support a 
vibration producing equipment, certain loading and site 
parameters must be known or evaluated The information
parameters must be known or evaluated.  The information 
required for the design can be generally categorized into three 
main groups: 
1 machine properties
1. machine properties, 
2. soil and foundation parameters, and 
3. environmental requirements.
20
Machine Properties
The machine properties required include:
The machine properties required include:
1) Outline drawing of machine assembly
2) Weight of machine and its rotor components (or head for
hammers)
3) L i f f i b h i ll d
3) Location of center of gravity both vertically and
horizontally
4) Speed ranges of machine and components or frequency
4) Speed ranges of machine and components or frequency
of unbalanced primary and secondary forces
5) Magnitude and direction of unbalanced forces, vertically
5) Magnitude and direction of unbalanced forces, vertically
and horizontally, and their points of application
6) Limits (tolerance) of deflection (total or differential) & 
vibration amplitudes to satisfy the machine functions. 
21
Arrangement of Equipment and Masses
The total mass of motor (23,360 Kg) and the compressor (frame, crankshafts, 
dampeners and other components, 300,00 Kg) have been provided by the client.
Fig. 11 Elevation and Side View of equipment layout
22
Fig 12 Equipment Layout Plan
Fig. 12 Equipment Layout Plan
23
Dynamic Unbalanced Loads
Dynamic unbalanced loads are provided by the client and are applied as harmonic
loads. The response at the bearing points and some other check points are obtained
and reported.
Different components of dynamic unbalanced forces are shown below. These
components are Driving Torque (MT), Horizontal Force (FH), Vertical force (FV), Vertical
components are Driving Torque (MT), Horizontal Force (FH), Vertical force (FV), Vertical
Couple (MV), Horizontal Couple (MH) and Motor eccentric forces (ECCx and ECCz). The
amplitudes of these components are summarized in Table 1.
24
Fig. 13 Compressor and Motor loads
Compressor Unbalanced (Dynamic) Loads
Compressor Speed 360 rpm
1st Order loads act at 360 rpm
1 Order loads act at 360 rpm
2nd Order loads act at 720 rpm
Table 1 Booster Compressor Unbalanced Loads
25
Motor (Centrifugal) Loads
Table 2 motor properties
The ECCx and ECCz are motor centrifugal forces that are generated due to the 
eccentricity of its rotor mass (the two components are 90 out of phase)
eccentricity of its rotor mass (the two components are 90 out of phase). 
The rotor eccentricity is assumed to be according to balance quality Q = 6.3 mm/s 
for the primary frequency (360 rpm or 6 Hz). The mass of the rotor is 13,199 kg,
for the primary frequency (360 rpm or 6 Hz). The mass of the rotor is 13,199 kg, 
and the surface factor, Sf = 2, thus:
ECCx or ECCz =P = me Q ω Sf
= 13199 x 6.3x10‐3 (2π x 6) x 2 = 6269 N
26
Soil and Foundation Parameters
Knowledge of the soil formation (soil profile) and its properties 
is required for the dynamic analysis.  The information is to be 
b d f f ld b ( d ) d l b
obtained from field borings (or soundings) and laboratory 
tests.  The following parameters are required for the dynamic 
analysis:
y
1) shear modulus of soil, G, at several levels of strain.
1) shear modulus of soil, G, at several levels of strain.
2) material damping ratio, D, at several levels of strain.
3) Poisson’s ratio, .
4) d it f il d it
4) density of soil, , or mass density, . 
27
Fig. 14 Site General Layout and Borehole Locations
28
Summary of Subsurface Conditions
Depth (m) Description of PEBH-11*
0.0 – 4.6 Dense to very dense poorly graded sand with silt
4.6-6.0 Very dense poorly graded sand with silt
6.0-16.5 Very dense clayey sand
16.5-25.0 Very dense silty sand with clay and occasional gravel
Depth (m) Description of PEBH-12*
0.0 – 2.4 Medium dense silty sand
2.4 – 4.6 Dense poorly graded sand with silt
4.6 – 11.0 Very dense poorly graded sand
y p y g
11.0 – 21.3 Very dense clayey sand
21.3 – 25.0 Hard sandy fat clay
29
Table 3 Seismic Cross‐Hole Testing PEBH11
Depth Vp Vs (vp/vs)2 µ γt G E
D (m)
tcomp/x
(m/s)
tshear/x
(m/s) (kN/m³) (kN/m²) (kN/m²)
0 75 500 00 230 77 4 69 0 36 18 9 77E+04 2 67E+05
0.75 500.00 230.77 4.69 0.36 18 9.77E+04 2.67E+05
1.50 800.00 352.94 5.14 0.38 18 2.29E+05 6.30E+05
2.25 400.00 176.47 5.14 0.38 18 5.71E+04 1.58E+05
3.00 410.96 187.50 4.80 0.37 19 6.81E+04 1.86E+05
3.75 400.00 200.00 4.00 0.33 20 8.15E+04 2.17E+05
4.50 428.57 200.00 4.59 0.36 20 8.15E+04 2.22E+05
5.25 600.00 250.00 5.76 0.39 20 1.27E+05 3.55E+05
6.00 750.00 326.09 5.29 0.38 20 2.17E+05 6.00E+05
6.75 500.00 230.77 4.69 0.36 20 1.09E+05 2.96E+05
7.50 1000.00 428.57 5.44 0.39 20 3.74E+05 1.04E+06
8.25 750.00 375.00 4.00 0.33 20 2.87E+05 7.65E+05
9.00 750.00 333.33 5.06 0.38 21 2.38E+05 6.55E+05
9.75 789.47 333.33 5.61 0.39 21 2.38E+05 6.62E+05
10 0
10.50 750.00 333.33 5.06 0.38 21 2.38E+05 6.55E+05
11.20 937.50 416.67 5.06 0.38 21 3.72E+05 1.02E+06
12.00 909.09 447.76 4.12 0.34 21 4.29E+05 1.15E+06
12.70 937.50 480.00 3.81 0.32 21 4.93E+05 1.30E+06
13.50 857.14 375.00 5.22 0.38 21 3.01E+05 8.32E+05
14.20 857.14 428.57 4.00 0.33 21 3.93E+05 1.05E+06
15 00 882 35 428 57 4 24 0 35 21 3 93E+05 1 06E+06
15.00 882.35 428.57 4.24 0.35 21 3.93E+05 1.06E+06
15.70 1000.00 468.75 4.55 0.36 21 4.70E+05 1.28E+06
16.50 1000.00 517.24 3.74 0.32 21 5.73E+05 1.51E+06
17.20 1034.40 517.24 4.00 0.33 21 5.73E+05 1.53E+06
18.00 1111.10 555.56 4.00 0.33 21 6.61E+05 1.76E+06
18.70 1071.40 500.00 4.59 0.36 21 5.35E+05 1.46E+06
19.50 967.74 476.19 4.13 0.34 21 4.85E+05 1.30E+06
20.20 1111.10 521.74 4.54 0.36 21 5.83E+05 1.58E+06
21.00 937.50 428.57 4.79 0.37 21 3.93E+05 1.08E+06
21.70 857.14 422.54 4.12 0.34 21 3.82E+05 1.02E+06
22.50 937.50 491.80 3.63 0.31 21 5.18E+05 1.36E+06
23.20 1000.00 461.54 4.69 0.36 21 4.56E+05 1.24E+06
24.00 1071.40 566.04 3.58 0.31 21 6.86E+05 1.79E+06
24 70 1363 60 697 67 3 82 0 32 21 1 04E+06 2 76E+06
24.70 1363.60 697.67 3.82 0.32 21 1.04E+06 2.76E+06
25.50 1000.00 491.80 4.13 0.34 21 5.18E+05 1.39E+06
30
Depth Vp Vs (vp/vs)² µ γt G E
D (m)
tcomp/x
(m/s)
tshear/x
(m/s) (kN/m³) (kN/m²) (kN/m²)
0 75 375 00 176 47 4 52 0 36 18 5 71E+04 1 55E+05
Table 4 Seismic Cross‐Hole Testing PEBH12
0.75 375.00 176.47 4.52 0.36 18 5.71E+04 1.55E+05
1.50 434.78 171.43 6.43 0.41 18 5.39E+04 1.52E+05
2.25 500.00 230.77 4.69 0.36 18 9.77E+04 2.67E+05
3.00 413.79 181.82 5.18 0.38 19 6.40E+04 1.77E+05
3.75 500.00 240.00 4.34 0.35 20 1.17E+05 3.17E+05
4.50 600.00 200.00 9.00 0.44 20 8.15E+04 2.34E+05
5.25 750.00 250.00 9.00 0.44 20 1.27E+05 3.66E+05
6.00 576.92 260.87 4.89 0.37 20 1.39E+05 3.81E+05
6.75 937.50 240.00 15.20 0.46 20 1.17E+05 3.44E+05
7.50 857.14 375.00 5.22 0.38 20 2.87E+05 7.92E+05
8.25 625.00 230.77 7.34 0.42 20 1.09E+05 3.09E+05
9.00 600.00 272.73 4.84 0.37 21 1.59E+05 4.36E+05
9.75 600.00 250.00 5.76 0.39 21 1.34E+05 3.73E+05
10.50 1000.00 500.00 4.00 0.33 21 5.35E+05 1.43E+06
11.25 1000.00 428.57 5.44 0.39 21 3.93E+05 1.09E+06
12.00 1071.43 447.76 5.73 0.39 21 4.29E+05 1.20E+06
12.75 600.00 272.73 4.84 0.37 21 1.59E+05 4.36E+05
13.50 833.33 357.14 5.44 0.39 21 2.73E+05 7.58E+05
14.25 750.00 352.94 4.52 0.36 21 2.67E+05 7.24E+05
15 00 882 35 428 57 4 24 0 35 21 3 93E 05 1 06E 06
15.00 882.35 428.57 4.24 0.35 21 3.93E+05 1.06E+06
15.75 909.09 234.38 15.04 0.46 21 1.18E+05 3.44E+05
16.50 1000.00 428.57 5.44 0.39 21 3.93E+05 1.09E+06
17.25 1111.11 480.00 5.36 0.39 21 4.93E+05 1.37E+06
18.00 1071.43 555.56 3.72 0.32 21 6.61E+05 1.74E+06
18.75 1034.48 500.00 4.28 0.35 21 5.35E+05 1.44E+06
19 50 967 74 476 19 4 13 0 34 21 4 85E+05 1 30E+06
19.50 967.74 476.19 4.13 0.34 21 4.85E+05 1.30E+06
20.25 1111.11 280.37 15.71 0.47 21 1.68E+05 4.93E+05
21.00 1200.00 500.00 5.76 0.39 21 5.35E+05 1.49E+06
21.75 1034.48 422.54 5.99 0.40 21 3.82E+05 1.07E+06
22.50 1000.00 491.80 4.13 0.34 21 5.18E+05 1.39E+06
23.25 1000.00 461.54 4.69 0.36 21 4.56E+05 1.24E+06
24 00 1111 11 566 04 3 85 0 32 21 6 86E+05 1 82E+06
24.00 1111.11 566.04 3.85 0.32 21 6.86E+05 1.82E+06
24.75 750.00 333.33 5.06 0.38 21 2.38E+05 6.55E+05
25.00 1071.43 491.80 4.75 0.37 21 5.18E+05 1.42E+06
31
Table 5 Dynamic Soil Properties Adopted in Modelling
Depth LB AVE UB unit wt Poisson Damping
(m) Vs (m/s) Vs (m/s) Vs (m/s) N/m3
(m) Vs (m/s) Vs (m/s) Vs (m/s) N/m
0.75 170 192 230 18000 0.36 0.02
1.5 180 224 360 18000 0.38 0.02
2.25 170 196 230 18000 0.38 0.02
3 180 194 220 19000 0.37 0.02
3.75 190 281 370 20000 0.33 0.02
4.5 170 196 220 20000 0.36 0.02
5.25 220 274 350 20000 0.39 0.02
6 230 318 360 20000 0.38 0.02
6.75 210 326 440 20000 0.36 0.02
7.5 380 440 510 20000 0.39 0.02
8.25 220 392 490 20000 0.33 0.02
9 240 430 600 21000 0.38 0.02
9 230 06 20 21000 0 39 0 02
9.75 230 406 520 21000 0.39 0.02
10.5 340 428 500 21000 0.38 0.02
11.25 410 437 470 21000 0.38 0.02
12 440 454 480 21000 0.34 0.02
12.75 270 410 500 21000 0.32 0.02
13.5 280 350 380 21000 0.38 0.02
14 25 360 439 500 21000 0 33 0 02
14.25 360 439 500 21000 0.33 0.02
15 300 382 430 21000 0.35 0.02
15.75 210 428 540 21000 0.36 0.02
16.5 415 495 550 21000 0.32 0.02
17.25 440 520 600 21000 0.33 0.02
18 510 538 560 21000 0.33 0.02
18 75 460 482 530 21000 0 36 0 02
18.75 460 482 530 21000 0.36 0.02
19.5 450 482 500 21000 0.34 0.02
20.25 240 464 600 21000 0.36 0.02
21 350 447 500 21000 0.37 0.02
21.75 420 470 520 21000 0.34 0.02
22.5 450 462 470 21000 0.31 0.02
23.25 430 486 570 21000 0.36 0.02
32
24 470 505 550 21000 0.31 0.02
24.75 300 482 550 21000 0.32 0.02
25.5 400 474 500 21000 0.34 0.02
Foundation Requirements
1) i i d h f f d i
1) minimum depth of foundation.
2) base dimensions for the machine and other components 
attached to it
attached to it.
3) type of foundation system to be used (recommended by 
the geotechnical consultant).
the geotechnical consultant).
4) configuration and layout of the foundation (width, length 
and depth).  For piled foundations, the number of piles, 
p ) p p
pile geometry (diameter or width and cross‐sectional 
area), pile length and spacing between piles are required 
on top of the configuration of the foundation block
on top of the configuration of the foundation block.
5) material properties of the foundation (unit weight of the 
concrete or steel, the Poisson’s ratio and elastic modulus).
concrete or steel, the Poisson s ratio and elastic modulus). 
33
General Foundation Concept
p
• The foundation‐pile system advocated is a pile cap 21.00 x 
p y p p
21.00 x 2.0m deep.
• The cap is supported by 36 (6x6 arrangement) piles 0.8m 
di t 20 l
diameter 20m long.
2 m
2H:1V
2H:1V
Fill
Fill
Pile cap 21.0 m
2 m
2 m
34
Fig. 15 Backfill configuration
General Foundation Layout
35
Fig. 16 Isometric view of compressor pedestal 
Fig 17 Foundation Layout Plan
Fig. 17 Foundation Layout Plan
36
Fig. 18 Critical Points for Response
Fig. 18 Critical Points for Response
37
h hi d ib i h l h
Environmental Requirements
The machinery produces vibrations that may travel to the 
neighboring vicinity.  If vibration amplitudes are significant, 
measures are taken to minimize the environmental impact of 
p
the machine (especially, for shock producing equipment).
In some situations, the machine is installed in the vicinity of 
, y
vibration sources (quarry blasting, vehicular traffic) or in a 
seismic active area.  In this case, the information requested 
include the character of vibration and attenuation at the
include the character of vibration and attenuation at the 
installation site.
The effects of seismic forces are addressed considering
The effects of seismic forces are addressed, considering 
ground response and SSI analyses.
38
Vibration Criteria
Fig. 19 Vibration criteria: British Standard CP 2012‐1:1974: Code of Practice for 
Foundations for Machinery
1 d i f i i hi
39
Part 1: Foundations for reciprocating machines
Vibration Criteria
Table 6 Vibration limit criteria
Vibration limit criteria
Booster/Primary
Compressor
Note
Machinery, cylinder gas connections
(compressor as a rigid body) m pk 50. 10^-6
(compressor as a rigid body) m pk
Foundation, m pk (from CP2012 since not
vendor-specified), 1st order 75. 10^-6
Location furthest
from CoG
Equivalent Foundation Velocity, mm/s rms 1.75
40
Running speed (1st order), Hz 6.0
Fig. 20 General Configuration of Foundation from DYNA6 3DF Module
41
Fig. 21 Plan View from DYNA6 3DF Module
42
Fig. 22 Elevation View from DYNA6 3DF Module
43
Fig. 23 Side View from DYNA6 3DF Module
Fig. 23 Side View from DYNA6 3DF Module
44
Fi 24 Pil L f P i C f DYNA6
Fig. 24 Piles Layout for Primary Compressor from DYNA6
45
Modeling Pile Stiffnesses
The primary and the secondary forces of the compressor act at frequencies of 360 and
720 rpm. Thus, two sets of stiffness and damping are calculated using DYNA6, one for
each loading frequency. These values are assigned as equivalent LINK stiffness and
damping at the pile heads.
damping at the pile heads.
46
Table 7 Stiffness and Damping Constants for Hyper Compressor Foundation
Pile Group Stiffness LB Vs
Freq Kx Cx Ky Cy Kz Cz
RPM N/m N/m/s N/m N/m/s N/m N/m/s
50 3 90E+09 1 47E+08 3 90E+09 1 47E+08 1 53E+10 5 28E+08
50 3.90E+09 1.47E+08 3.90E+09 1.47E+08 1.53E+10 5.28E+08
360 4.00E+09 1.49E+08 4.00E+09 1.49E+08 1.44E+10 6.99E+08
720 6.22E+09 1.67E+08 6.22E+09 1.67E+08 6.77E+10 5.97E+08
Pile Group Stiffness BE Vs
Freq Kx Cx Ky Cy Kz Cz
RPM N/m N/m/s N/m N/m/s N/m N/m/s
50 4 97E+09 1 55E+08 4 97E+09 1 55E+08 1 85E+10 5 08E+08
50 4.97E+09 1.55E+08 4.97E+09 1.55E+08 1.85E+10 5.08E+08
360 5.27E+09 1.51E+08 5.27E+09 1.51E+08 1.62E+10 5.87E+08
720 6.85E+09 1.73E+08 6.85E+09 1.73E+08 4.93E+10 7.41E+08
Pile Group Stiffness UB Vs
Freq Kx Cx Ky Cy Kz Cz
RPM N/m N/m/s N/m N/m/s N/m N/m/s
50 6 40E+09 1 65E+08 6 40E+09 1 65E+08 2 21E+10 5 00E+08
50 6.40E+09 1.65E+08 6.40E+09 1.65E+08 2.21E+10 5.00E+08
360 6.61E+09 1.54E+08 6.61E+09 1.54E+08 1.97E+10 5.26E+08
720 6.87E+09 1.76E+08 6.87E+09 1.76E+08 3.02E+10 7.14E+08
Pile Group Rotational Stiffness LB Vs
Freq Krx Crx Kry Cry Krz Crz
RPM N/m N/m/s N/m N/m/s N/m N/m/s
50 1 64E+12 4 54E+09 1 65E+12 4 57E+09 8 16E+11 4 88E+09
50 1.64E+12 4.54E+09 1.65E+12 4.57E+09 8.16E+11 4.88E+09
360 1.27E+12 2.03E+10 1.27E+12 2.04E+10 6.37E+11 1.10E+10
720 2.56E+12 2.50E+10 2.56E+12 2.50E+10 6.90E+11 1.35E+10
Pile Group Rotational Stiffness BE Vs
Freq Krx Crx Kry Cry Krz Crz
RPM N/m N/m/s N/m N/m/s N/m N/m/s
50 2 01E 12 4 31E 09 2 01E 12 4 35E 09 9 74E 11 5 61E 09
50 2.01E+12 4.31E+09 2.01E+12 4.35E+09 9.74E+11 5.61E+09
360 1.57E+12 1.64E+10 1.57E+12 1.64E+10 7.95E+11 1.08E+10
720 2.00E+12 2.50E+10 2.01E+12 2.50E+10 8.31E+11 1.36E+10
Pile Group Rotational Stiffness UB Vs
Freq Krx Crx Kry Cry Krz Crz
RPM N/m N/m/s N/m N/m/s N/m N/m/s
50 6 67E 10 1 55E 08 6 67E 10 1 56E 08 3 56E 10 1 51E 08
47
50 6.67E+10 1.55E+08 6.67E+10 1.56E+08 3.56E+10 1.51E+08
360 5.39E+10 3.89E+08 5.39E+10 3.92E+08 2.94E+10 2.76E+08
720 5.28E+10 6.14E+08 5.28E+10 6.14E+08 2.72E+10 3.78E+08
Natural Frequencies Obtained from DYNA6
DYNA6 was used to calculate the foundation response over a frequency range of
50 rpm to 750 rpm (0.8Hz to 12.5Hz). The natural frequency was identified as the
location of peak on the plot of response at C.G. with frequency. The observed
natural frequencies for different vibration modes are presented Below. The results
h h h l f i i h h i l di i f h P i
show that the natural frequencies in the horizontal direction for the Primary
compressor foundation are close to the operating speed. However, the calculated
responses were found to be satisfactory due to the existence of sufficient damping.
Natural Horizontal Horizontal Vertical Z Rocking Rocking Y Torsion
Table 8 Natural frequencies obtained from DYNA6 analyses
Freq X Y X
Soil
Condition
Hz Hz Hz Hz Hz Hz
Condition
LB 350 350 590 650 650 870
BE 400 400 620 700 700 980
48
UB 430 430 650 740 740 1060
Table 9 Coordinates of Critical Points for Primary Compressor 
Joint Area GlobalX GlobalY GlobalZ
Text Text m m m
Text Text m m m
1822
Cap Floor
‐2.25 18.75 0
3940 18.75 ‐2.25 0
4001 18.75 18.75 0
4001 18.75 18.75 0
14951 ‐2.25 ‐2.25 0
14793 5.565 5.395 5.1475
14823 7.565 5.395 5.1475
Comp 
Cylinders 
Pads
14823 7.565 5.395 5.1475
14853 9.65 5.395 5.1475
14877 6.035 11.105 5.1475
14907 8.035 11.105 5.1475
14937 10.1 11.105 5.1475
14489 Comp 
Floor
5.25 6.5 5.3425
14495 5.25 10 5.3425
14577
Motor 
Floor
11.15 5.85 5.3425
14587 11.15 10.65 5.3425
14605 14.605 5.85 5.3425
49
14612 14.605 10.65 5.3425
Response Results from DYNA6
The calculated total responses for the Primary compressor and Hyper
The calculated total responses for the Primary compressor and Hyper 
foundations from the DYNA6 analyses are obtained by directly adding (taking 
no account of phase) the responses to the first and second order load 
components. The response was calculated at critical points representing 
p p p p g
support points for the compressor, the motor and the corners of the pile cap. 
In DYNA6 analyses, however, the response was calculated at only a selected no. 
of these points. However, the response was calculated at all noted critical 
points using the FE analysis. The maximum vibration amplitude for the Primary 
compressor was calculated at the top of the compressor pedestal (Joint 14489 
bl ) h h l h h f d b
in Table 9) as 48 microns, which is less than the specified vibration criterion.
50
SAP2000 Analyses
The foundation is modeled in SAP2000 using SOLID elements for the pile cap and
the tables. Piles are modeled using zero‐length Linear Link element attached to
the corresponding joints at the bottom of the pile cap LINEAR LINK has 3 stiffness
the corresponding joints at the bottom of the pile cap. LINEAR LINK has 3 stiffness
(Kx, Ky, Kz) and 3 damping (Cx, Cy, Cz) parameters.
These parameters are determined utilizing the software DYNA5 The LINK local
These parameters are determined utilizing the software DYNA5. The LINK local
coordinate system is related to the GLOBAL coordinate system as shown below:
R t ti Sh ft
3
1 Rotating Shaft
Y
Z
2
LOCAL GLOBAL
Fig 25 Global and local coordinate systems
51
Fig. 25 Global and local coordinate systems
Dynamic Unbalanced Loads
Dynamic unbalanced loads are provided by the client and are applied as harmonic
loads. The response at the bearing points and some other check points are obtained
and reported.
Different components of dynamic unbalanced forces are shown in Figure 6. These
components are Driving Torque (MT), Horizontal Force (FH), Vertical force (FV), Vertical
Couple (MV), Horizontal Couple (MH) and Motor eccentric forces (ECCx and ECCz). The
p ( ), p ( ) ( )
amplitudes of these components are summarized in Table 8.7.
52
Fig. 26 Load directions for compressor and motor 
SAP2000 MODEL
X
Y Z
53
Fig. 27 Finite element model
Table 10 Unbalanced Harmonic Force Amplitudes 
Load
Components
First Order
f1=360 rpm
Second Order
f2=720 rpm
MT (KN-m) 1217.547*Cos(ω1t) 0.00
FH (KN) 119 08*C ( t+120 9°) 18 997*C ( t 36 1°)
FH (KN) 119.08*Cos(ω1t+120.9°) 18.997*Cos(ω2t-36.1°)
FV (KN) 0.038*Cos(ω1t -115.4°) 0.00
MV (KN-m) 138.326*Cos(ω1t -30.0°) 0.00
MH (KN-m) 635.744*Cos(ω1t -87.6°) 49.238*Cos(ω2t-54.5°)
ECCx (KN) 6.269*Sin(ω1t) 0.00
ECCz (KN) 6.269*Cos(ω1t) 0.00
( ) ( 1 )
54
Other Loading Conditions
St ti L d
Static Loads
Static loads include the weight of concrete, the weight of major parts of the 
Primary compressor and the motor.
The short circuit load is applied as vertical forces at the Motor bearings in Z 
direction where +ve Z is downward. Two cases were considered:
Case 1:  loads of ‐184kN, 362kN, 16kN, and 104kN are applied at pads A, B, C and 
, , , pp p , ,
D as marked on the vendor’s drawing denoted “Preliminary Compressor Motor 
Loads”.
Case 2: Loads of 362kN, ‐184kN, 16kN, and 104kN are applied at pads A, B, C and 
D as marked on the vendor’s drawing denoted “Preliminary Compressor Motor 
Loads”. 
S i i L d
Seismic Loads
The seismic load is considred in the analysis using the design spectra specified by 
the client. The seismic load is applied in the horizontal plane‐ both X and Y axes.
55
Load Cases and Load Combinations
The following load cases are used in the SAP2000 model:
• DEAD (static) = Includes weights of all of elements and concentrated masses
• 360 rpm (dynamic) = The unbalanced dynamic loads from the vibration of 
the  machines at the frequency of 6Hz (360 rpm).
• 720 rpm (dynamic) = The unbalanced dynamic loads from the vibration of the 
machines  at the frequency of 12Hz (720 rpm).
• SHORT CIRCUIT (static) = Includes short circuit couple.
E h k X Y (d i ) S i i l d i X Y di i
• Earthquake‐X or Y (dynamic) = Seismic loads in X or Y direction.
56
Modeling Piles
Piles are modeled using zero‐length Linear Link elements attached to the
corresponding joints at the bottom of the pile cap. LINEAR LINK has 3 stiffness (Kx,
Ky, Kz) and 3 damping (Cx, Cy, Cz) parameters. These parameters are determined
utilizing the software DYNA6.
If dynamic forces of the compressor act at 2 different frequencies, two sets of
stiffness and damping are calculated using DYNA6, one for each loading frequency
These values are assigned as equivalent LINK stiffness and damping at the pile
These values are assigned as equivalent LINK stiffness and damping at the pile
heads.
57
SAP2000 Analysis Results – Natural Frequencies
The 3D model has more than 30000 modes.
However only the first 6 modes have important contributions to the
However, only the first 6 modes have important contributions to the
response and are considered in the analysis. The modal information for the
model is given here including: modal participation factors, period and
frequency. The lowest two natural frequencies are 5.7 Hz (this value is very
frequency. The lowest two natural frequencies are 5.7 Hz (this value is very
close to the values evaluated from the DYNA6 analyses), which is close to the
primary loading frequency of 6 Hz. However, the calculated responses were
found to be satisfactory due to the existence of sufficient damping. In
addition, a damping safety factor was considered in the analysis, ensuring
the damping is not overestimated.
58
Table 11 SAP2000 Analysis Results – Natural Frequencies
LB Period Freq UX UY UZ RX RY RZ
Mode No Sec Hz Unitless Unitless Unitless Unitless Unitless Unitless
1 0.176134 5.68 0.0000 1.0000 0.0000 0.0020 0.0000 0.3800
2 0.175973 5.68 1.0000 0.0000 0.0000 0.0000 0.0022 0.3400
3 0.103007 9.71 0.0000 0.0004 0.0000 0.0002 0.0000 0.2700
4 0.094334 10.60 0.0000 0.0000 1.0000 0.6800 0.7100 0.0000
5 0.059096 16.92 0.0026 0.0000 0.0009 0.0014 0.2800 0.0007
6 0.057999 17.24 0.0000 0.0026 0.0000 0.3100 0.0034 0.0014
BE Period Freq UX UY UZ RX RY RZ
Mode No Sec Hz Unitless Unitless Unitless Unitless Unitless Unitless
1 0.1540 6.49 0.0000 1.0000 0.0000 0.0024 0.0000 0.3900
2 0.1538 6.50 1.0000 0.0000 0.0000 0.0000 0.0025 0.3400
3 0.0925 10.82 0.0000 0.0004 0.0000 0.0002 0.0000 0.2700
4 0.0893 11.20 0.0000 0.0000 1.0000 0.6800 0.7100 0.0000
5 0 0540 18 52 0 0033 0 0000 0 0007 0 0017 0 2800 0 0009
5 0.0540 18.52 0.0033 0.0000 0.0007 0.0017 0.2800 0.0009
6 0.0530 18.87 0.0000 0.0033 0.0000 0.3000 0.0037 0.0018
UB Period Freq UX UY UZ RX RY RZ
Mode No Sec Hz Unitless Unitless Unitless Unitless Unitless Unitless
1 0 1380 7 25 0 0001 1 0000 0 0000 0 0026 0 0000 0 3900
1 0.1380 7.25 0.0001 1.0000 0.0000 0.0026 0.0000 0.3900
2 0.1378 7.26 1.0000 0.0001 0.0000 0.0000 0.0028 0.3400
3 0.0817 12.25 0.0000 0.0000 1.0000 0.6800 0.7100 0.0000
4 0.0804 12.44 0.0000 0.0004 0.0000 0.0001 0.0000 0.2700
5 0.0495 20.19 0.0038 0.0001 0.0008 0.0018 0.2700 0.0010
59
6 0.0487 20.55 0.0001 0.0038 0.0000 0.3000 0.0039 0.0022
Joint Responses to Machinery Vibrations
SAP2000 Analysis Results – Dynamic Response
The response of some selected control points are given here. These responses include
the displacement at some control points under the machine vibrations. Control points
include the top of the tabletop at locations of support pads for motor and
compressor and at the C G of the Motor and Compressor The results show the
compressor and at the C.G of the Motor and Compressor. The results show the
maximum amplitude in each direction. They do not necessarily occur at the same
time.
The results show that the maximum vibration amplitude is 49 μm in the horizontal
direction. The allowable vibration amplitude is 50 μm. This represents satisfactory
performance.
60
Table 12 SAP2000 Analysis Results – Vibration Response
Response to 1st Order 
Loads
Response to 2nd Order 
Loads
Total Response
Loads Loads
Joint U1 U2 U3 U1 U2 U3 U1 U2 U3
No μm μm μm μm μm μm μm μm μm
1822 0.50 32.0 8.0 0.05 1.5 0.7 0.55 33.5 8.7
3940 0.50 33.0 8.1 0.07 1.5 0.7 0.57 34.5 8.8
4001 0.49 33.0 7.8 0.08 1.5 0.7 0.57 34.5 8.5
14951 0.40 32.0 8.0 0.06 1.5 0.7 0.46 33.5 8.7
14793 1 45 46 0 12 0 0 21 1 9 1 2 1 66 47 9 13 2
14793 1.45 46.0 12.0 0.21 1.9 1.2 1.66 47.9 13.2
14823 1.30 45.0 11.0 0.18 1.9 1.1 1.48 46.9 12.1
14853 1.55 45.0 11.0 0.22 1.9 1.1 1.77 46.9 12.1
14877 0.94 46.0 12.0 0.15 1.9 1.2 1.09 47.9 13.2
0 9 6 0 0 0 5 9 09 9 3
14907 0.95 45.0 11.0 0.15 1.9 1.1 1.1 46.9 12.1
14937 1.19 45.0 11.0 0.19 1.9 1.0 1.38 46.9 12
14489 0.98 47.0 6.6 0.13 2.0 0.7 1.11 49 7.3
14495 0.56 47.0 7.0 0.09 2.0 0.7 0.65 49 7.7
14577 1.60 45.0 7.2 0.22 1.9 0.6 1.82 46.9 7.8
14587 1.15 45.0 6.8 0.19 1.9 0.6 1.34 46.9 7.4
14605 1 64 44 0 7 1 0 22 1 9 0 6 1 86 45 9 7 7
61
14605 1.64 44.0 7.1 0.22 1.9 0.6 1.86 45.9 7.7
14612 1.19 44.0 6.4 0.19 1.9 0.6 1.38 45.9 7
DESIGN CRITERIA
h b i l d d i h d i i
Factors that may be included in the design requirements.
1) Static requirements for bearing capacity and settlement. 
2) Dynamic behaviour
) y
• limiting vibration amplitude
• limiting velocity
• limiting acceleration
• maximum dynamic magnification factor
• maximum transmissibility factor
3) Possible modes of vibration vertical; horizontal; torsional;
• maximum transmissibility factor
• resonance conditions 
3) Possible modes of vibration vertical; horizontal; torsional; 
rocking; pitching and possibility of coupled modes.
4) Possible fatigue failures in the machine, in the structure, 
or in connections. 
62
5) Environmental considerations
• physical and physiological effects on people
physical and physiological effects on people
• effects on nearby sensitive equipment
• possible resonance of structural components
id ti f f d ti i l ti
• consideration of foundation isolation
6) Economy
• initial cost
• initial cost
• maintenance costs
• down time costs
• replacement costs
63
DESIGN CHECKLIST FOR MACHINE FOUNDATIONDS
After the response of the proposed foundation is predicted from the dynamic 
analysis, it is checked against certain design requirements including:
1 the usual check of bearing capacity and settlement and structural strength of
1. the usual check of bearing capacity and settlement, and structural strength of 
the foundation under static loads.
2. the maximum bearing pressure (static + dynamic) should be less than 75% of 
th ll bl f th il F il d f d ti th i l d f
the allowable pressure of the soil.  For piled foundations, the maximum load for 
any pile (static + dynamic) should be less than 75% of the design capacity of the 
pile. 
3. comparison to tolerance for dynamic behaviour which includes a) 
maximum vibration amplitudes; b) maximum velocity ( x displacement 
amplitude) and acceleration (2 x displacement amplitude) ; c) maximum 
magnification factor, should be less than 1.5 at resonance; d) possible 
resonance conditions, the operating frequency of the machine should not 
be within  20% of the resonance frequency (damped or undamped).
64
4. Consideration of possible fatigue failure in the machine components 
and connections.
5. Consideration of environmental requirements and physiological effects 
on workers. 
Sometimes, a factor of safety (FS) could be used to account for the 
y ( )
relative importance of the machine to overall plant operation.  The 
predicted amplitude is multiplied by a service factor (safety factor) FS 
(1.5‐2) to obtain an effective vibration amplitude. 
65
Table 13 Summary of Maximum Pile Loads for Different Load Types
Pile  Load Case P V2 V3 T M2 M3
No N N N N‐m N‐m N‐m
1 DEAD ‐770939 0 0 0 ‐1625 98679
1 Siesmic (X) 9807 46639 6 67 14 64845
1 Siesmic (Y) 9797 656 45989 7207 64542 24
1 BaseLL ‐95901 0 0 0 492 ‐12455
1 MotorRatedDL ‐5626 0 0 0 2755 26515
1 MotorShortCircuit (+MX) ‐1986 0 0 0 ‐17488 24024
1 MotorShortCircuit (‐MX) ‐7296 0 0 0 17488 24023
66
SAP2000 Results ‐ Section Forces
(‐2.25,‐2.25,0.0)
Positive Signs 
Convention and 
Resultants 
Location
Fig. 28 Example for section cut (Cap‐D) for calculation of bending moment and 
67
shear forces for the Primary Compressor foundation due to different loading 
conditions
Table 14 Section forces for the Primary compressor at section Cap‐ D
SectionCut OutputCase FX FY FZ MX MY MZ
SectionCut OutputCase FX FY FZ MX MY MZ
Location Loading Condition N N N N‐m N‐m N‐m
CAP ‐ D Left
DEAD ‐498624 32986 2793272 ‐28339 1246017 ‐4402
CAP ‐ D Left
Siesmic (+ve X) 146484 1323 103165 23150 141380 97783
CAP ‐ D Left
Siesmic (+ve Y) 879 159539 494 246542 4900 228637
CAP ‐ D Left
BaseLL ‐111476 ‐643 246714 13911 168445 ‐3473
CAP ‐ D Left
MotorRatedDL ‐5207 ‐777 5270 4113 ‐8544 3603
CAP  D Left
CAP ‐ D Left
MotorShortCircuit +MX ‐2287 18920 7130 ‐69532 ‐8408 ‐17184
CAP ‐ D Left
MotorShortCircuit ‐MX ‐8010 ‐15459 2264 58719 ‐7261 18605
C i h
DEAD 347045 ‐83247 2948598 1510550 ‐1097434 ‐518059
CAP ‐ D Right
DEAD 347045 83247 2948598 1510550 1097434 518059
CAP ‐ D Right
Siesmic (+ve X) 88259 4581 68598 8593 145241 125036
CAP ‐ D Right
Siesmic (+ve Y) 1151 92298 8767 302984 8401 307016
B LL 108304 1495 255988 161717 165906 68560
CAP ‐ D Right
BaseLL 108304 1495 255988 161717 ‐165906 ‐68560
CAP ‐ D Right
MotorRatedDL 20317 ‐1628 96710 66426 ‐21364 ‐14895
CAP ‐ D Right
MotorShortCircuit  +MX 15674 ‐25377 80460 ‐220086 ‐15827 7961
CAP ‐ D Right
MotorShortCircuit ‐MX 22082 16516 92530 270183 ‐22183 ‐29536
68
The following figures and tables may be used to check the compliance of the 
vibration amplitudes with different design requirements.
1. Figure 4.33 shows dynamic response limits in terms of limiting “single 
amplitude” vibration at any frequency.  The figure has 5 zones of sensitivity 
shown by persons (standing and subjected to vertical vibration).
2. Figure 4.34 may be used to establish permissible horizontal vibration 
amplitudes for rotating machinery.   
3 Figure 4 35 shows the vibration standards for high speed machines
3. Figure 4.35 shows the vibration standards for high‐speed machines.
4. Figure 4.36 shows the vibration limits for foundations supporting 
turbomachinery.
5. Table 4.3 gives suggested limits of peak velocities for various categories of 
operation. 
69
+  Steady state vibrations
 Steady state vibrations
 D bl i
 Due to blasting
 Sh d d li t li it
 Shaded line represents limits 
for safe operation of machines 
and foundations (not for 
ti f t ti )
satisfactory operation).
 Dotted lines are limits 
associated with blasting.  Do not 
apply to steady state vibration.
Figure 29 General limits of vertical vibration amplitudes 
70
E Dangerous, shut it down immediately
D Failure is near, Correct very quickly.
C Faulty, correct quickly.
B Minor faults.
A No faults, typical of new equipment
Figure 30 Vibration performance of rotating machines
A No faults, typical of new equipment
Figure 30 Vibration performance of rotating machines 
71
Figure 31 Vibration standards of high‐speed machines
Figure 31 Vibration standards of high speed machines 
72
Figure 32 Turbomachinery bearing vibration limits
73
Table 15 General machinery‐vibration‐severity data 
Horizontal Peak Velocity
(in/sec)
Machine Operation
0 005 E l h
< 0.005 Extremely smooth
0.005-0.010 Very smooth
0.010-0.020 Smooth
0.020-0.040 Very good
0.04-0.080 Good
0.080-0.160 Fair
0.160-0.315 Slightly rough
0.315-0.630 Rough
>0.630 Very rough
74

More Related Content

Featured

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
Rajiv Jayarajah, MAppComm, ACC
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
Christy Abraham Joy
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
Vit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
MindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
GetSmarter
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
Project for Public Spaces & National Center for Biking and Walking
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
DevGAMM Conference
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
Erica Santiago
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Saba Software
 

Featured (20)

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
 

Chapter 4 response of foundations to harmonic loads february 2014

  • 1. The University of Western Ontario DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ENVIRONMENTAL ENGINEERING Instructor Instructor M. Hesham El Naggar, Ph.D., P. Eng M. Hesham El Naggar, Ph.D., P. Eng., MASCE, FEIC  ., MASCE, FEIC  es a agga , , g es a agga , , g , SC , C , SC , C Professor and Research Director Professor and Research Director Geotechnical Research Centre Geotechnical Research Centre 1
  • 3. RESPONSE OF RIGID FOUNDATIONS IN ONE DEGREE OF FREEDOM The governing equation of the motion is obtained by considering the equilibrium of the  excitation force and the system reaction forces including elastic, damping and inertia  forces, i.e.:  (4.1) t i Pe kv v c v m        Because the excitation force is complex, the response is also complex. The imaginary  part of the solution will be labeled by i and can be deleted if only the real part of the  excitation force is of interest. The particular integral that gives the steady‐state  solution is: solution is: v(t) = vceit (4.2) where vc is a complex amplitude, vc = v1+iv2. Substitution of Eq. 4.5 in Eq. 4.4  yields vc(‐2m + ic + k) = P  4.3) 3
  • 4. From this, the complex amplitude of the response is  1 where (4.4)  P i c i m k vc         2 1 1 (4.5)   c i m k i        2 1 is known as the admittance (or transfer function) of the system. The reciprocal of (i) defines the impedance of the system. (4.6)   c i m k i        2 1 4
  • 5. The particular solution for the governing equation is (4 .7)   ) ( 2 2 2 2 ) (        t i t i i e k P Pe r e t v If the real vibration amplitude is denoted by   2 2 2 2     c m k r P (4.8a) the real response described by the real part of Eq 4 7 is   2 2 2 2 c m k P v      the real response, described by the real part of Eq. 4.7, is v(t) = v cos (t+)  (4.8b) 5
  • 6. th l lit d f th b itt the real amplitude of the response can be rewritten as: (4.9)    st v D k P v          2 2 2 2 4 1 1 in which vst = P/k = the static displacement and  = dynamic amplification (or magnification) factor   D         2 0 2 2 0 4 1 magnification) factor, (4.10) 2 2 2 2 2 2 4 1 1    D          This factor is equal to the ratio of the amplitude of the response to the static  displacement 2 0 2 0 4 1   D        displacement.  6
  • 7. The phase shift  The phase shift (4.11) 2 0 1 2 arctan                D The particular solution describing the steady‐state response to the real excitation  force given by Eq. 4.1 is 0     force given by Eq. 4.1 is v(t) = v cos (t + ) (4.12) The complete solution, including the transient part is ( ) ( ) t i ( ’  ) (4 13) v(t) = v cos (t + ) + v0 e‐t sin (’ 0t + 0) (4.13) in which v0 and 0 are integration constants depending on initial conditions. 7
  • 13. Fig 5 Torsional Response of (1) Pile Foundation and (2) Shallow Foundation Fig. 5 Torsional Response of (1) Pile Foundation and (2) Shallow Foundation  13
  • 15. Examples of Coupled Response Fig. 7 Horizontal Component of Coupled Footing Response to Horizontal Load. ( (Bx / R3 5 81 B I / R5 3 46 ( ) d l l i ) = m /pR3 x = 5.81, B = I / pR5  = 3.46; (+) = modal analysis) 15
  • 17. Fig. 9 Horizontal and Rocking Components of Coupled Response of Embedded Foundation for Different Shear Wave Velocities of Soil (e /R = 0.4, granular soil) 17
  • 18. Fig. 10 Effect of Soil Stiffness on Horizontal Component of Coupled Response of Pile Foundation 18
  • 19. DESIGN PROCEDURE It is a trial and error procedure which proceeds as follows: It is a trial‐and‐error procedure, which proceeds as follows: 1) Estimate the dynamic loads.  2) Establish the soil profile and determine the soil properties 2) Establish the soil profile and determine the soil properties  required for the analysis (Shear modulus, mass density,  Poisson’s ratio and material damping ratio). 3) Select the type and trial dimensions of the foundation and  with clients input, establish the performance criteria.  4) Compute the dynamic response of the trial foundation (step  3) supported by the given soil profile (step 2) due to the  estimated load (step 1) and compare the response with the estimated load (step 1) and compare the response with the  performance criteria.  If the response is not satisfactory,  modify the dimensions of the foundation (step 3), repeat    the analysis until satisfactory design is achieved.  19
  • 20. DESIGN INFORMATION To carry out the design of a foundation system to support a  vibration producing equipment, certain loading and site  parameters must be known or evaluated The information parameters must be known or evaluated.  The information  required for the design can be generally categorized into three  main groups:  1 machine properties 1. machine properties,  2. soil and foundation parameters, and  3. environmental requirements. 20
  • 21. Machine Properties The machine properties required include: The machine properties required include: 1) Outline drawing of machine assembly 2) Weight of machine and its rotor components (or head for hammers) 3) L i f f i b h i ll d 3) Location of center of gravity both vertically and horizontally 4) Speed ranges of machine and components or frequency 4) Speed ranges of machine and components or frequency of unbalanced primary and secondary forces 5) Magnitude and direction of unbalanced forces, vertically 5) Magnitude and direction of unbalanced forces, vertically and horizontally, and their points of application 6) Limits (tolerance) of deflection (total or differential) &  vibration amplitudes to satisfy the machine functions.  21
  • 22. Arrangement of Equipment and Masses The total mass of motor (23,360 Kg) and the compressor (frame, crankshafts,  dampeners and other components, 300,00 Kg) have been provided by the client. Fig. 11 Elevation and Side View of equipment layout 22
  • 23. Fig 12 Equipment Layout Plan Fig. 12 Equipment Layout Plan 23
  • 24. Dynamic Unbalanced Loads Dynamic unbalanced loads are provided by the client and are applied as harmonic loads. The response at the bearing points and some other check points are obtained and reported. Different components of dynamic unbalanced forces are shown below. These components are Driving Torque (MT), Horizontal Force (FH), Vertical force (FV), Vertical components are Driving Torque (MT), Horizontal Force (FH), Vertical force (FV), Vertical Couple (MV), Horizontal Couple (MH) and Motor eccentric forces (ECCx and ECCz). The amplitudes of these components are summarized in Table 1. 24 Fig. 13 Compressor and Motor loads
  • 25. Compressor Unbalanced (Dynamic) Loads Compressor Speed 360 rpm 1st Order loads act at 360 rpm 1 Order loads act at 360 rpm 2nd Order loads act at 720 rpm Table 1 Booster Compressor Unbalanced Loads 25
  • 26. Motor (Centrifugal) Loads Table 2 motor properties The ECCx and ECCz are motor centrifugal forces that are generated due to the  eccentricity of its rotor mass (the two components are 90 out of phase) eccentricity of its rotor mass (the two components are 90 out of phase).  The rotor eccentricity is assumed to be according to balance quality Q = 6.3 mm/s  for the primary frequency (360 rpm or 6 Hz). The mass of the rotor is 13,199 kg, for the primary frequency (360 rpm or 6 Hz). The mass of the rotor is 13,199 kg,  and the surface factor, Sf = 2, thus: ECCx or ECCz =P = me Q ω Sf = 13199 x 6.3x10‐3 (2π x 6) x 2 = 6269 N 26
  • 27. Soil and Foundation Parameters Knowledge of the soil formation (soil profile) and its properties  is required for the dynamic analysis.  The information is to be  b d f f ld b ( d ) d l b obtained from field borings (or soundings) and laboratory  tests.  The following parameters are required for the dynamic  analysis: y 1) shear modulus of soil, G, at several levels of strain. 1) shear modulus of soil, G, at several levels of strain. 2) material damping ratio, D, at several levels of strain. 3) Poisson’s ratio, . 4) d it f il d it 4) density of soil, , or mass density, .  27
  • 29. Summary of Subsurface Conditions Depth (m) Description of PEBH-11* 0.0 – 4.6 Dense to very dense poorly graded sand with silt 4.6-6.0 Very dense poorly graded sand with silt 6.0-16.5 Very dense clayey sand 16.5-25.0 Very dense silty sand with clay and occasional gravel Depth (m) Description of PEBH-12* 0.0 – 2.4 Medium dense silty sand 2.4 – 4.6 Dense poorly graded sand with silt 4.6 – 11.0 Very dense poorly graded sand y p y g 11.0 – 21.3 Very dense clayey sand 21.3 – 25.0 Hard sandy fat clay 29
  • 30. Table 3 Seismic Cross‐Hole Testing PEBH11 Depth Vp Vs (vp/vs)2 µ γt G E D (m) tcomp/x (m/s) tshear/x (m/s) (kN/m³) (kN/m²) (kN/m²) 0 75 500 00 230 77 4 69 0 36 18 9 77E+04 2 67E+05 0.75 500.00 230.77 4.69 0.36 18 9.77E+04 2.67E+05 1.50 800.00 352.94 5.14 0.38 18 2.29E+05 6.30E+05 2.25 400.00 176.47 5.14 0.38 18 5.71E+04 1.58E+05 3.00 410.96 187.50 4.80 0.37 19 6.81E+04 1.86E+05 3.75 400.00 200.00 4.00 0.33 20 8.15E+04 2.17E+05 4.50 428.57 200.00 4.59 0.36 20 8.15E+04 2.22E+05 5.25 600.00 250.00 5.76 0.39 20 1.27E+05 3.55E+05 6.00 750.00 326.09 5.29 0.38 20 2.17E+05 6.00E+05 6.75 500.00 230.77 4.69 0.36 20 1.09E+05 2.96E+05 7.50 1000.00 428.57 5.44 0.39 20 3.74E+05 1.04E+06 8.25 750.00 375.00 4.00 0.33 20 2.87E+05 7.65E+05 9.00 750.00 333.33 5.06 0.38 21 2.38E+05 6.55E+05 9.75 789.47 333.33 5.61 0.39 21 2.38E+05 6.62E+05 10 0 10.50 750.00 333.33 5.06 0.38 21 2.38E+05 6.55E+05 11.20 937.50 416.67 5.06 0.38 21 3.72E+05 1.02E+06 12.00 909.09 447.76 4.12 0.34 21 4.29E+05 1.15E+06 12.70 937.50 480.00 3.81 0.32 21 4.93E+05 1.30E+06 13.50 857.14 375.00 5.22 0.38 21 3.01E+05 8.32E+05 14.20 857.14 428.57 4.00 0.33 21 3.93E+05 1.05E+06 15 00 882 35 428 57 4 24 0 35 21 3 93E+05 1 06E+06 15.00 882.35 428.57 4.24 0.35 21 3.93E+05 1.06E+06 15.70 1000.00 468.75 4.55 0.36 21 4.70E+05 1.28E+06 16.50 1000.00 517.24 3.74 0.32 21 5.73E+05 1.51E+06 17.20 1034.40 517.24 4.00 0.33 21 5.73E+05 1.53E+06 18.00 1111.10 555.56 4.00 0.33 21 6.61E+05 1.76E+06 18.70 1071.40 500.00 4.59 0.36 21 5.35E+05 1.46E+06 19.50 967.74 476.19 4.13 0.34 21 4.85E+05 1.30E+06 20.20 1111.10 521.74 4.54 0.36 21 5.83E+05 1.58E+06 21.00 937.50 428.57 4.79 0.37 21 3.93E+05 1.08E+06 21.70 857.14 422.54 4.12 0.34 21 3.82E+05 1.02E+06 22.50 937.50 491.80 3.63 0.31 21 5.18E+05 1.36E+06 23.20 1000.00 461.54 4.69 0.36 21 4.56E+05 1.24E+06 24.00 1071.40 566.04 3.58 0.31 21 6.86E+05 1.79E+06 24 70 1363 60 697 67 3 82 0 32 21 1 04E+06 2 76E+06 24.70 1363.60 697.67 3.82 0.32 21 1.04E+06 2.76E+06 25.50 1000.00 491.80 4.13 0.34 21 5.18E+05 1.39E+06 30
  • 31. Depth Vp Vs (vp/vs)² µ γt G E D (m) tcomp/x (m/s) tshear/x (m/s) (kN/m³) (kN/m²) (kN/m²) 0 75 375 00 176 47 4 52 0 36 18 5 71E+04 1 55E+05 Table 4 Seismic Cross‐Hole Testing PEBH12 0.75 375.00 176.47 4.52 0.36 18 5.71E+04 1.55E+05 1.50 434.78 171.43 6.43 0.41 18 5.39E+04 1.52E+05 2.25 500.00 230.77 4.69 0.36 18 9.77E+04 2.67E+05 3.00 413.79 181.82 5.18 0.38 19 6.40E+04 1.77E+05 3.75 500.00 240.00 4.34 0.35 20 1.17E+05 3.17E+05 4.50 600.00 200.00 9.00 0.44 20 8.15E+04 2.34E+05 5.25 750.00 250.00 9.00 0.44 20 1.27E+05 3.66E+05 6.00 576.92 260.87 4.89 0.37 20 1.39E+05 3.81E+05 6.75 937.50 240.00 15.20 0.46 20 1.17E+05 3.44E+05 7.50 857.14 375.00 5.22 0.38 20 2.87E+05 7.92E+05 8.25 625.00 230.77 7.34 0.42 20 1.09E+05 3.09E+05 9.00 600.00 272.73 4.84 0.37 21 1.59E+05 4.36E+05 9.75 600.00 250.00 5.76 0.39 21 1.34E+05 3.73E+05 10.50 1000.00 500.00 4.00 0.33 21 5.35E+05 1.43E+06 11.25 1000.00 428.57 5.44 0.39 21 3.93E+05 1.09E+06 12.00 1071.43 447.76 5.73 0.39 21 4.29E+05 1.20E+06 12.75 600.00 272.73 4.84 0.37 21 1.59E+05 4.36E+05 13.50 833.33 357.14 5.44 0.39 21 2.73E+05 7.58E+05 14.25 750.00 352.94 4.52 0.36 21 2.67E+05 7.24E+05 15 00 882 35 428 57 4 24 0 35 21 3 93E 05 1 06E 06 15.00 882.35 428.57 4.24 0.35 21 3.93E+05 1.06E+06 15.75 909.09 234.38 15.04 0.46 21 1.18E+05 3.44E+05 16.50 1000.00 428.57 5.44 0.39 21 3.93E+05 1.09E+06 17.25 1111.11 480.00 5.36 0.39 21 4.93E+05 1.37E+06 18.00 1071.43 555.56 3.72 0.32 21 6.61E+05 1.74E+06 18.75 1034.48 500.00 4.28 0.35 21 5.35E+05 1.44E+06 19 50 967 74 476 19 4 13 0 34 21 4 85E+05 1 30E+06 19.50 967.74 476.19 4.13 0.34 21 4.85E+05 1.30E+06 20.25 1111.11 280.37 15.71 0.47 21 1.68E+05 4.93E+05 21.00 1200.00 500.00 5.76 0.39 21 5.35E+05 1.49E+06 21.75 1034.48 422.54 5.99 0.40 21 3.82E+05 1.07E+06 22.50 1000.00 491.80 4.13 0.34 21 5.18E+05 1.39E+06 23.25 1000.00 461.54 4.69 0.36 21 4.56E+05 1.24E+06 24 00 1111 11 566 04 3 85 0 32 21 6 86E+05 1 82E+06 24.00 1111.11 566.04 3.85 0.32 21 6.86E+05 1.82E+06 24.75 750.00 333.33 5.06 0.38 21 2.38E+05 6.55E+05 25.00 1071.43 491.80 4.75 0.37 21 5.18E+05 1.42E+06 31
  • 32. Table 5 Dynamic Soil Properties Adopted in Modelling Depth LB AVE UB unit wt Poisson Damping (m) Vs (m/s) Vs (m/s) Vs (m/s) N/m3 (m) Vs (m/s) Vs (m/s) Vs (m/s) N/m 0.75 170 192 230 18000 0.36 0.02 1.5 180 224 360 18000 0.38 0.02 2.25 170 196 230 18000 0.38 0.02 3 180 194 220 19000 0.37 0.02 3.75 190 281 370 20000 0.33 0.02 4.5 170 196 220 20000 0.36 0.02 5.25 220 274 350 20000 0.39 0.02 6 230 318 360 20000 0.38 0.02 6.75 210 326 440 20000 0.36 0.02 7.5 380 440 510 20000 0.39 0.02 8.25 220 392 490 20000 0.33 0.02 9 240 430 600 21000 0.38 0.02 9 230 06 20 21000 0 39 0 02 9.75 230 406 520 21000 0.39 0.02 10.5 340 428 500 21000 0.38 0.02 11.25 410 437 470 21000 0.38 0.02 12 440 454 480 21000 0.34 0.02 12.75 270 410 500 21000 0.32 0.02 13.5 280 350 380 21000 0.38 0.02 14 25 360 439 500 21000 0 33 0 02 14.25 360 439 500 21000 0.33 0.02 15 300 382 430 21000 0.35 0.02 15.75 210 428 540 21000 0.36 0.02 16.5 415 495 550 21000 0.32 0.02 17.25 440 520 600 21000 0.33 0.02 18 510 538 560 21000 0.33 0.02 18 75 460 482 530 21000 0 36 0 02 18.75 460 482 530 21000 0.36 0.02 19.5 450 482 500 21000 0.34 0.02 20.25 240 464 600 21000 0.36 0.02 21 350 447 500 21000 0.37 0.02 21.75 420 470 520 21000 0.34 0.02 22.5 450 462 470 21000 0.31 0.02 23.25 430 486 570 21000 0.36 0.02 32 24 470 505 550 21000 0.31 0.02 24.75 300 482 550 21000 0.32 0.02 25.5 400 474 500 21000 0.34 0.02
  • 33. Foundation Requirements 1) i i d h f f d i 1) minimum depth of foundation. 2) base dimensions for the machine and other components  attached to it attached to it. 3) type of foundation system to be used (recommended by  the geotechnical consultant). the geotechnical consultant). 4) configuration and layout of the foundation (width, length  and depth).  For piled foundations, the number of piles,  p ) p p pile geometry (diameter or width and cross‐sectional  area), pile length and spacing between piles are required  on top of the configuration of the foundation block on top of the configuration of the foundation block. 5) material properties of the foundation (unit weight of the  concrete or steel, the Poisson’s ratio and elastic modulus). concrete or steel, the Poisson s ratio and elastic modulus).  33
  • 34. General Foundation Concept p • The foundation‐pile system advocated is a pile cap 21.00 x  p y p p 21.00 x 2.0m deep. • The cap is supported by 36 (6x6 arrangement) piles 0.8m  di t 20 l diameter 20m long. 2 m 2H:1V 2H:1V Fill Fill Pile cap 21.0 m 2 m 2 m 34 Fig. 15 Backfill configuration
  • 36. Fig 17 Foundation Layout Plan Fig. 17 Foundation Layout Plan 36
  • 37. Fig. 18 Critical Points for Response Fig. 18 Critical Points for Response 37
  • 38. h hi d ib i h l h Environmental Requirements The machinery produces vibrations that may travel to the  neighboring vicinity.  If vibration amplitudes are significant,  measures are taken to minimize the environmental impact of  p the machine (especially, for shock producing equipment). In some situations, the machine is installed in the vicinity of  , y vibration sources (quarry blasting, vehicular traffic) or in a  seismic active area.  In this case, the information requested  include the character of vibration and attenuation at the include the character of vibration and attenuation at the  installation site. The effects of seismic forces are addressed considering The effects of seismic forces are addressed, considering  ground response and SSI analyses. 38
  • 40. Vibration Criteria Table 6 Vibration limit criteria Vibration limit criteria Booster/Primary Compressor Note Machinery, cylinder gas connections (compressor as a rigid body) m pk 50. 10^-6 (compressor as a rigid body) m pk Foundation, m pk (from CP2012 since not vendor-specified), 1st order 75. 10^-6 Location furthest from CoG Equivalent Foundation Velocity, mm/s rms 1.75 40 Running speed (1st order), Hz 6.0
  • 44. Fig. 23 Side View from DYNA6 3DF Module Fig. 23 Side View from DYNA6 3DF Module 44
  • 45. Fi 24 Pil L f P i C f DYNA6 Fig. 24 Piles Layout for Primary Compressor from DYNA6 45
  • 46. Modeling Pile Stiffnesses The primary and the secondary forces of the compressor act at frequencies of 360 and 720 rpm. Thus, two sets of stiffness and damping are calculated using DYNA6, one for each loading frequency. These values are assigned as equivalent LINK stiffness and damping at the pile heads. damping at the pile heads. 46
  • 47. Table 7 Stiffness and Damping Constants for Hyper Compressor Foundation Pile Group Stiffness LB Vs Freq Kx Cx Ky Cy Kz Cz RPM N/m N/m/s N/m N/m/s N/m N/m/s 50 3 90E+09 1 47E+08 3 90E+09 1 47E+08 1 53E+10 5 28E+08 50 3.90E+09 1.47E+08 3.90E+09 1.47E+08 1.53E+10 5.28E+08 360 4.00E+09 1.49E+08 4.00E+09 1.49E+08 1.44E+10 6.99E+08 720 6.22E+09 1.67E+08 6.22E+09 1.67E+08 6.77E+10 5.97E+08 Pile Group Stiffness BE Vs Freq Kx Cx Ky Cy Kz Cz RPM N/m N/m/s N/m N/m/s N/m N/m/s 50 4 97E+09 1 55E+08 4 97E+09 1 55E+08 1 85E+10 5 08E+08 50 4.97E+09 1.55E+08 4.97E+09 1.55E+08 1.85E+10 5.08E+08 360 5.27E+09 1.51E+08 5.27E+09 1.51E+08 1.62E+10 5.87E+08 720 6.85E+09 1.73E+08 6.85E+09 1.73E+08 4.93E+10 7.41E+08 Pile Group Stiffness UB Vs Freq Kx Cx Ky Cy Kz Cz RPM N/m N/m/s N/m N/m/s N/m N/m/s 50 6 40E+09 1 65E+08 6 40E+09 1 65E+08 2 21E+10 5 00E+08 50 6.40E+09 1.65E+08 6.40E+09 1.65E+08 2.21E+10 5.00E+08 360 6.61E+09 1.54E+08 6.61E+09 1.54E+08 1.97E+10 5.26E+08 720 6.87E+09 1.76E+08 6.87E+09 1.76E+08 3.02E+10 7.14E+08 Pile Group Rotational Stiffness LB Vs Freq Krx Crx Kry Cry Krz Crz RPM N/m N/m/s N/m N/m/s N/m N/m/s 50 1 64E+12 4 54E+09 1 65E+12 4 57E+09 8 16E+11 4 88E+09 50 1.64E+12 4.54E+09 1.65E+12 4.57E+09 8.16E+11 4.88E+09 360 1.27E+12 2.03E+10 1.27E+12 2.04E+10 6.37E+11 1.10E+10 720 2.56E+12 2.50E+10 2.56E+12 2.50E+10 6.90E+11 1.35E+10 Pile Group Rotational Stiffness BE Vs Freq Krx Crx Kry Cry Krz Crz RPM N/m N/m/s N/m N/m/s N/m N/m/s 50 2 01E 12 4 31E 09 2 01E 12 4 35E 09 9 74E 11 5 61E 09 50 2.01E+12 4.31E+09 2.01E+12 4.35E+09 9.74E+11 5.61E+09 360 1.57E+12 1.64E+10 1.57E+12 1.64E+10 7.95E+11 1.08E+10 720 2.00E+12 2.50E+10 2.01E+12 2.50E+10 8.31E+11 1.36E+10 Pile Group Rotational Stiffness UB Vs Freq Krx Crx Kry Cry Krz Crz RPM N/m N/m/s N/m N/m/s N/m N/m/s 50 6 67E 10 1 55E 08 6 67E 10 1 56E 08 3 56E 10 1 51E 08 47 50 6.67E+10 1.55E+08 6.67E+10 1.56E+08 3.56E+10 1.51E+08 360 5.39E+10 3.89E+08 5.39E+10 3.92E+08 2.94E+10 2.76E+08 720 5.28E+10 6.14E+08 5.28E+10 6.14E+08 2.72E+10 3.78E+08
  • 48. Natural Frequencies Obtained from DYNA6 DYNA6 was used to calculate the foundation response over a frequency range of 50 rpm to 750 rpm (0.8Hz to 12.5Hz). The natural frequency was identified as the location of peak on the plot of response at C.G. with frequency. The observed natural frequencies for different vibration modes are presented Below. The results h h h l f i i h h i l di i f h P i show that the natural frequencies in the horizontal direction for the Primary compressor foundation are close to the operating speed. However, the calculated responses were found to be satisfactory due to the existence of sufficient damping. Natural Horizontal Horizontal Vertical Z Rocking Rocking Y Torsion Table 8 Natural frequencies obtained from DYNA6 analyses Freq X Y X Soil Condition Hz Hz Hz Hz Hz Hz Condition LB 350 350 590 650 650 870 BE 400 400 620 700 700 980 48 UB 430 430 650 740 740 1060
  • 49. Table 9 Coordinates of Critical Points for Primary Compressor  Joint Area GlobalX GlobalY GlobalZ Text Text m m m Text Text m m m 1822 Cap Floor ‐2.25 18.75 0 3940 18.75 ‐2.25 0 4001 18.75 18.75 0 4001 18.75 18.75 0 14951 ‐2.25 ‐2.25 0 14793 5.565 5.395 5.1475 14823 7.565 5.395 5.1475 Comp  Cylinders  Pads 14823 7.565 5.395 5.1475 14853 9.65 5.395 5.1475 14877 6.035 11.105 5.1475 14907 8.035 11.105 5.1475 14937 10.1 11.105 5.1475 14489 Comp  Floor 5.25 6.5 5.3425 14495 5.25 10 5.3425 14577 Motor  Floor 11.15 5.85 5.3425 14587 11.15 10.65 5.3425 14605 14.605 5.85 5.3425 49 14612 14.605 10.65 5.3425
  • 50. Response Results from DYNA6 The calculated total responses for the Primary compressor and Hyper The calculated total responses for the Primary compressor and Hyper  foundations from the DYNA6 analyses are obtained by directly adding (taking  no account of phase) the responses to the first and second order load  components. The response was calculated at critical points representing  p p p p g support points for the compressor, the motor and the corners of the pile cap.  In DYNA6 analyses, however, the response was calculated at only a selected no.  of these points. However, the response was calculated at all noted critical  points using the FE analysis. The maximum vibration amplitude for the Primary  compressor was calculated at the top of the compressor pedestal (Joint 14489  bl ) h h l h h f d b in Table 9) as 48 microns, which is less than the specified vibration criterion. 50
  • 51. SAP2000 Analyses The foundation is modeled in SAP2000 using SOLID elements for the pile cap and the tables. Piles are modeled using zero‐length Linear Link element attached to the corresponding joints at the bottom of the pile cap LINEAR LINK has 3 stiffness the corresponding joints at the bottom of the pile cap. LINEAR LINK has 3 stiffness (Kx, Ky, Kz) and 3 damping (Cx, Cy, Cz) parameters. These parameters are determined utilizing the software DYNA5 The LINK local These parameters are determined utilizing the software DYNA5. The LINK local coordinate system is related to the GLOBAL coordinate system as shown below: R t ti Sh ft 3 1 Rotating Shaft Y Z 2 LOCAL GLOBAL Fig 25 Global and local coordinate systems 51 Fig. 25 Global and local coordinate systems
  • 52. Dynamic Unbalanced Loads Dynamic unbalanced loads are provided by the client and are applied as harmonic loads. The response at the bearing points and some other check points are obtained and reported. Different components of dynamic unbalanced forces are shown in Figure 6. These components are Driving Torque (MT), Horizontal Force (FH), Vertical force (FV), Vertical Couple (MV), Horizontal Couple (MH) and Motor eccentric forces (ECCx and ECCz). The p ( ), p ( ) ( ) amplitudes of these components are summarized in Table 8.7. 52 Fig. 26 Load directions for compressor and motor 
  • 54. Table 10 Unbalanced Harmonic Force Amplitudes  Load Components First Order f1=360 rpm Second Order f2=720 rpm MT (KN-m) 1217.547*Cos(ω1t) 0.00 FH (KN) 119 08*C ( t+120 9°) 18 997*C ( t 36 1°) FH (KN) 119.08*Cos(ω1t+120.9°) 18.997*Cos(ω2t-36.1°) FV (KN) 0.038*Cos(ω1t -115.4°) 0.00 MV (KN-m) 138.326*Cos(ω1t -30.0°) 0.00 MH (KN-m) 635.744*Cos(ω1t -87.6°) 49.238*Cos(ω2t-54.5°) ECCx (KN) 6.269*Sin(ω1t) 0.00 ECCz (KN) 6.269*Cos(ω1t) 0.00 ( ) ( 1 ) 54
  • 55. Other Loading Conditions St ti L d Static Loads Static loads include the weight of concrete, the weight of major parts of the  Primary compressor and the motor. The short circuit load is applied as vertical forces at the Motor bearings in Z  direction where +ve Z is downward. Two cases were considered: Case 1:  loads of ‐184kN, 362kN, 16kN, and 104kN are applied at pads A, B, C and  , , , pp p , , D as marked on the vendor’s drawing denoted “Preliminary Compressor Motor  Loads”. Case 2: Loads of 362kN, ‐184kN, 16kN, and 104kN are applied at pads A, B, C and  D as marked on the vendor’s drawing denoted “Preliminary Compressor Motor  Loads”.  S i i L d Seismic Loads The seismic load is considred in the analysis using the design spectra specified by  the client. The seismic load is applied in the horizontal plane‐ both X and Y axes. 55
  • 56. Load Cases and Load Combinations The following load cases are used in the SAP2000 model: • DEAD (static) = Includes weights of all of elements and concentrated masses • 360 rpm (dynamic) = The unbalanced dynamic loads from the vibration of  the  machines at the frequency of 6Hz (360 rpm). • 720 rpm (dynamic) = The unbalanced dynamic loads from the vibration of the  machines  at the frequency of 12Hz (720 rpm). • SHORT CIRCUIT (static) = Includes short circuit couple. E h k X Y (d i ) S i i l d i X Y di i • Earthquake‐X or Y (dynamic) = Seismic loads in X or Y direction. 56
  • 57. Modeling Piles Piles are modeled using zero‐length Linear Link elements attached to the corresponding joints at the bottom of the pile cap. LINEAR LINK has 3 stiffness (Kx, Ky, Kz) and 3 damping (Cx, Cy, Cz) parameters. These parameters are determined utilizing the software DYNA6. If dynamic forces of the compressor act at 2 different frequencies, two sets of stiffness and damping are calculated using DYNA6, one for each loading frequency These values are assigned as equivalent LINK stiffness and damping at the pile These values are assigned as equivalent LINK stiffness and damping at the pile heads. 57
  • 58. SAP2000 Analysis Results – Natural Frequencies The 3D model has more than 30000 modes. However only the first 6 modes have important contributions to the However, only the first 6 modes have important contributions to the response and are considered in the analysis. The modal information for the model is given here including: modal participation factors, period and frequency. The lowest two natural frequencies are 5.7 Hz (this value is very frequency. The lowest two natural frequencies are 5.7 Hz (this value is very close to the values evaluated from the DYNA6 analyses), which is close to the primary loading frequency of 6 Hz. However, the calculated responses were found to be satisfactory due to the existence of sufficient damping. In addition, a damping safety factor was considered in the analysis, ensuring the damping is not overestimated. 58
  • 59. Table 11 SAP2000 Analysis Results – Natural Frequencies LB Period Freq UX UY UZ RX RY RZ Mode No Sec Hz Unitless Unitless Unitless Unitless Unitless Unitless 1 0.176134 5.68 0.0000 1.0000 0.0000 0.0020 0.0000 0.3800 2 0.175973 5.68 1.0000 0.0000 0.0000 0.0000 0.0022 0.3400 3 0.103007 9.71 0.0000 0.0004 0.0000 0.0002 0.0000 0.2700 4 0.094334 10.60 0.0000 0.0000 1.0000 0.6800 0.7100 0.0000 5 0.059096 16.92 0.0026 0.0000 0.0009 0.0014 0.2800 0.0007 6 0.057999 17.24 0.0000 0.0026 0.0000 0.3100 0.0034 0.0014 BE Period Freq UX UY UZ RX RY RZ Mode No Sec Hz Unitless Unitless Unitless Unitless Unitless Unitless 1 0.1540 6.49 0.0000 1.0000 0.0000 0.0024 0.0000 0.3900 2 0.1538 6.50 1.0000 0.0000 0.0000 0.0000 0.0025 0.3400 3 0.0925 10.82 0.0000 0.0004 0.0000 0.0002 0.0000 0.2700 4 0.0893 11.20 0.0000 0.0000 1.0000 0.6800 0.7100 0.0000 5 0 0540 18 52 0 0033 0 0000 0 0007 0 0017 0 2800 0 0009 5 0.0540 18.52 0.0033 0.0000 0.0007 0.0017 0.2800 0.0009 6 0.0530 18.87 0.0000 0.0033 0.0000 0.3000 0.0037 0.0018 UB Period Freq UX UY UZ RX RY RZ Mode No Sec Hz Unitless Unitless Unitless Unitless Unitless Unitless 1 0 1380 7 25 0 0001 1 0000 0 0000 0 0026 0 0000 0 3900 1 0.1380 7.25 0.0001 1.0000 0.0000 0.0026 0.0000 0.3900 2 0.1378 7.26 1.0000 0.0001 0.0000 0.0000 0.0028 0.3400 3 0.0817 12.25 0.0000 0.0000 1.0000 0.6800 0.7100 0.0000 4 0.0804 12.44 0.0000 0.0004 0.0000 0.0001 0.0000 0.2700 5 0.0495 20.19 0.0038 0.0001 0.0008 0.0018 0.2700 0.0010 59 6 0.0487 20.55 0.0001 0.0038 0.0000 0.3000 0.0039 0.0022
  • 60. Joint Responses to Machinery Vibrations SAP2000 Analysis Results – Dynamic Response The response of some selected control points are given here. These responses include the displacement at some control points under the machine vibrations. Control points include the top of the tabletop at locations of support pads for motor and compressor and at the C G of the Motor and Compressor The results show the compressor and at the C.G of the Motor and Compressor. The results show the maximum amplitude in each direction. They do not necessarily occur at the same time. The results show that the maximum vibration amplitude is 49 μm in the horizontal direction. The allowable vibration amplitude is 50 μm. This represents satisfactory performance. 60
  • 61. Table 12 SAP2000 Analysis Results – Vibration Response Response to 1st Order  Loads Response to 2nd Order  Loads Total Response Loads Loads Joint U1 U2 U3 U1 U2 U3 U1 U2 U3 No μm μm μm μm μm μm μm μm μm 1822 0.50 32.0 8.0 0.05 1.5 0.7 0.55 33.5 8.7 3940 0.50 33.0 8.1 0.07 1.5 0.7 0.57 34.5 8.8 4001 0.49 33.0 7.8 0.08 1.5 0.7 0.57 34.5 8.5 14951 0.40 32.0 8.0 0.06 1.5 0.7 0.46 33.5 8.7 14793 1 45 46 0 12 0 0 21 1 9 1 2 1 66 47 9 13 2 14793 1.45 46.0 12.0 0.21 1.9 1.2 1.66 47.9 13.2 14823 1.30 45.0 11.0 0.18 1.9 1.1 1.48 46.9 12.1 14853 1.55 45.0 11.0 0.22 1.9 1.1 1.77 46.9 12.1 14877 0.94 46.0 12.0 0.15 1.9 1.2 1.09 47.9 13.2 0 9 6 0 0 0 5 9 09 9 3 14907 0.95 45.0 11.0 0.15 1.9 1.1 1.1 46.9 12.1 14937 1.19 45.0 11.0 0.19 1.9 1.0 1.38 46.9 12 14489 0.98 47.0 6.6 0.13 2.0 0.7 1.11 49 7.3 14495 0.56 47.0 7.0 0.09 2.0 0.7 0.65 49 7.7 14577 1.60 45.0 7.2 0.22 1.9 0.6 1.82 46.9 7.8 14587 1.15 45.0 6.8 0.19 1.9 0.6 1.34 46.9 7.4 14605 1 64 44 0 7 1 0 22 1 9 0 6 1 86 45 9 7 7 61 14605 1.64 44.0 7.1 0.22 1.9 0.6 1.86 45.9 7.7 14612 1.19 44.0 6.4 0.19 1.9 0.6 1.38 45.9 7
  • 62. DESIGN CRITERIA h b i l d d i h d i i Factors that may be included in the design requirements. 1) Static requirements for bearing capacity and settlement.  2) Dynamic behaviour ) y • limiting vibration amplitude • limiting velocity • limiting acceleration • maximum dynamic magnification factor • maximum transmissibility factor 3) Possible modes of vibration vertical; horizontal; torsional; • maximum transmissibility factor • resonance conditions  3) Possible modes of vibration vertical; horizontal; torsional;  rocking; pitching and possibility of coupled modes. 4) Possible fatigue failures in the machine, in the structure,  or in connections.  62
  • 63. 5) Environmental considerations • physical and physiological effects on people physical and physiological effects on people • effects on nearby sensitive equipment • possible resonance of structural components id ti f f d ti i l ti • consideration of foundation isolation 6) Economy • initial cost • initial cost • maintenance costs • down time costs • replacement costs 63
  • 64. DESIGN CHECKLIST FOR MACHINE FOUNDATIONDS After the response of the proposed foundation is predicted from the dynamic  analysis, it is checked against certain design requirements including: 1 the usual check of bearing capacity and settlement and structural strength of 1. the usual check of bearing capacity and settlement, and structural strength of  the foundation under static loads. 2. the maximum bearing pressure (static + dynamic) should be less than 75% of  th ll bl f th il F il d f d ti th i l d f the allowable pressure of the soil.  For piled foundations, the maximum load for  any pile (static + dynamic) should be less than 75% of the design capacity of the  pile.  3. comparison to tolerance for dynamic behaviour which includes a)  maximum vibration amplitudes; b) maximum velocity ( x displacement  amplitude) and acceleration (2 x displacement amplitude) ; c) maximum  magnification factor, should be less than 1.5 at resonance; d) possible  resonance conditions, the operating frequency of the machine should not  be within  20% of the resonance frequency (damped or undamped). 64
  • 66. Table 13 Summary of Maximum Pile Loads for Different Load Types Pile  Load Case P V2 V3 T M2 M3 No N N N N‐m N‐m N‐m 1 DEAD ‐770939 0 0 0 ‐1625 98679 1 Siesmic (X) 9807 46639 6 67 14 64845 1 Siesmic (Y) 9797 656 45989 7207 64542 24 1 BaseLL ‐95901 0 0 0 492 ‐12455 1 MotorRatedDL ‐5626 0 0 0 2755 26515 1 MotorShortCircuit (+MX) ‐1986 0 0 0 ‐17488 24024 1 MotorShortCircuit (‐MX) ‐7296 0 0 0 17488 24023 66
  • 68. Table 14 Section forces for the Primary compressor at section Cap‐ D SectionCut OutputCase FX FY FZ MX MY MZ SectionCut OutputCase FX FY FZ MX MY MZ Location Loading Condition N N N N‐m N‐m N‐m CAP ‐ D Left DEAD ‐498624 32986 2793272 ‐28339 1246017 ‐4402 CAP ‐ D Left Siesmic (+ve X) 146484 1323 103165 23150 141380 97783 CAP ‐ D Left Siesmic (+ve Y) 879 159539 494 246542 4900 228637 CAP ‐ D Left BaseLL ‐111476 ‐643 246714 13911 168445 ‐3473 CAP ‐ D Left MotorRatedDL ‐5207 ‐777 5270 4113 ‐8544 3603 CAP  D Left CAP ‐ D Left MotorShortCircuit +MX ‐2287 18920 7130 ‐69532 ‐8408 ‐17184 CAP ‐ D Left MotorShortCircuit ‐MX ‐8010 ‐15459 2264 58719 ‐7261 18605 C i h DEAD 347045 ‐83247 2948598 1510550 ‐1097434 ‐518059 CAP ‐ D Right DEAD 347045 83247 2948598 1510550 1097434 518059 CAP ‐ D Right Siesmic (+ve X) 88259 4581 68598 8593 145241 125036 CAP ‐ D Right Siesmic (+ve Y) 1151 92298 8767 302984 8401 307016 B LL 108304 1495 255988 161717 165906 68560 CAP ‐ D Right BaseLL 108304 1495 255988 161717 ‐165906 ‐68560 CAP ‐ D Right MotorRatedDL 20317 ‐1628 96710 66426 ‐21364 ‐14895 CAP ‐ D Right MotorShortCircuit  +MX 15674 ‐25377 80460 ‐220086 ‐15827 7961 CAP ‐ D Right MotorShortCircuit ‐MX 22082 16516 92530 270183 ‐22183 ‐29536 68
  • 69. The following figures and tables may be used to check the compliance of the  vibration amplitudes with different design requirements. 1. Figure 4.33 shows dynamic response limits in terms of limiting “single  amplitude” vibration at any frequency.  The figure has 5 zones of sensitivity  shown by persons (standing and subjected to vertical vibration). 2. Figure 4.34 may be used to establish permissible horizontal vibration  amplitudes for rotating machinery.    3 Figure 4 35 shows the vibration standards for high speed machines 3. Figure 4.35 shows the vibration standards for high‐speed machines. 4. Figure 4.36 shows the vibration limits for foundations supporting  turbomachinery. 5. Table 4.3 gives suggested limits of peak velocities for various categories of  operation.  69
  • 70. +  Steady state vibrations  Steady state vibrations  D bl i  Due to blasting  Sh d d li t li it  Shaded line represents limits  for safe operation of machines  and foundations (not for  ti f t ti ) satisfactory operation).  Dotted lines are limits  associated with blasting.  Do not  apply to steady state vibration. Figure 29 General limits of vertical vibration amplitudes  70
  • 71. E Dangerous, shut it down immediately D Failure is near, Correct very quickly. C Faulty, correct quickly. B Minor faults. A No faults, typical of new equipment Figure 30 Vibration performance of rotating machines A No faults, typical of new equipment Figure 30 Vibration performance of rotating machines  71
  • 72. Figure 31 Vibration standards of high‐speed machines Figure 31 Vibration standards of high speed machines  72
  • 74. Table 15 General machinery‐vibration‐severity data  Horizontal Peak Velocity (in/sec) Machine Operation 0 005 E l h < 0.005 Extremely smooth 0.005-0.010 Very smooth 0.010-0.020 Smooth 0.020-0.040 Very good 0.04-0.080 Good 0.080-0.160 Fair 0.160-0.315 Slightly rough 0.315-0.630 Rough >0.630 Very rough 74