SlideShare a Scribd company logo
1 of 58
Sounding of Subsurface Water throughSounding of Subsurface Water through
Conductive Media in Mars AnalogConductive Media in Mars Analog
Environments Using TransientEnvironments Using Transient
Electromagnetics and Low Frequency GroundElectromagnetics and Low Frequency Ground
Penetrating RadarPenetrating Radar
joern@jernsletten.namjoern@jernsletten.nam
eehttp://joern.jernsletten.name/http://joern.jernsletten.name/
Mandag, 14. JuniMandag, 14. Juni
20042004
Universitetet iUniversitetet i
BergenBergen
Det Matematisk-NaturvitenskapeligeDet Matematisk-Naturvitenskapelige
FakultetFakultet
Institutt for GeovitenskapInstitutt for Geovitenskap
DoctorDoctor
PhilosophiaePhilosophiae
Prøveforelesning, SelvvalgtPrøveforelesning, Selvvalgt
EmneEmne
Jørn AtleJørn Atle
JernslettenJernsletten
heggy@lpi.usra.edheggy@lpi.usra.ed
EssamEssam
HeggyHeggyLunar and Planetary Institute, Houston, TexasLunar and Planetary Institute, Houston, Texas
IntroductionIntroduction
To show how these methods differ and complement each other,To show how these methods differ and complement each other,
we show data from three field studies:we show data from three field studies:
1)1) EMEM diffusivediffusive spreading sounding data (TEM) from Pimaspreading sounding data (TEM) from Pima
County, ArizonaCounty, Arizona
2)2) Shallower sounding data, using the Fast-Turnoff TEMShallower sounding data, using the Fast-Turnoff TEM
method, from Peña de Hierro, near Minas de Riotinto, Spainmethod, from Peña de Hierro, near Minas de Riotinto, Spain
3)3) WaveWave propagationpropagation radar sounding data (GPR) from theradar sounding data (GPR) from the
Nubian aquifer, Baharïya Oasis, EgyptNubian aquifer, Baharïya Oasis, Egypt
GPR and TEM discussed and compared in terms of:GPR and TEM discussed and compared in terms of:
a)a) Spatial resolutionSpatial resolution
b)b) Depth of investigationDepth of investigation
c)c) Sensitivity to highly conductive layers (clay, ore bodies,Sensitivity to highly conductive layers (clay, ore bodies,
brines, metal-rich fluids, etc.)brines, metal-rich fluids, etc.)
d)d) Sounding frequenciesSounding frequencies
e)e) Logistical efficiencyLogistical efficiency
f)f) Appropriate applicationsAppropriate applications
EM Sounding Scenarios for MarsEM Sounding Scenarios for Mars
( Grimm, 2002 )( Grimm, 2002 )
Transient EM (TEM) WaveformTransient EM (TEM) Waveform
( Grimm, 2003; Reynolds, 1997; McNeill, 1990 )( Grimm, 2003; Reynolds, 1997; McNeill, 1990 )
 Tx loop currentTx loop current
 Induced primaryInduced primary
magnetic fieldmagnetic field
 Induced eddyInduced eddy
currentscurrents
 Produced secondaryProduced secondary
magnetic fieldmagnetic field
 Induced Rx antenna /Induced Rx antenna /
loop currentloop current
TEM Eddy CurrentsTEM Eddy Currents
( Reynolds, 1997 )( Reynolds, 1997 )
TEM Eddy Currents – cont’dTEM Eddy Currents – cont’d
( Reynolds, 1997; Grant and West, 1965 )( Reynolds, 1997; Grant and West, 1965 )
TEM Depth of InvestigationTEM Depth of Investigation
( Zonge, 1992 )( Zonge, 1992 )
TEM Depth of Investigation – Cont’dTEM Depth of Investigation – Cont’d
( Zonge, 1992 )( Zonge, 1992 )
Model TEM Exploration Depth for MarsModel TEM Exploration Depth for Mars
( Grimm, 2002 )( Grimm, 2002 )
Resistivities of Typical Earth MaterialsResistivities of Typical Earth Materials
( Palacky, 1987 )( Palacky, 1987 )
Resistivities of Fresh WaterResistivities of Fresh Water
( Grimm, 2002 )( Grimm, 2002 )
Resistivities of Saturated BrineResistivities of Saturated Brine
( Grimm, 2002 )( Grimm, 2002 )
Typical TEM Field SetupTypical TEM Field Setup
( Modified from Zonge, 1992 )( Modified from Zonge, 1992 )
Arizona TEM Field SetupArizona TEM Field Setup
Arizona TEM Field Setup – on the BackArizona TEM Field Setup – on the Back
Arizona TEM Field Setup – on the GroundArizona TEM Field Setup – on the Ground
Arizona TEM Field Setup – on the FrameArizona TEM Field Setup – on the Frame
Arizona TEM Field Setup – Checking DataArizona TEM Field Setup – Checking Data
Arizona TEM – Views from the FieldArizona TEM – Views from the Field
Arizona TEM Field MapArizona TEM Field Map
Arizona USGS Well DataArizona USGS Well Data
 Water table at ~120 m depthWater table at ~120 m depth
Arizona TEM Line 1 Field DataArizona TEM Line 1 Field Data
 100 m x 100 m Tx loop,100 m x 100 m Tx loop,
ferrite-core Hferrite-core Hzz coil Rxcoil Rx
antennaantenna
 16 Hz sounding frequency16 Hz sounding frequency
 Depth of investigationDepth of investigation
~500 m~500 m
Arizona TEM Line 1 Model DataArizona TEM Line 1 Model Data
 Water table at ~120 m depth (horizontal blue line)Water table at ~120 m depth (horizontal blue line)
 Consistent with depth to water table from USGS test wellsConsistent with depth to water table from USGS test wells
 100 m x 100 m Tx loop, ferrite-core H100 m x 100 m Tx loop, ferrite-core Hzz coil Rx antennacoil Rx antenna
 16 Hz sounding frequency16 Hz sounding frequency
 Depth of investigation ~500 mDepth of investigation ~500 m
Arizona TEM Line 2 Field DataArizona TEM Line 2 Field Data
 100 m x 100 m Tx loop,100 m x 100 m Tx loop,
ferrite-core Hferrite-core Hzz coil Rxcoil Rx
antennaantenna
 16 Hz sounding frequency16 Hz sounding frequency
 Depth of investigationDepth of investigation
~500 m~500 m
Arizona TEM Line 2 Model DataArizona TEM Line 2 Model Data
 Water table at ~120 m depth (horizontal blue line)Water table at ~120 m depth (horizontal blue line)
 Consistent with depth to water table from USGS test wellsConsistent with depth to water table from USGS test wells
 100 m x 100 m Tx loop, ferrite-core H100 m x 100 m Tx loop, ferrite-core Hzz coil Rx antennacoil Rx antenna
 16 Hz sounding frequency16 Hz sounding frequency
 Depth of investigation ~500 mDepth of investigation ~500 m
Arizona TEM Line 3 Field DataArizona TEM Line 3 Field Data
 100 m x 100 m Tx loop,100 m x 100 m Tx loop,
ferrite-core Hferrite-core Hzz coil Rxcoil Rx
antennaantenna
 16 Hz sounding frequency16 Hz sounding frequency
 Depth of investigationDepth of investigation
~350 m~350 m
Arizona TEM Line 3 Model DataArizona TEM Line 3 Model Data
 Water table at ~120 m depth (horizontal blue line)Water table at ~120 m depth (horizontal blue line)
 Consistent with depth to water table from USGS test wellsConsistent with depth to water table from USGS test wells
 100 m x 100 m Tx loop, ferrite-core H100 m x 100 m Tx loop, ferrite-core Hzz coil Rx antennacoil Rx antenna
 16 Hz sounding frequency16 Hz sounding frequency
 Depth of investigation ~350 mDepth of investigation ~350 m
Peña de Hierro, MARTE Field AreaPeña de Hierro, MARTE Field Area
Peña de Hierro, Main Source AreaPeña de Hierro, Main Source Area
Morris et al., 2004Morris et al., 2004
Kargel and Marion, 2004Kargel and Marion, 2004
Stoker et al., 2004Stoker et al., 2004
Fernández-Remolar et al., 2004Fernández-Remolar et al., 2004
A.k.a. MER-B in the Late Hesperian?A.k.a. MER-B in the Late Hesperian?
Jarosite =Jarosite = KFeKFe3+3+
33 (SO(SO44 ))22 (OH)(OH)66
 Basic hydrous potassium iron sulfate
 Yellow-brown, brown, orange-brown
 Light yellow streaks
Peña de Hierro, MARTE Drill Site #3Peña de Hierro, MARTE Drill Site #3
Typical Fast-Turnoff TEM Field SetupTypical Fast-Turnoff TEM Field Setup
( Adapted from Zonge, 1992 )( Adapted from Zonge, 1992 )
Peña de Hierro, Field ConditionsPeña de Hierro, Field Conditions
Rio Tinto Fast-Turnoff TEM FieldRio Tinto Fast-Turnoff TEM Field
MapMap
Fast-Turnoff TEM Line 4 Field DataFast-Turnoff TEM Line 4 Field Data
 40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
Fast-Turnoff TEM Line 4 Model DataFast-Turnoff TEM Line 4 Model Data
 Water table at ~90 m depthWater table at ~90 m depth
 Consistent with initial drilling results (MARTE Drill Site #4)Consistent with initial drilling results (MARTE Drill Site #4)
 40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
 Depth of investigation ~160 mDepth of investigation ~160 m
Fast-Turnoff TEM Line 7 Field DataFast-Turnoff TEM Line 7 Field Data
 40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
Fast-Turnoff TEM Line 7 Model DataFast-Turnoff TEM Line 7 Model Data
 Water table at ~90 m depthWater table at ~90 m depth
 Consistent with initial drilling results (MARTE Drill Site #4)Consistent with initial drilling results (MARTE Drill Site #4)
 40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
 Depth of investigation ~130 mDepth of investigation ~130 m
Rio Tinto Fast-Turnoff TEM FieldRio Tinto Fast-Turnoff TEM Field
MapMap
Fast-Turnoff TEM Line 15 Field DataFast-Turnoff TEM Line 15 Field Data
 20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
Fast-Turnoff TEM Line 15 Model DataFast-Turnoff TEM Line 15 Model Data
 Water interface at ~15 m depthWater interface at ~15 m depth
 Consistent with initial drilling results (MARTE Drill Site #1)Consistent with initial drilling results (MARTE Drill Site #1)
 20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
 Depth of investigation ~50 mDepth of investigation ~50 m
Fast-Turnoff TEM Line 14 Field DataFast-Turnoff TEM Line 14 Field Data
 20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
Fast-Turnoff TEM Line 14 Model DataFast-Turnoff TEM Line 14 Model Data
 Water interface at ~15 m depthWater interface at ~15 m depth
 Consistent with initial drilling results (MARTE Drill Site #1)Consistent with initial drilling results (MARTE Drill Site #1)
 20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop
 32 Hz sounding frequency32 Hz sounding frequency
 Depth of investigation ~50 mDepth of investigation ~50 m
Rio Tinto Drill Site RelocationsRio Tinto Drill Site Relocations
MARTE Drill Site 1MARTE Drill Site 1
Ground PenetratingGround Penetrating
RadarRadar
Aeroported imagingAeroported imaging
RadarRadar
Orbital sounderOrbital sounder
RadarRadar
SoundingSounding
ScenariosScenarios
SubsurfacSubsurfac
ee
LayersLayers
9 m9 m
Bir Safsaf 300 MHz GPRBir Safsaf 300 MHz GPR
profile
Ground Pentrating Radar (GPR)Ground Pentrating Radar (GPR)
GPR Field SetupGPR Field Setup
2 MHz GPR system courtesy of CETP2 MHz GPR system courtesy of CETP
GPR Depth of InvestigationGPR Depth of Investigation
Baharïya Oasis &Baharïya Oasis &
Nubian Aquifer MapNubian Aquifer Map
. CairoCairo
2 MHz GPR survey
BaharïyBaharïy
aa
NubianNubian
aquiferaquifer
(600 m)(600 m)
Baharïya Field AreaBaharïya Field Area
Thin Clay LayersThin Clay Layers
Geological Model Transect &Geological Model Transect &
Hydrogeological MapHydrogeological Map
Dolomitic limestone
Gravel
Saturated Sandstones:
Nubian aquifer
Fractured interface of Limestone-Gravel
Geological Profile of the NubianGeological Profile of the Nubian
Aquifer in the Baharïya Oasis AreaAquifer in the Baharïya Oasis Area
2 MHz & 3.5 MHz GPR Data2 MHz & 3.5 MHz GPR Data
Dolomitic
limestone
Gravel and
siltstone
Water saturated
sandstone
Redish claystone
ε = 4.34-i 0.08
ε = 6.2 -i 0.18
~300m
~600m
~100m
ε = 9 -i 0.5
ε= 36 -i 12
Site N4
N 28.37223
E 28.81952
Geoelectrical ModelGeoelectrical Model
Expected Radar Performance on MarsExpected Radar Performance on Mars
ConclusionsConclusions
Parameter GPR TEM
Physical process Wave propagation Diffusive spreading
Spatial resolution
Higher
( < 1 m possible )
Lower
( m – km )
Depth of
investigation
m – 10’s of m m – km
Sensitivity to
highly conductive
layers
More Less
Sounding
frequencies
1 MHz – 1 GHz 1 Hz – 64 Hz
Logistical
efficiency
Higher Lower
Appropriate
applications
Shallow groundwater,
near-surface clays,
etc.
Very deep water
tables, aquifers, etc.
Acknowledgements & References CitedAcknowledgements & References Cited
Grant. F. S., and West, G. F.,Grant. F. S., and West, G. F., Interpretation Theory in Applied GeophysicsInterpretation Theory in Applied Geophysics . McGraw-Hill,. McGraw-Hill,
New York, New York, 1965.New York, New York, 1965.
Grimm, R. E., “Low-Frequency Electromagnetic Exploration for Groundwater on Mars”.Grimm, R. E., “Low-Frequency Electromagnetic Exploration for Groundwater on Mars”.
Journal of Geophysical ResearchJournal of Geophysical Research , Vol. 107, No. E2, 12 February 2002., Vol. 107, No. E2, 12 February 2002.
Grimm, R. E., “A Comparison of Time Domain Electromagnetic and Surface Nuclear MagneticGrimm, R. E., “A Comparison of Time Domain Electromagnetic and Surface Nuclear Magnetic
Resonance Sounding for Subsurface Water On Mars”.Resonance Sounding for Subsurface Water On Mars”. Journal of Geophysical ResearchJournal of Geophysical Research ,,
Vol. 108, No. E4, 22 April 2003.Vol. 108, No. E4, 22 April 2003.
McNeill, J. D., “Use of Electromagnetic Methods for Groundwater Studies”. In:McNeill, J. D., “Use of Electromagnetic Methods for Groundwater Studies”. In: GeotechnicalGeotechnical
and Environmental Geophysics, Volume 1, Review and Tutorialand Environmental Geophysics, Volume 1, Review and Tutorial . Ward, S. H., editor.. Ward, S. H., editor.
Society of Exploration Geophysicists, Tulsa, Oklahoma, 1990.Society of Exploration Geophysicists, Tulsa, Oklahoma, 1990.
Palacky, G. J., “Resistivity Characteristics of Geologic Targets”. In:Palacky, G. J., “Resistivity Characteristics of Geologic Targets”. In: Electromagnetic MethodsElectromagnetic Methods
in Applied Geophysics, Volume 1, Theoryin Applied Geophysics, Volume 1, Theory . Nabighian, M. N., editor. Society of Exploration. Nabighian, M. N., editor. Society of Exploration
Geophysicists, Series: Investigations in Geophysics, Volume 3. Tulsa, Oklahoma, 1987.Geophysicists, Series: Investigations in Geophysics, Volume 3. Tulsa, Oklahoma, 1987.
Reynolds, J. M.,Reynolds, J. M., An Introduction to Applied and Environmental GeophysicAn Introduction to Applied and Environmental Geophysic s. John Wiley & Sonss. John Wiley & Sons
Ltd., Chichester, England, 1997.Ltd., Chichester, England, 1997.
Zonge, K. L., “Introduction to TEM”. In:Zonge, K. L., “Introduction to TEM”. In: Practical Geophysics II, for the Exploration GeologisPractical Geophysics II, for the Exploration Geologis t.t.
Van Blaricom, R., editor. Northwest Mining Association, Spokane, Washington, 1992.Van Blaricom, R., editor. Northwest Mining Association, Spokane, Washington, 1992.
Kenneth L. Zonge, Owner and President, Zonge Engineering and Research Organization, Inc.,Kenneth L. Zonge, Owner and President, Zonge Engineering and Research Organization, Inc.,
Tucson, ArizonaTucson, Arizona
Carol R. Stoker, NASA Ames, Principal Investigator, Mars Analog Research and TechnologyCarol R. Stoker, NASA Ames, Principal Investigator, Mars Analog Research and Technology
Experiment (MARTE)Experiment (MARTE)
Jean Jacques Berthelier, Valerie Ciarletti and Richard Ney , Centre d’Etudes Terrestres etJean Jacques Berthelier, Valerie Ciarletti and Richard Ney , Centre d’Etudes Terrestres et
Planetaires, Velizy, FrancePlanetaires, Velizy, France

More Related Content

Viewers also liked (6)

Jernsletten_Rice_Transcript
Jernsletten_Rice_TranscriptJernsletten_Rice_Transcript
Jernsletten_Rice_Transcript
 
Jernsletten_2005_SEG_781_talk
Jernsletten_2005_SEG_781_talkJernsletten_2005_SEG_781_talk
Jernsletten_2005_SEG_781_talk
 
Dr.Philos._Disputas
Dr.Philos._DisputasDr.Philos._Disputas
Dr.Philos._Disputas
 
Sera cue vc 18.1.16
Sera cue vc 18.1.16Sera cue vc 18.1.16
Sera cue vc 18.1.16
 
RegionsQ Magazine Issue 1 Final.PDF
RegionsQ Magazine Issue 1 Final.PDFRegionsQ Magazine Issue 1 Final.PDF
RegionsQ Magazine Issue 1 Final.PDF
 
La historia del internet
La historia del internetLa historia del internet
La historia del internet
 

Similar to Dr.Philos._Trial_Lecture_Candidate_Chosen_Topic

USFD-IRSE PROB - Updated.ppt
USFD-IRSE PROB - Updated.pptUSFD-IRSE PROB - Updated.ppt
USFD-IRSE PROB - Updated.pptbharatsingh300
 
TEMPEST AND WALFORD CREEK 1999
TEMPEST AND WALFORD CREEK 1999TEMPEST AND WALFORD CREEK 1999
TEMPEST AND WALFORD CREEK 1999Brett Johnson
 
1. Basic_Principles_US_Presentation.ppt
1. Basic_Principles_US_Presentation.ppt1. Basic_Principles_US_Presentation.ppt
1. Basic_Principles_US_Presentation.pptRushabh Kapadia
 
Sinkhole Seismic Reflections: Coal Mine Fields
Sinkhole Seismic Reflections: Coal Mine FieldsSinkhole Seismic Reflections: Coal Mine Fields
Sinkhole Seismic Reflections: Coal Mine FieldsAli Osman Öncel
 
Acoustics and vibrations of marine renewables- Mark-Paul Buckingham
Acoustics and vibrations of marine renewables- Mark-Paul BuckinghamAcoustics and vibrations of marine renewables- Mark-Paul Buckingham
Acoustics and vibrations of marine renewables- Mark-Paul Buckinghamrebeccalynam
 
chapt-03-140628235756-phpapp01.pdf
chapt-03-140628235756-phpapp01.pdfchapt-03-140628235756-phpapp01.pdf
chapt-03-140628235756-phpapp01.pdfMRehman9
 
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...Follow me on Twitter @Stockshaman
 
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...Follow me on Twitter @Stockshaman
 
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)JHBrewer
 
propagation-and-antenna
propagation-and-antennapropagation-and-antenna
propagation-and-antennaATTO RATHORE
 
Borehole Seismology in Urban Setting
Borehole Seismology in Urban SettingBorehole Seismology in Urban Setting
Borehole Seismology in Urban SettingAli Osman Öncel
 
An example of 3D conductivity mapping using the TEMPEST airborne electromagne...
An example of 3D conductivity mapping using the TEMPEST airborne electromagne...An example of 3D conductivity mapping using the TEMPEST airborne electromagne...
An example of 3D conductivity mapping using the TEMPEST airborne electromagne...Richard Lane
 

Similar to Dr.Philos._Trial_Lecture_Candidate_Chosen_Topic (20)

USFD-IRSE PROB - Updated.ppt
USFD-IRSE PROB - Updated.pptUSFD-IRSE PROB - Updated.ppt
USFD-IRSE PROB - Updated.ppt
 
UT 3.ppt
UT 3.pptUT 3.ppt
UT 3.ppt
 
TEMPEST AND WALFORD CREEK 1999
TEMPEST AND WALFORD CREEK 1999TEMPEST AND WALFORD CREEK 1999
TEMPEST AND WALFORD CREEK 1999
 
1. Basic_Principles_US_Presentation.ppt
1. Basic_Principles_US_Presentation.ppt1. Basic_Principles_US_Presentation.ppt
1. Basic_Principles_US_Presentation.ppt
 
Sinkhole Seismic Reflections: Coal Mine Fields
Sinkhole Seismic Reflections: Coal Mine FieldsSinkhole Seismic Reflections: Coal Mine Fields
Sinkhole Seismic Reflections: Coal Mine Fields
 
Sub Bottom Profiler QGI.pdf
Sub Bottom Profiler QGI.pdfSub Bottom Profiler QGI.pdf
Sub Bottom Profiler QGI.pdf
 
701240.ppt
701240.ppt701240.ppt
701240.ppt
 
Acoustics and vibrations of marine renewables- Mark-Paul Buckingham
Acoustics and vibrations of marine renewables- Mark-Paul BuckinghamAcoustics and vibrations of marine renewables- Mark-Paul Buckingham
Acoustics and vibrations of marine renewables- Mark-Paul Buckingham
 
chapt-03-140628235756-phpapp01.pdf
chapt-03-140628235756-phpapp01.pdfchapt-03-140628235756-phpapp01.pdf
chapt-03-140628235756-phpapp01.pdf
 
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
 
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
 
Q surface method
Q surface methodQ surface method
Q surface method
 
Hsb 2011 diffuse
Hsb 2011 diffuseHsb 2011 diffuse
Hsb 2011 diffuse
 
ultrasonics
ultrasonicsultrasonics
ultrasonics
 
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
 
propagation-and-antenna
propagation-and-antennapropagation-and-antenna
propagation-and-antenna
 
Borehole Seismology in Urban Setting
Borehole Seismology in Urban SettingBorehole Seismology in Urban Setting
Borehole Seismology in Urban Setting
 
U ltrasound physiscs
U ltrasound physiscsU ltrasound physiscs
U ltrasound physiscs
 
An example of 3D conductivity mapping using the TEMPEST airborne electromagne...
An example of 3D conductivity mapping using the TEMPEST airborne electromagne...An example of 3D conductivity mapping using the TEMPEST airborne electromagne...
An example of 3D conductivity mapping using the TEMPEST airborne electromagne...
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 

More from Jørn A. Jernsletten, Dr.Philos. (11)

Jørn_Curriculum_Vitae_A4
Jørn_Curriculum_Vitae_A4Jørn_Curriculum_Vitae_A4
Jørn_Curriculum_Vitae_A4
 
Jernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._DiplomaJernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._Diploma
 
Jernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._DiplomaJernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._Diploma
 
Jernsletten_E-RAU_Transcript
Jernsletten_E-RAU_TranscriptJernsletten_E-RAU_Transcript
Jernsletten_E-RAU_Transcript
 
Jernsletten_UN_Diploma
Jernsletten_UN_DiplomaJernsletten_UN_Diploma
Jernsletten_UN_Diploma
 
Jernsletten_UN_Diploma
Jernsletten_UN_DiplomaJernsletten_UN_Diploma
Jernsletten_UN_Diploma
 
Jernsletten_Rice_Transcript
Jernsletten_Rice_TranscriptJernsletten_Rice_Transcript
Jernsletten_Rice_Transcript
 
Jernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._DiplomaJernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._Diploma
 
Jernsletten_SOSU_Transcript
Jernsletten_SOSU_TranscriptJernsletten_SOSU_Transcript
Jernsletten_SOSU_Transcript
 
Jernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._DiplomaJernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._Diploma
 
Jernsletten_E-RAU_Transcript
Jernsletten_E-RAU_TranscriptJernsletten_E-RAU_Transcript
Jernsletten_E-RAU_Transcript
 

Dr.Philos._Trial_Lecture_Candidate_Chosen_Topic

  • 1. Sounding of Subsurface Water throughSounding of Subsurface Water through Conductive Media in Mars AnalogConductive Media in Mars Analog Environments Using TransientEnvironments Using Transient Electromagnetics and Low Frequency GroundElectromagnetics and Low Frequency Ground Penetrating RadarPenetrating Radar joern@jernsletten.namjoern@jernsletten.nam eehttp://joern.jernsletten.name/http://joern.jernsletten.name/ Mandag, 14. JuniMandag, 14. Juni 20042004 Universitetet iUniversitetet i BergenBergen Det Matematisk-NaturvitenskapeligeDet Matematisk-Naturvitenskapelige FakultetFakultet Institutt for GeovitenskapInstitutt for Geovitenskap DoctorDoctor PhilosophiaePhilosophiae Prøveforelesning, SelvvalgtPrøveforelesning, Selvvalgt EmneEmne Jørn AtleJørn Atle JernslettenJernsletten heggy@lpi.usra.edheggy@lpi.usra.ed EssamEssam HeggyHeggyLunar and Planetary Institute, Houston, TexasLunar and Planetary Institute, Houston, Texas
  • 2. IntroductionIntroduction To show how these methods differ and complement each other,To show how these methods differ and complement each other, we show data from three field studies:we show data from three field studies: 1)1) EMEM diffusivediffusive spreading sounding data (TEM) from Pimaspreading sounding data (TEM) from Pima County, ArizonaCounty, Arizona 2)2) Shallower sounding data, using the Fast-Turnoff TEMShallower sounding data, using the Fast-Turnoff TEM method, from Peña de Hierro, near Minas de Riotinto, Spainmethod, from Peña de Hierro, near Minas de Riotinto, Spain 3)3) WaveWave propagationpropagation radar sounding data (GPR) from theradar sounding data (GPR) from the Nubian aquifer, Baharïya Oasis, EgyptNubian aquifer, Baharïya Oasis, Egypt GPR and TEM discussed and compared in terms of:GPR and TEM discussed and compared in terms of: a)a) Spatial resolutionSpatial resolution b)b) Depth of investigationDepth of investigation c)c) Sensitivity to highly conductive layers (clay, ore bodies,Sensitivity to highly conductive layers (clay, ore bodies, brines, metal-rich fluids, etc.)brines, metal-rich fluids, etc.) d)d) Sounding frequenciesSounding frequencies e)e) Logistical efficiencyLogistical efficiency f)f) Appropriate applicationsAppropriate applications
  • 3. EM Sounding Scenarios for MarsEM Sounding Scenarios for Mars ( Grimm, 2002 )( Grimm, 2002 )
  • 4. Transient EM (TEM) WaveformTransient EM (TEM) Waveform ( Grimm, 2003; Reynolds, 1997; McNeill, 1990 )( Grimm, 2003; Reynolds, 1997; McNeill, 1990 )
  • 5.  Tx loop currentTx loop current  Induced primaryInduced primary magnetic fieldmagnetic field  Induced eddyInduced eddy currentscurrents  Produced secondaryProduced secondary magnetic fieldmagnetic field  Induced Rx antenna /Induced Rx antenna / loop currentloop current TEM Eddy CurrentsTEM Eddy Currents ( Reynolds, 1997 )( Reynolds, 1997 )
  • 6. TEM Eddy Currents – cont’dTEM Eddy Currents – cont’d ( Reynolds, 1997; Grant and West, 1965 )( Reynolds, 1997; Grant and West, 1965 )
  • 7. TEM Depth of InvestigationTEM Depth of Investigation ( Zonge, 1992 )( Zonge, 1992 )
  • 8. TEM Depth of Investigation – Cont’dTEM Depth of Investigation – Cont’d ( Zonge, 1992 )( Zonge, 1992 )
  • 9. Model TEM Exploration Depth for MarsModel TEM Exploration Depth for Mars ( Grimm, 2002 )( Grimm, 2002 )
  • 10. Resistivities of Typical Earth MaterialsResistivities of Typical Earth Materials ( Palacky, 1987 )( Palacky, 1987 )
  • 11. Resistivities of Fresh WaterResistivities of Fresh Water ( Grimm, 2002 )( Grimm, 2002 )
  • 12. Resistivities of Saturated BrineResistivities of Saturated Brine ( Grimm, 2002 )( Grimm, 2002 )
  • 13. Typical TEM Field SetupTypical TEM Field Setup ( Modified from Zonge, 1992 )( Modified from Zonge, 1992 )
  • 14. Arizona TEM Field SetupArizona TEM Field Setup
  • 15. Arizona TEM Field Setup – on the BackArizona TEM Field Setup – on the Back
  • 16. Arizona TEM Field Setup – on the GroundArizona TEM Field Setup – on the Ground
  • 17. Arizona TEM Field Setup – on the FrameArizona TEM Field Setup – on the Frame
  • 18. Arizona TEM Field Setup – Checking DataArizona TEM Field Setup – Checking Data
  • 19. Arizona TEM – Views from the FieldArizona TEM – Views from the Field
  • 20. Arizona TEM Field MapArizona TEM Field Map
  • 21. Arizona USGS Well DataArizona USGS Well Data  Water table at ~120 m depthWater table at ~120 m depth
  • 22. Arizona TEM Line 1 Field DataArizona TEM Line 1 Field Data  100 m x 100 m Tx loop,100 m x 100 m Tx loop, ferrite-core Hferrite-core Hzz coil Rxcoil Rx antennaantenna  16 Hz sounding frequency16 Hz sounding frequency  Depth of investigationDepth of investigation ~500 m~500 m
  • 23. Arizona TEM Line 1 Model DataArizona TEM Line 1 Model Data  Water table at ~120 m depth (horizontal blue line)Water table at ~120 m depth (horizontal blue line)  Consistent with depth to water table from USGS test wellsConsistent with depth to water table from USGS test wells  100 m x 100 m Tx loop, ferrite-core H100 m x 100 m Tx loop, ferrite-core Hzz coil Rx antennacoil Rx antenna  16 Hz sounding frequency16 Hz sounding frequency  Depth of investigation ~500 mDepth of investigation ~500 m
  • 24. Arizona TEM Line 2 Field DataArizona TEM Line 2 Field Data  100 m x 100 m Tx loop,100 m x 100 m Tx loop, ferrite-core Hferrite-core Hzz coil Rxcoil Rx antennaantenna  16 Hz sounding frequency16 Hz sounding frequency  Depth of investigationDepth of investigation ~500 m~500 m
  • 25. Arizona TEM Line 2 Model DataArizona TEM Line 2 Model Data  Water table at ~120 m depth (horizontal blue line)Water table at ~120 m depth (horizontal blue line)  Consistent with depth to water table from USGS test wellsConsistent with depth to water table from USGS test wells  100 m x 100 m Tx loop, ferrite-core H100 m x 100 m Tx loop, ferrite-core Hzz coil Rx antennacoil Rx antenna  16 Hz sounding frequency16 Hz sounding frequency  Depth of investigation ~500 mDepth of investigation ~500 m
  • 26. Arizona TEM Line 3 Field DataArizona TEM Line 3 Field Data  100 m x 100 m Tx loop,100 m x 100 m Tx loop, ferrite-core Hferrite-core Hzz coil Rxcoil Rx antennaantenna  16 Hz sounding frequency16 Hz sounding frequency  Depth of investigationDepth of investigation ~350 m~350 m
  • 27. Arizona TEM Line 3 Model DataArizona TEM Line 3 Model Data  Water table at ~120 m depth (horizontal blue line)Water table at ~120 m depth (horizontal blue line)  Consistent with depth to water table from USGS test wellsConsistent with depth to water table from USGS test wells  100 m x 100 m Tx loop, ferrite-core H100 m x 100 m Tx loop, ferrite-core Hzz coil Rx antennacoil Rx antenna  16 Hz sounding frequency16 Hz sounding frequency  Depth of investigation ~350 mDepth of investigation ~350 m
  • 28. Peña de Hierro, MARTE Field AreaPeña de Hierro, MARTE Field Area
  • 29. Peña de Hierro, Main Source AreaPeña de Hierro, Main Source Area Morris et al., 2004Morris et al., 2004 Kargel and Marion, 2004Kargel and Marion, 2004 Stoker et al., 2004Stoker et al., 2004 Fernández-Remolar et al., 2004Fernández-Remolar et al., 2004 A.k.a. MER-B in the Late Hesperian?A.k.a. MER-B in the Late Hesperian? Jarosite =Jarosite = KFeKFe3+3+ 33 (SO(SO44 ))22 (OH)(OH)66  Basic hydrous potassium iron sulfate  Yellow-brown, brown, orange-brown  Light yellow streaks
  • 30. Peña de Hierro, MARTE Drill Site #3Peña de Hierro, MARTE Drill Site #3
  • 31. Typical Fast-Turnoff TEM Field SetupTypical Fast-Turnoff TEM Field Setup ( Adapted from Zonge, 1992 )( Adapted from Zonge, 1992 )
  • 32. Peña de Hierro, Field ConditionsPeña de Hierro, Field Conditions
  • 33. Rio Tinto Fast-Turnoff TEM FieldRio Tinto Fast-Turnoff TEM Field MapMap
  • 34. Fast-Turnoff TEM Line 4 Field DataFast-Turnoff TEM Line 4 Field Data  40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency
  • 35. Fast-Turnoff TEM Line 4 Model DataFast-Turnoff TEM Line 4 Model Data  Water table at ~90 m depthWater table at ~90 m depth  Consistent with initial drilling results (MARTE Drill Site #4)Consistent with initial drilling results (MARTE Drill Site #4)  40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency  Depth of investigation ~160 mDepth of investigation ~160 m
  • 36. Fast-Turnoff TEM Line 7 Field DataFast-Turnoff TEM Line 7 Field Data  40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency
  • 37. Fast-Turnoff TEM Line 7 Model DataFast-Turnoff TEM Line 7 Model Data  Water table at ~90 m depthWater table at ~90 m depth  Consistent with initial drilling results (MARTE Drill Site #4)Consistent with initial drilling results (MARTE Drill Site #4)  40 m x 40 m Tx loop, 10 m x 10 m Rx loop40 m x 40 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency  Depth of investigation ~130 mDepth of investigation ~130 m
  • 38. Rio Tinto Fast-Turnoff TEM FieldRio Tinto Fast-Turnoff TEM Field MapMap
  • 39. Fast-Turnoff TEM Line 15 Field DataFast-Turnoff TEM Line 15 Field Data  20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency
  • 40. Fast-Turnoff TEM Line 15 Model DataFast-Turnoff TEM Line 15 Model Data  Water interface at ~15 m depthWater interface at ~15 m depth  Consistent with initial drilling results (MARTE Drill Site #1)Consistent with initial drilling results (MARTE Drill Site #1)  20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency  Depth of investigation ~50 mDepth of investigation ~50 m
  • 41. Fast-Turnoff TEM Line 14 Field DataFast-Turnoff TEM Line 14 Field Data  20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency
  • 42. Fast-Turnoff TEM Line 14 Model DataFast-Turnoff TEM Line 14 Model Data  Water interface at ~15 m depthWater interface at ~15 m depth  Consistent with initial drilling results (MARTE Drill Site #1)Consistent with initial drilling results (MARTE Drill Site #1)  20 m x 20 m Tx loop, 10 m x 10 m Rx loop20 m x 20 m Tx loop, 10 m x 10 m Rx loop  32 Hz sounding frequency32 Hz sounding frequency  Depth of investigation ~50 mDepth of investigation ~50 m
  • 43. Rio Tinto Drill Site RelocationsRio Tinto Drill Site Relocations
  • 44. MARTE Drill Site 1MARTE Drill Site 1
  • 45. Ground PenetratingGround Penetrating RadarRadar Aeroported imagingAeroported imaging RadarRadar Orbital sounderOrbital sounder RadarRadar SoundingSounding ScenariosScenarios
  • 46. SubsurfacSubsurfac ee LayersLayers 9 m9 m Bir Safsaf 300 MHz GPRBir Safsaf 300 MHz GPR profile Ground Pentrating Radar (GPR)Ground Pentrating Radar (GPR)
  • 47. GPR Field SetupGPR Field Setup 2 MHz GPR system courtesy of CETP2 MHz GPR system courtesy of CETP
  • 48. GPR Depth of InvestigationGPR Depth of Investigation
  • 49. Baharïya Oasis &Baharïya Oasis & Nubian Aquifer MapNubian Aquifer Map . CairoCairo 2 MHz GPR survey BaharïyBaharïy aa NubianNubian aquiferaquifer (600 m)(600 m)
  • 51. Thin Clay LayersThin Clay Layers
  • 52. Geological Model Transect &Geological Model Transect & Hydrogeological MapHydrogeological Map
  • 53. Dolomitic limestone Gravel Saturated Sandstones: Nubian aquifer Fractured interface of Limestone-Gravel Geological Profile of the NubianGeological Profile of the Nubian Aquifer in the Baharïya Oasis AreaAquifer in the Baharïya Oasis Area
  • 54. 2 MHz & 3.5 MHz GPR Data2 MHz & 3.5 MHz GPR Data
  • 55. Dolomitic limestone Gravel and siltstone Water saturated sandstone Redish claystone ε = 4.34-i 0.08 ε = 6.2 -i 0.18 ~300m ~600m ~100m ε = 9 -i 0.5 ε= 36 -i 12 Site N4 N 28.37223 E 28.81952 Geoelectrical ModelGeoelectrical Model
  • 56. Expected Radar Performance on MarsExpected Radar Performance on Mars
  • 57. ConclusionsConclusions Parameter GPR TEM Physical process Wave propagation Diffusive spreading Spatial resolution Higher ( < 1 m possible ) Lower ( m – km ) Depth of investigation m – 10’s of m m – km Sensitivity to highly conductive layers More Less Sounding frequencies 1 MHz – 1 GHz 1 Hz – 64 Hz Logistical efficiency Higher Lower Appropriate applications Shallow groundwater, near-surface clays, etc. Very deep water tables, aquifers, etc.
  • 58. Acknowledgements & References CitedAcknowledgements & References Cited Grant. F. S., and West, G. F.,Grant. F. S., and West, G. F., Interpretation Theory in Applied GeophysicsInterpretation Theory in Applied Geophysics . McGraw-Hill,. McGraw-Hill, New York, New York, 1965.New York, New York, 1965. Grimm, R. E., “Low-Frequency Electromagnetic Exploration for Groundwater on Mars”.Grimm, R. E., “Low-Frequency Electromagnetic Exploration for Groundwater on Mars”. Journal of Geophysical ResearchJournal of Geophysical Research , Vol. 107, No. E2, 12 February 2002., Vol. 107, No. E2, 12 February 2002. Grimm, R. E., “A Comparison of Time Domain Electromagnetic and Surface Nuclear MagneticGrimm, R. E., “A Comparison of Time Domain Electromagnetic and Surface Nuclear Magnetic Resonance Sounding for Subsurface Water On Mars”.Resonance Sounding for Subsurface Water On Mars”. Journal of Geophysical ResearchJournal of Geophysical Research ,, Vol. 108, No. E4, 22 April 2003.Vol. 108, No. E4, 22 April 2003. McNeill, J. D., “Use of Electromagnetic Methods for Groundwater Studies”. In:McNeill, J. D., “Use of Electromagnetic Methods for Groundwater Studies”. In: GeotechnicalGeotechnical and Environmental Geophysics, Volume 1, Review and Tutorialand Environmental Geophysics, Volume 1, Review and Tutorial . Ward, S. H., editor.. Ward, S. H., editor. Society of Exploration Geophysicists, Tulsa, Oklahoma, 1990.Society of Exploration Geophysicists, Tulsa, Oklahoma, 1990. Palacky, G. J., “Resistivity Characteristics of Geologic Targets”. In:Palacky, G. J., “Resistivity Characteristics of Geologic Targets”. In: Electromagnetic MethodsElectromagnetic Methods in Applied Geophysics, Volume 1, Theoryin Applied Geophysics, Volume 1, Theory . Nabighian, M. N., editor. Society of Exploration. Nabighian, M. N., editor. Society of Exploration Geophysicists, Series: Investigations in Geophysics, Volume 3. Tulsa, Oklahoma, 1987.Geophysicists, Series: Investigations in Geophysics, Volume 3. Tulsa, Oklahoma, 1987. Reynolds, J. M.,Reynolds, J. M., An Introduction to Applied and Environmental GeophysicAn Introduction to Applied and Environmental Geophysic s. John Wiley & Sonss. John Wiley & Sons Ltd., Chichester, England, 1997.Ltd., Chichester, England, 1997. Zonge, K. L., “Introduction to TEM”. In:Zonge, K. L., “Introduction to TEM”. In: Practical Geophysics II, for the Exploration GeologisPractical Geophysics II, for the Exploration Geologis t.t. Van Blaricom, R., editor. Northwest Mining Association, Spokane, Washington, 1992.Van Blaricom, R., editor. Northwest Mining Association, Spokane, Washington, 1992. Kenneth L. Zonge, Owner and President, Zonge Engineering and Research Organization, Inc.,Kenneth L. Zonge, Owner and President, Zonge Engineering and Research Organization, Inc., Tucson, ArizonaTucson, Arizona Carol R. Stoker, NASA Ames, Principal Investigator, Mars Analog Research and TechnologyCarol R. Stoker, NASA Ames, Principal Investigator, Mars Analog Research and Technology Experiment (MARTE)Experiment (MARTE) Jean Jacques Berthelier, Valerie Ciarletti and Richard Ney , Centre d’Etudes Terrestres etJean Jacques Berthelier, Valerie Ciarletti and Richard Ney , Centre d’Etudes Terrestres et Planetaires, Velizy, FrancePlanetaires, Velizy, France

Editor's Notes

  1. Dick Morris’ talk at LPSC 35 referred to Rio Tinto as an analog environment to that of the MER-B landing site for the formation of jarocite (acidic environment; pH ~1.5-3). Jeff Kargel also referred to Rio Tinto at the same meeting. If you want to know more about the Rio Tinto analog, refer to David Fernandez’ and Carol Stoker’s talks at LPSC 35, and earlier work in Rio Tinto by them and others.
  2. More radiated power than orbital, better resolution, no surface scattering. Reflection off dielectric contrast. 2-D profile of subsurface. Layers &amp;lt; 1 m thick (high resolution).
  3. Field setup of experimental static (sounding) radar system in 1-5 MHz range (low frequency GPR). Netlander prototype, developed by CETP (Centre d’Etudes Terrestres et Planetaires), Velizy, France.
  4. Penetration depth depends on electric and magnetic properties of the soil. Penetration depth in single homogeneous layer, assuming propagation. Mars analog materials. More conductive material =&amp;gt; smaller penetration depth. Basalt: 2 MHz ~ 600 m ; 10 MHz ~ 300 m.
  5. Nubian aquifer 0-600m. Extremely arid. Netlander prototype – 2 MHz.
  6. Extremely arid, limestone =&amp;gt; highly resistive material. Thin clay layers dramatically decreases penetration depth.
  7. In this location, with the presence of the thin clay layers, the radar was unable to sound the water table at ~100 m depth.
  8. LR corner: hydrogeological map (depths to water table), ‘Exposed’: Baharïya Oasis. Red stars = radar shots. Blue line is the location of the hydrogeological cross-section in the following slide (SE is to the left in the following slide).
  9. Clays at T1 &amp; T2, water table ~100 m, radar unable to sound this relatively shallow water table. T3: Water table ~600 m, no clays, highly resistive, radar was able to sound water table at ~600 m. T4: Analysis still in progress, preliminary results show water table at ~900 m.
  10. Amplitude after many iterations of amplification / gain.
  11. Relative dielectric constant. Geoelectrical model from laboratory measurements of samples from surface outcrop of each layer.