Low Frequency Sound Technologies HSB Workshop, Rotterdam, 10/11/2011, Frederic Mosca, PhD
Contents <ul><li>Ixsea Overview </li></ul><ul><li>High Resolution Seismic Reflection Theory </li></ul><ul><li>Low Frequenc...
IXSEA Overview <ul><li>220 Employees </li></ul><ul><li>TurnOver 2010 : 41M€ </li></ul>SYSTEMS SOLUTIONS PRODUCTS TECHNOLOG...
IXSEA Products and Technologies <ul><li>Inertial Product Division: Gyrocompas and Navigation Sensors  </li></ul><ul><li>(1...
Acoustic Research & Technology <ul><li>15 people in La Ciotat </li></ul><ul><ul><li>Synthetic Aperture Sonar </li></ul></u...
Low Frequency Sound Technology Low Frequency 0.1 kHz 1 kHz 10 kHz 100 kHz 1000 kHz 1000 km 100 km 10 km 1 km 0.1 km Seismi...
High Resolution Seismic Reflection  <ul><li>Or Subbottom Profiling, or Sediment Profiling </li></ul><ul><li>20’s: Seismic ...
High Resolution Seismic Reflection: Principle  Platform Trajectory Water Column Signal enveloppe Seismic profile Ref. X.Lu...
High Resolution Seismic Reflection: Theory <ul><li>Reflection of sound at a boundary between 2 different media </li></ul><...
High Resolution Seismic Reflection: Theory <ul><li>Scattering by Surface Roughness </li></ul><ul><li>True plane wave refle...
High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </...
High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </...
High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </...
High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </...
High Resolution Seismic Reflection: Linear System Theory <ul><li>From a Linear System Theory point of view: </li></ul>Sour...
High Resolution Seismic Reflection: Source spectrum effect <ul><li>Dirac comb convolution </li></ul>Sediment column Absorp...
High Resolution Seismic Reflection: Image quality <ul><li>Resolution: </li></ul><ul><li>Contrast: </li></ul>SL Source Leve...
High Resolution Seismic Reflection: Intrinsic tradeoff <ul><li>Good penetration =  Low Frequency </li></ul><ul><li>Good im...
High Resolution Seismic Reflection: Sound technologies <ul><li>Accelerating Water Mass </li></ul><ul><ul><li>Boomers </li>...
High Resolution Seismic Reflection: Sound technologies Impulsive source Resonant source Poor Performance… … but strong pot...
High Resolution Seismic Reflection: Chirp technology <ul><li>From Radar technology.  Schock et al., 1989 </li></ul><ul><li...
High Resolution Seismic Reflection: Chirp technology Sediment column Absorption Pulse source F t Sediment column Absorptio...
High Resolution Seismic Reflection: Chirp technology <ul><li>Process Gain: PG = 10log(BT) ~ 20dB </li></ul><ul><ul><li>For...
Low Frequency Sound Technology: Coupled resonator
Low Frequency Sound Technology: Design Process <ul><li>Analytical Model </li></ul><ul><li>Equivalent Circuit Model </li></...
Low Frequency Sound Technology: Flapping Tonpilz <ul><li>Piezoelectric Stack </li></ul><ul><ul><li>Dilatation / Compressio...
Low Frequency Sound Technology: Janus-Helmholtz <ul><li>Janus </li></ul><ul><ul><li>Symetric transducer </li></ul></ul><ul...
Low Frequency Sound Technology: Bandwidth Flatness <ul><li>Bandwidth Flatness Matters: </li></ul>
Low Frequency Sound Technology: Transmission Chain Power Amplifier Transducer Waveform Generator Power Supply Impedance Ma...
Low Frequency Sound Technology: Transmission Chain Power Amplifier Transducer Waveform Generator Power Supply Impedance Ma...
High Resolution Seismic Reflection: Sound technologies Boomer Airgun Sparker Flapping Tonpilz Janus-Helmholtz Energy outpu...
High Resolution Seismic Reflection: ECHOES Family 600Hz 1500 Hz 3500 Hz 5000 Hz 10000 Hz
ECHOES 1500 : Description <ul><ul><li>BW = 650Hz – 2500Hz </li></ul></ul><ul><ul><li>Source Level : 200dB (ref.1µPa@1m) (@...
ECHOES 1500 : Results 55ms 145ms 400m 40cm resolution
ECHOES 3500 : Description <ul><ul><li>BW = 1800Hz – 5200Hz </li></ul></ul><ul><ul><li>Source Level : 210dB (ref.1µPa@1m) (...
ECHOES 3500: Results 605ms 870ms 150m penetration
ECHOES 5000: Description <ul><ul><li>BW = 2000Hz – 8000Hz </li></ul></ul><ul><ul><li>Source Level : 190dB (ref.1µPa@1m) (@...
ECHOES 10000: Description <ul><ul><li>BW = 5000Hz – 15000Hz </li></ul></ul><ul><ul><li>Source Level : 210dB (ref.1µPa@1m) ...
ECHOES 10000: Results 0ms 25ms 4m
ECHOES 10000 vs ECHOES 5000 10kHZ 5kHZ
Conclusion and further research <ul><li>SBP = tradeoff between resolution and penetration </li></ul><ul><li>Chirp Technolo...
Thank you! Questions ?
Upcoming SlideShare
Loading in …5
×

Hsb 2011 diffuse

1,626 views

Published on

IXSEA presentation of 10 november 2011 Flat bandwith low frequency tranducers and processing for Hydrographic and Seismic applications

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,626
On SlideShare
0
From Embeds
0
Number of Embeds
326
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Hsb 2011 diffuse

  1. 1. Low Frequency Sound Technologies HSB Workshop, Rotterdam, 10/11/2011, Frederic Mosca, PhD
  2. 2. Contents <ul><li>Ixsea Overview </li></ul><ul><li>High Resolution Seismic Reflection Theory </li></ul><ul><li>Low Frequency Sound Technology </li></ul><ul><li>ECHOES Results </li></ul>
  3. 3. IXSEA Overview <ul><li>220 Employees </li></ul><ul><li>TurnOver 2010 : 41M€ </li></ul>SYSTEMS SOLUTIONS PRODUCTS TECHNOLOGIES
  4. 4. IXSEA Products and Technologies <ul><li>Inertial Product Division: Gyrocompas and Navigation Sensors </li></ul><ul><li>(120 people in Marly) </li></ul><ul><li>Acoustic Product Division: Acoustic Positionning and Mooring </li></ul><ul><li>(50 people in Brest) </li></ul><ul><li>Sonar System Division: Acoustic Imaging (30 people in La Ciotat) </li></ul>
  5. 5. Acoustic Research & Technology <ul><li>15 people in La Ciotat </li></ul><ul><ul><li>Synthetic Aperture Sonar </li></ul></ul><ul><ul><li>Multi Beam Echo Sounder (fishing trancking, phase detection, bottom classification) </li></ul></ul><ul><ul><li>Low Frequency Sound Technology </li></ul></ul><ul><ul><li>Fiber Optic Hydrophone </li></ul></ul><ul><ul><li>Acoustic Barrier (active and passive) </li></ul></ul><ul><ul><li>Non Linear Acoustic (parametric and harmonic) </li></ul></ul>
  6. 6. Low Frequency Sound Technology Low Frequency 0.1 kHz 1 kHz 10 kHz 100 kHz 1000 kHz 1000 km 100 km 10 km 1 km 0.1 km Seismic Subbottom Profilers Passive Military Sonars Active Military Sonars Transmission and Positionning Imaging Sonar (SSS, SAS) MultiBeam Echo Sounder Fishery Echo Sounders and Sonars Acoustic Camera
  7. 7. High Resolution Seismic Reflection <ul><li>Or Subbottom Profiling, or Sediment Profiling </li></ul><ul><li>20’s: Seismic Reflection </li></ul><ul><ul><li>Large geophysical structure </li></ul></ul><ul><ul><li>Penetration : > 1 km </li></ul></ul><ul><ul><li>Resolution : ~10 m </li></ul></ul><ul><li>70’s: High Resolution Seismic Reflection </li></ul><ul><ul><li>Fine sedimentary composition </li></ul></ul><ul><ul><li>Penetration: ~100m </li></ul></ul><ul><ul><li>Resolution: <1m </li></ul></ul><ul><li>Oil Exploration </li></ul><ul><li>Geophysic Investigations </li></ul><ul><li>Mineral Explorations </li></ul><ul><li>Seafloor Process Investigations </li></ul><ul><li>Underwater Engineering </li></ul><ul><li>Hydrography </li></ul><ul><li>Quaternary Mapping </li></ul><ul><li>Habitat Studies </li></ul><ul><li>Archeology </li></ul>
  8. 8. High Resolution Seismic Reflection: Principle Platform Trajectory Water Column Signal enveloppe Seismic profile Ref. X.Lurton, An introduction to Underwater Acoustics
  9. 9. High Resolution Seismic Reflection: Theory <ul><li>Reflection of sound at a boundary between 2 different media </li></ul><ul><li>Different media in acoustic: </li></ul><ul><li>Plane wave reflection coefficient: </li></ul>At each interface an echo is generated Medium 1 Medium 2 p i p t p r
  10. 10. High Resolution Seismic Reflection: Theory <ul><li>Scattering by Surface Roughness </li></ul><ul><li>True plane wave reflection coefficient: </li></ul><ul><li>With R, the Rayleigh parameter: </li></ul>Medium 1 Medium 2 p i p t p r h θ
  11. 11. High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </li></ul><ul><ul><li>Source amplitude </li></ul></ul><ul><ul><li>Energy loss processes : spherical spreading and absorption </li></ul></ul><ul><ul><li>Reflection coefficient amplitude </li></ul></ul><ul><ul><li>Receivers geometry and sensitivity </li></ul></ul><ul><ul><li>Ambient noise level at the detector </li></ul></ul>
  12. 12. High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </li></ul><ul><ul><li>Source amplitude </li></ul></ul><ul><ul><li>Energy loss processes : spherical spreading and absorption </li></ul></ul><ul><ul><li>Reflection coefficient amplitude </li></ul></ul><ul><ul><li>Receivers geometry and sensitivity </li></ul></ul><ul><ul><li>Ambient noise level at the detector </li></ul></ul>Work near the bottom Solid state source
  13. 13. High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </li></ul><ul><ul><li>Source amplitude </li></ul></ul><ul><ul><li>Energy loss processes : spherical spreading and absorption </li></ul></ul><ul><ul><li>Reflection coefficient amplitude </li></ul></ul><ul><ul><li>Receivers geometry and sensitivity </li></ul></ul><ul><ul><li>Ambient noise level at the detector </li></ul></ul>Working at low frequency
  14. 14. High Resolution Seismic Reflection: key parameters <ul><li>Detection of the reflected waves at the receiver depends on: </li></ul><ul><ul><li>Source amplitude </li></ul></ul><ul><ul><li>Energy loss processes : spherical spreading and absorption </li></ul></ul><ul><ul><li>Reflection coefficient amplitude </li></ul></ul><ul><ul><li>Receivers geometry and sensitivity </li></ul></ul><ul><ul><li>Ambient noise level at the detector </li></ul></ul><ul><li>Receiving antenna position </li></ul><ul><li>Platform self-noise reduction </li></ul><ul><li>Tow-fish or UUV </li></ul><ul><li>Baffling </li></ul><ul><li>Antenna length </li></ul><ul><li>Bottom slope </li></ul>
  15. 15. High Resolution Seismic Reflection: Linear System Theory <ul><li>From a Linear System Theory point of view: </li></ul>Source Function Medium Function Sediment column Dirac comb
  16. 16. High Resolution Seismic Reflection: Source spectrum effect <ul><li>Dirac comb convolution </li></ul>Sediment column Absorption Ideally flat BW source F t Sediment column Absorption Real source F t
  17. 17. High Resolution Seismic Reflection: Image quality <ul><li>Resolution: </li></ul><ul><li>Contrast: </li></ul>SL Source Level Spectrum F SL max SL max -3dB B A 0 A 0 /2 A t T A s
  18. 18. High Resolution Seismic Reflection: Intrinsic tradeoff <ul><li>Good penetration = Low Frequency </li></ul><ul><li>Good image quality = Large Source Bandwidth </li></ul><ul><li>Bandwidth proportionnal to frequency (quality factor, Q) </li></ul><ul><li>So Good image quality = High Frequency </li></ul>
  19. 19. High Resolution Seismic Reflection: Sound technologies <ul><li>Accelerating Water Mass </li></ul><ul><ul><li>Boomers </li></ul></ul><ul><ul><li>Air guns </li></ul></ul><ul><ul><li>Sleeve guns </li></ul></ul><ul><li>Implosive Source </li></ul><ul><ul><li>Vaporchoc </li></ul></ul><ul><ul><li>Flexichoc </li></ul></ul><ul><ul><li>Water guns </li></ul></ul><ul><li>Explosive Source </li></ul><ul><ul><li>Dynamite, gas exploders, blasting gaps </li></ul></ul><ul><ul><li>Sparkers </li></ul></ul><ul><li>Controlled waveform </li></ul><ul><ul><li>Piezoelectric transducers </li></ul></ul><ul><ul><li>Magnetostrictive transducers </li></ul></ul>Ref. Woods Hole University website Air Gun Principle Ref. Woods Hole University website
  20. 20. High Resolution Seismic Reflection: Sound technologies Impulsive source Resonant source Poor Performance… … but strong potential Ref. Verbeek et al. (1995) ; Moscher et al. (1999) Boomer Airgun Sparker Piezoelectric Energy output High (230dB) High (235dB) Medium (225dB) Low (215dB) Typical BW 0.5-5kHz 20-300Hz 0.5-5kHz Q = 10% Arbitrary WF No No No Yes Directivity Yes No No Yes Repeatability High Poor Poor High Deep-tow Capability No No <1000m Full depth Other Bubble pulse Bubble pulse
  21. 21. High Resolution Seismic Reflection: Chirp technology <ul><li>From Radar technology. Schock et al., 1989 </li></ul><ul><li>Linear frequency modulated pulse: </li></ul><ul><ul><li>B = bandwidth </li></ul></ul><ul><ul><li>T = pulse duration </li></ul></ul><ul><ul><li>f 0 = central frequency </li></ul></ul><ul><li>Auto-correlation property </li></ul>c/2B B.T
  22. 22. High Resolution Seismic Reflection: Chirp technology Sediment column Absorption Pulse source F t Sediment column Absorption Chirp source F Better penetration
  23. 23. High Resolution Seismic Reflection: Chirp technology <ul><li>Process Gain: PG = 10log(BT) ~ 20dB </li></ul><ul><ul><li>For instance B = 2kHz and T = 50ms </li></ul></ul>How increasing Q ? Boomer Airgun Sparker Piezoelectric Energy output High (230dB) High (235dB) Medium (225dB) High (235dB) After pulse compression Typical BW 0.5-5kHz 20-300Hz 0.5-5kHz Q = 10% Arbitrary WF No No No Yes Directivity Yes No No Yes Repeatability High Poor Poor High Deep-tow Capability No No <1000m Full depth Other Bubble pulse Bubble pulse
  24. 24. Low Frequency Sound Technology: Coupled resonator
  25. 25. Low Frequency Sound Technology: Design Process <ul><li>Analytical Model </li></ul><ul><li>Equivalent Circuit Model </li></ul><ul><li>Finite Element Modeling </li></ul><ul><li>Prototyping </li></ul><ul><li>Test in Tank or Lake </li></ul><ul><li>Design evaluation </li></ul>
  26. 26. Low Frequency Sound Technology: Flapping Tonpilz <ul><li>Piezoelectric Stack </li></ul><ul><ul><li>Dilatation / Compression resonator </li></ul></ul><ul><ul><li>Motor </li></ul></ul><ul><ul><li>Pre-stress </li></ul></ul><ul><li>Tail Mass </li></ul><ul><ul><li>Unidirectionnal transmission </li></ul></ul><ul><li>Head Mass </li></ul><ul><ul><li>Acoustic Impedance Matching </li></ul></ul><ul><ul><li>Flapping Disc Resonator </li></ul></ul>Q = 100% High SL Depth limited
  27. 27. Low Frequency Sound Technology: Janus-Helmholtz <ul><li>Janus </li></ul><ul><ul><li>Symetric transducer </li></ul></ul><ul><ul><li>Nodal plane </li></ul></ul><ul><li>Fluid cavity </li></ul><ul><ul><li>Helmholtz resonator </li></ul></ul>Q = 100% Full Depth Medium SL
  28. 28. Low Frequency Sound Technology: Bandwidth Flatness <ul><li>Bandwidth Flatness Matters: </li></ul>
  29. 29. Low Frequency Sound Technology: Transmission Chain Power Amplifier Transducer Waveform Generator Power Supply Impedance Matching 10dB
  30. 30. Low Frequency Sound Technology: Transmission Chain Power Amplifier Transducer Waveform Generator Power Supply Impedance Matching 3dB Compensation Stage
  31. 31. High Resolution Seismic Reflection: Sound technologies Boomer Airgun Sparker Flapping Tonpilz Janus-Helmholtz Energy output High (230dB) High (235dB) Medium (225dB) High (235dB) After pulse compression Medium (225dB) After pulse compression Typical BW 0.5-5kHz 20-300Hz 0.5-5kHz Q = 100% Q = 100% Arbitrary WF No No No Yes Yes Directivity Yes No No Yes No Repeatability High Poor Poor High High Deep-tow Capability No No <1000m No Full Depth Other Bubble pulse Bubble pulse Bad Weather Operability
  32. 32. High Resolution Seismic Reflection: ECHOES Family 600Hz 1500 Hz 3500 Hz 5000 Hz 10000 Hz
  33. 33. ECHOES 1500 : Description <ul><ul><li>BW = 650Hz – 2500Hz </li></ul></ul><ul><ul><li>Source Level : 200dB (ref.1µPa@1m) (@2kW) </li></ul></ul><ul><ul><li>Equivalent Source Level : 225dB (ref.1µPa@1m) </li></ul></ul><ul><ul><li>Typical Resolution : 40cm </li></ul></ul><ul><ul><li>Typical Penetration : 250m </li></ul></ul><ul><ul><li>Full Depth Capability </li></ul></ul><ul><ul><li>Bad Weather Operability </li></ul></ul><ul><ul><li>Application </li></ul></ul><ul><ul><ul><li>HR Seismic (Boomer/Sparker Range) </li></ul></ul></ul><ul><ul><ul><li>Acoustic Tomography </li></ul></ul></ul><ul><ul><ul><li>Long Range Communication </li></ul></ul></ul><ul><ul><li>References: </li></ul></ul><ul><ul><ul><li>IFREMER </li></ul></ul></ul><ul><ul><ul><li>Universities (Tokyo, Alger) </li></ul></ul></ul><ul><ul><ul><li>DORD, TUS, Svarog, De Beers </li></ul></ul></ul>GAPS Beacon GPS Underwater Housing (power supply, synchro, com’ ) Phins 6000 Echoes 1500 6000m
  34. 34. ECHOES 1500 : Results 55ms 145ms 400m 40cm resolution
  35. 35. ECHOES 3500 : Description <ul><ul><li>BW = 1800Hz – 5200Hz </li></ul></ul><ul><ul><li>Source Level : 210dB (ref.1µPa@1m) (@3kW) </li></ul></ul><ul><ul><li>Equivalent Source Level : 235dB (ref.1µPa@1m) </li></ul></ul><ul><ul><li>Typical Resolution : 20cm </li></ul></ul><ul><ul><li>Typical Penetration : 100m </li></ul></ul><ul><ul><li>Hull-mounted </li></ul></ul><ul><ul><li>6000m Water Column Capability </li></ul></ul><ul><ul><li>Application </li></ul></ul><ul><ul><ul><li>HR Seismic </li></ul></ul></ul><ul><ul><ul><li>Hydrographic / Oceanographic Vessel </li></ul></ul></ul><ul><ul><li>References: </li></ul></ul><ul><ul><ul><li>IFREMER (3 vessels) </li></ul></ul></ul><ul><ul><ul><li>Hydrographic Institute (France, Portugal) </li></ul></ul></ul><ul><ul><ul><li>Yuzmorgheo, P.R. China </li></ul></ul></ul>
  36. 36. ECHOES 3500: Results 605ms 870ms 150m penetration
  37. 37. ECHOES 5000: Description <ul><ul><li>BW = 2000Hz – 8000Hz </li></ul></ul><ul><ul><li>Source Level : 190dB (ref.1µPa@1m) (@1kW) </li></ul></ul><ul><ul><li>Equivalent Source Level : 215dB (ref.1µPa@1m) </li></ul></ul><ul><ul><li>Typical Resolution : 12cm </li></ul></ul><ul><ul><li>Typical Penetration : 50m </li></ul></ul><ul><ul><li>Tow fish, Pole-mounted, AUV </li></ul></ul><ul><ul><li>Full-depth Capability </li></ul></ul><ul><ul><li>Application </li></ul></ul><ul><ul><ul><li>HR Seismic </li></ul></ul></ul><ul><ul><ul><li>UUV payload </li></ul></ul></ul><ul><ul><ul><li>Coastal and Lake survey </li></ul></ul></ul><ul><ul><li>References: </li></ul></ul><ul><ul><ul><li>IFREMER (AUV ASTERIX, ROV VICTOR 6000) </li></ul></ul></ul><ul><ul><ul><li>MARUM </li></ul></ul></ul><ul><ul><ul><li>La Rochelle University </li></ul></ul></ul>
  38. 38. ECHOES 10000: Description <ul><ul><li>BW = 5000Hz – 15000Hz </li></ul></ul><ul><ul><li>Source Level : 210dB (ref.1µPa@1m) (@2kW) </li></ul></ul><ul><ul><li>Equivalent Source Level : 230dB (ref.1µPa@1m) </li></ul></ul><ul><ul><li>Typical Resolution : 7cm </li></ul></ul><ul><ul><li>Typical Penetration : 10m - 20m </li></ul></ul><ul><ul><li>Hull-mounted, Pole-mounted </li></ul></ul><ul><ul><li>Application </li></ul></ul><ul><ul><ul><li>HR Seismic (Parametric SBP range) </li></ul></ul></ul><ul><ul><ul><li>Mine detection </li></ul></ul></ul><ul><ul><ul><li>Archeology </li></ul></ul></ul><ul><ul><li>References: </li></ul></ul><ul><ul><ul><li>IXSURVEY </li></ul></ul></ul>
  39. 39. ECHOES 10000: Results 0ms 25ms 4m
  40. 40. ECHOES 10000 vs ECHOES 5000 10kHZ 5kHZ
  41. 41. Conclusion and further research <ul><li>SBP = tradeoff between resolution and penetration </li></ul><ul><li>Chirp Technology </li></ul><ul><li>Bandwidth Matters! (Large and Flat) </li></ul><ul><li>Technologies: </li></ul><ul><ul><li>Flapping Tonpilz </li></ul></ul><ul><ul><li>Janus-Helmholtz </li></ul></ul><ul><ul><li>Compensation stage </li></ul></ul><ul><li>Other research </li></ul><ul><ul><li>Janus-Hammer Bell for Very Long Range Acoustic Communication </li></ul></ul><ul><ul><li>High Signal-to-Noise Ratio Fiber Optic Hydrophone </li></ul></ul><ul><ul><li>Mills Cross Parametric Communication </li></ul></ul>100bits/s @ 1000km DSS0 – 10dB
  42. 42. Thank you! Questions ?

×