SlideShare a Scribd company logo
1 of 11
Download to read offline
John	
  Pederson	
   	
   	
   	
   	
   	
   	
   	
   	
  
Homemade	
  Celestial	
  Navigation	
  
General	
  Overview:	
  
For	
  the	
  past	
  several	
  years,	
  as	
  a	
  research-­‐based	
  hobby,	
  I’ve	
  set	
  out	
  to	
  learn	
  and	
  
practice	
  the	
  “lost	
  art”	
  of	
  celestial	
  navigation.	
  	
  In	
  the	
  past,	
  navigators	
  would	
  measure	
  
the	
  angular	
  heights	
  of	
  the	
  sun	
  and	
  stars,	
  using	
  the	
  information	
  to	
  plot	
  their	
  position	
  
on	
  the	
  globe	
  (in	
  degrees	
  of	
  latitude	
  and	
  longitude).	
  	
  With	
  instruments	
  I	
  made	
  from	
  
household	
  materials,	
  I’ve	
  sought	
  to	
  pinpoint	
  my	
  location	
  in	
  the	
  same	
  way,	
  drawing	
  
on	
  techniques	
  from	
  various	
  cultures	
  around	
  the	
  world.	
  
The	
  Polynesian	
  seafarers,	
  whom	
  I	
  researched	
  as	
  a	
  history	
  project,	
  used	
  their	
  
knowledge	
  of	
  star	
  positions	
  to	
  navigate	
  and	
  colonize	
  a	
  third	
  of	
  the	
  Earth’s	
  surface	
  
without	
  any	
  instruments.	
  	
  Arab	
  traders	
  used	
  simple	
  ones	
  to	
  tell	
  their	
  latitude	
  in	
  the	
  
featureless	
  Arabian	
  Desert.	
  	
  European	
  and	
  American	
  navigators,	
  up	
  until	
  World	
  War	
  
II,	
  used	
  highly	
  accurate	
  sextants	
  to	
  locate	
  themselves	
  to	
  within	
  a	
  mile.	
  	
  I’ve	
  
researched	
  all	
  of	
  their	
  techniques	
  to	
  help	
  me	
  do	
  the	
  same.	
  
As	
  a	
  further	
  challenge,	
  American	
  explorers	
  used	
  such	
  instruments	
  to	
  determine	
  the	
  
local	
  time;	
  this	
  compensated	
  for	
  their	
  inaccurate	
  timepieces.	
  	
  I	
  researched	
  and	
  
performed	
  this	
  task	
  as	
  well;	
  the	
  technique	
  uses	
  the	
  same	
  navigation	
  concepts.	
  
	
  
Constructing	
  the	
  Instruments:	
  
Building	
  instruments	
  at	
  home	
  of	
  the	
  same	
  caliber	
  as	
  those	
  of	
  professional	
  craftsmen	
  
is	
  impossible,	
  so	
  I	
  used	
  various	
  tricks	
  to	
  overcome	
  the	
  limitations	
  of	
  household	
  
items.	
  
Below	
  is	
  one	
  of	
  the	
  first	
  instruments	
  I	
  created,	
  a	
  quadrant.	
  	
  It	
  can	
  measure	
  the	
  
vertical	
  angle	
  of	
  an	
  object	
  above	
  the	
  horizon	
  by	
  using	
  a	
  plumb	
  bob.	
  	
  When	
  one	
  tilts	
  
the	
  quadrant	
  a	
  certain	
  number	
  of	
  degrees	
  upward,	
  its	
  plumb	
  bob	
  points	
  to	
  the	
  
equivalent	
  number	
  of	
  degrees	
  on	
  the	
  scale.	
  	
  In	
  usage,	
  I	
  sight	
  through	
  the	
  tube	
  on	
  top,	
  
let	
  the	
  string	
  swing	
  downward	
  and	
  settle,	
  pinch	
  the	
  string	
  to	
  its	
  place	
  on	
  the	
  scale,	
  
and	
  read	
  the	
  angle.	
  
I	
  fitted	
  the	
  sighting	
  tube,	
  a	
  straw,	
  with	
  a	
  pinhole	
  sight,	
  allowing	
  focus	
  on	
  both	
  
faraway	
  and	
  nearby	
  objects	
  simultaneously.	
  	
  (It’s	
  similar	
  to	
  the	
  pinhole	
  camera	
  used	
  
to	
  produce	
  the	
  famous	
  James	
  Bond	
  gun	
  barrel	
  sequence,	
  where	
  the	
  target	
  and	
  the	
  
gun	
  barrel’s	
  rifling	
  are	
  both	
  in	
  focus.)	
  	
  Below	
  is	
  picture	
  of	
  the	
  instrument,	
  plus	
  one	
  
showing	
  me	
  sighting	
  the	
  top	
  of	
  a	
  tree.	
  
 
	
  
The	
  second	
  instrument	
  I	
  made	
  is	
  a	
  sextant,	
  an	
  instrument	
  that	
  relies	
  on	
  the	
  
positioning	
  of	
  two	
  mirrors	
  to	
  optically	
  determine	
  angles	
  between	
  objects.	
  	
  One	
  looks	
  
into	
  the	
  device,	
  swings	
  the	
  arm	
  (or	
  in	
  my	
  case,	
  rotates	
  the	
  CD	
  mirror)	
  until	
  the	
  two	
  
objects’	
  images	
  appear	
  superimposed,	
  and	
  reads	
  the	
  angle	
  on	
  the	
  scale.	
  
Because	
  the	
  instrument	
  requires	
  a	
  high	
  degree	
  of	
  dimensional	
  precision,	
  I	
  used	
  
Legos	
  to	
  provide	
  precise	
  right	
  angles.	
  	
  The	
  perpendicular	
  pivot	
  point	
  is	
  also	
  difficult	
  
to	
  replicate,	
  so	
  I	
  used	
  a	
  CD	
  case.	
  	
  (Everything	
  that	
  reflects	
  light	
  on	
  the	
  sextant	
  must	
  
be	
  perpendicular	
  to	
  the	
  base,	
  for	
  not	
  doing	
  so	
  causes	
  the	
  images	
  one	
  sees	
  to	
  be	
  
misaligned;	
  this	
  affects	
  the	
  angle	
  measured.)	
  
The	
  tiny	
  arc	
  (only	
  about	
  6	
  cm	
  in	
  radius)	
  is	
  impossible	
  to	
  read	
  past	
  integer	
  degrees,	
  
so	
  I	
  drew	
  and	
  printed	
  a	
  vernier	
  scale	
  to	
  theoretically	
  achieve	
  minute	
  accuracy.	
  	
  (1	
  
degree	
  =	
  60	
  minutes	
  of	
  arc.)	
  	
  In	
  practice,	
  I	
  could	
  only	
  read	
  the	
  scale	
  to	
  around	
  15	
  arc	
  
minutes,	
  for	
  extreme	
  precision	
  is	
  needed	
  to	
  match	
  the	
  arc	
  of	
  the	
  vernier	
  exactly	
  with	
  
the	
  arc	
  of	
  the	
  sextant	
  arm.	
  
The	
  mirror	
  edges	
  are	
  rough,	
  for	
  they	
  are	
  cut-­‐up	
  makeup	
  mirrors.	
  	
  I	
  removed	
  half	
  of	
  
the	
  silvering	
  from	
  the	
  mirror	
  on	
  the	
  CD	
  case	
  –	
  this	
  allows	
  me	
  to	
  see	
  both	
  sighted	
  
objects	
  at	
  the	
  same	
  time,	
  one	
  in	
  each	
  half	
  of	
  the	
  mirror.	
  
	
  
 
	
  
The	
  above	
  image	
  shows	
  the	
  sextant	
  in	
  operation;	
  I’m	
  measuring	
  the	
  angle	
  between	
  
my	
  desk	
  lamp	
  and	
  my	
  globe.	
  	
  The	
  central	
  mirror	
  on	
  the	
  CD	
  itself	
  (its	
  edge	
  is	
  just	
  
visible	
  on	
  the	
  right)	
  rotates	
  with	
  the	
  CD,	
  allowing	
  the	
  angle	
  it	
  makes	
  with	
  the	
  mirror	
  
on	
  the	
  CD	
  case	
  (very	
  center	
  of	
  picture)	
  to	
  be	
  easily	
  adjusted.	
  	
  The	
  light	
  coming	
  from	
  
the	
  lamp	
  (just	
  outside	
  the	
  picture,	
  to	
  the	
  right)	
  is	
  reflecting	
  off	
  the	
  central	
  mirror	
  on	
  
the	
  CD,	
  reflecting	
  again	
  off	
  the	
  mirror	
  on	
  the	
  CD	
  case,	
  and	
  reaching	
  the	
  camera	
  as	
  an	
  
image	
  of	
  the	
  lamp	
  (visible	
  in	
  the	
  CD	
  case	
  mirror).	
  	
  In	
  this	
  picture,	
  the	
  lamp	
  appears	
  
to	
  be	
  visually	
  lined	
  up	
  with	
  the	
  edge	
  of	
  the	
  globe.	
  	
  By	
  reading	
  the	
  angle	
  that	
  the	
  
central	
  mirror	
  was	
  rotated,	
  I	
  can	
  determine	
  the	
  angle	
  between	
  the	
  two	
  objects.	
  
The	
  third	
  instrument	
  I	
  made	
  is	
  an	
  artificial	
  horizon.	
  	
  In	
  the	
  suburbs	
  of	
  Houston,	
  I	
  
cannot	
  see	
  the	
  horizon	
  –	
  there	
  are	
  way	
  too	
  many	
  trees	
  and	
  buildings	
  in	
  the	
  way.	
  	
  A	
  
sextant,	
  without	
  a	
  plumb	
  line,	
  needs	
  an	
  external	
  reference	
  to	
  measure	
  angles.	
  	
  North	
  
American	
  and	
  Antarctic	
  explorers	
  solved	
  this	
  problem:	
  by	
  using	
  a	
  pan	
  of	
  mercury	
  
covered	
  with	
  a	
  windscreen,	
  they	
  would	
  sight	
  the	
  angle	
  between	
  a	
  star	
  and	
  its	
  
reflected	
  image	
  in	
  the	
  tray.	
  	
  This	
  measurement	
  was	
  double	
  the	
  angle	
  between	
  the	
  
star	
  and	
  the	
  invisible	
  horizon.	
  
For	
  obvious	
  reasons,	
  I	
  didn’t	
  want	
  to	
  handle	
  mercury,	
  so	
  I	
  used	
  plain	
  water	
  in	
  my	
  
horizon.	
  	
  The	
  windscreen	
  needs	
  to	
  have	
  perpendicular	
  glass	
  panes	
  (to	
  avoid	
  
refraction	
  error),	
  so	
  I	
  used	
  Legos	
  again	
  to	
  get	
  sufficient	
  ninety-­‐degree	
  accuracy.	
  	
  
Also,	
  the	
  water’s	
  surface	
  needs	
  to	
  be	
  completely	
  shielded	
  from	
  wind,	
  so	
  pardon	
  the	
  
unattractive	
  masking	
  tape	
  –	
  it’s	
  making	
  an	
  airtight	
  seal.	
  	
  Below	
  is	
  a	
  photo	
  of	
  the	
  
reflected	
  image	
  it	
  produces.	
  
	
  
 
	
  
You	
  can	
  see	
  both	
  a	
  flashlight	
  and	
  its	
  reflected	
  image	
  in	
  this	
  picture	
  of	
  the	
  artificial	
  
horizon	
  (the	
  triple	
  dots	
  in	
  the	
  clear	
  plastic	
  dish).	
  	
  If	
  the	
  flashlight	
  were	
  as	
  far	
  away	
  as	
  
the	
  stars,	
  the	
  bisector	
  of	
  the	
  angle	
  between	
  the	
  images	
  would	
  be	
  the	
  true	
  horizon.	
  
	
  
Calculator	
  Programming:	
  
The	
  theory	
  behind	
  celestial	
  navigation	
  involves	
  a	
  lot	
  of	
  spherical	
  geometry	
  and	
  
trigonometric	
  ratios,	
  for	
  one	
  is	
  calculating	
  angles	
  and	
  distances	
  on	
  triangles	
  that	
  
span	
  the	
  globe.	
  	
  In	
  the	
  past,	
  navigators	
  used	
  precomputed	
  tables	
  to	
  “reduce”	
  their	
  
sights;	
  nowadays,	
  a	
  scientific	
  calculator	
  can	
  do	
  the	
  calculations	
  directly.	
  	
  I	
  learned	
  
calculator	
  programming	
  from	
  a	
  friend	
  of	
  mine,	
  so	
  I	
  wrote	
  the	
  requisite	
  formulas	
  into	
  
a	
  program	
  that	
  prompts	
  you	
  for	
  values,	
  performs	
  the	
  calculations,	
  and	
  returns	
  the	
  
information	
  I	
  need	
  to	
  plot	
  my	
  position	
  on	
  a	
  chart.	
  
The	
  method	
  of	
  sight	
  reduction	
  I	
  use	
  to	
  turn	
  measured	
  celestial	
  angles	
  into	
  chart	
  
positions	
  is	
  called	
  the	
  “azimuth	
  intercept	
  method”.	
  	
  The	
  method	
  uses	
  the	
  sighted	
  
angle	
  and	
  the	
  time	
  of	
  observation	
  to	
  produce	
  a	
  “line	
  of	
  position”,	
  or	
  a	
  line	
  across	
  the	
  
Earth’s	
  surface	
  that	
  passes	
  through	
  where	
  I	
  am.	
  	
  To	
  find	
  my	
  position	
  on	
  this	
  line,	
  I	
  
need	
  at	
  least	
  two	
  lines	
  of	
  position	
  to	
  intersect.	
  
I	
  created	
  a	
  second	
  program	
  to	
  plot	
  the	
  lines	
  on	
  the	
  calculator’s	
  graph	
  itself.	
  	
  This	
  
makes	
  it	
  easy	
  for	
  me	
  to	
  find	
  my	
  location	
  –	
  I	
  simply	
  use	
  the	
  <Intercept>	
  function	
  to	
  
find	
  where	
  the	
  lines	
  meet.	
  	
  Below	
  is	
  a	
  real	
  intersection,	
  or	
  fix	
  of	
  my	
  location,	
  from	
  
two	
  sextant	
  sights	
  that	
  I	
  did.	
  
	
  
Another	
  technique	
  of	
  sight	
  reduction,	
  based	
  on	
  the	
  same	
  principles,	
  allows	
  one	
  to	
  
sight	
  the	
  sun	
  and	
  calculate	
  the	
  local	
  time	
  that	
  the	
  sight	
  was	
  taken	
  –	
  without	
  the	
  use	
  
of	
  a	
  watch.	
  	
  This	
  trick	
  was	
  useful	
  to	
  American	
  explorers	
  with	
  inaccurate	
  timepieces.	
  
I	
  took	
  the	
  time	
  sights	
  with	
  the	
  quadrant,	
  because	
  using	
  the	
  sextant	
  would	
  have	
  
required	
  dark	
  solar	
  shades	
  (to	
  protect	
  my	
  eyes	
  from	
  the	
  sun’s	
  image).	
  	
  I	
  didn’t	
  look	
  
directly	
  at	
  the	
  sun;	
  I	
  used	
  the	
  sighting	
  tube’s	
  shadow	
  to	
  reverse-­‐sight	
  the	
  sun’s	
  
altitude.	
  	
  By	
  this,	
  I	
  mean	
  that	
  I	
  aligned	
  the	
  sighting	
  tube	
  backwards;	
  when	
  I	
  could	
  see	
  
the	
  light	
  from	
  the	
  pinhole	
  sight’s	
  hole	
  in	
  the	
  shadow,	
  it	
  meant	
  that	
  the	
  tube	
  was	
  
perfectly	
  aligned	
  with	
  the	
  sun’s	
  rays.	
  	
  (In	
  the	
  picture	
  below,	
  you	
  can	
  see	
  the	
  hole’s	
  
speck	
  of	
  light	
  on	
  my	
  thigh,	
  in	
  the	
  middle	
  of	
  the	
  tube’s	
  shadow.)	
  	
  I	
  then	
  read	
  the	
  angle.	
  
	
  
I	
  programmed	
  the	
  necessary	
  trigonometry	
  for	
  the	
  method	
  into	
  a	
  third	
  program;	
  it	
  
uses	
  the	
  sight	
  taken,	
  your	
  latitude,	
  and	
  the	
  declination	
  of	
  the	
  sun	
  on	
  that	
  day	
  to	
  
provide	
  the	
  local	
  time.	
  	
  Because	
  this	
  “local	
  apparent	
  time”	
  is	
  not	
  CST,	
  I	
  needed	
  to	
  add	
  
several	
  corrections	
  to	
  check	
  my	
  accuracy.	
  
Below	
  is	
  a	
  picture	
  of	
  a	
  sample	
  calculation	
  page	
  –	
  it	
  shows	
  the	
  various	
  corrections	
  I	
  
make	
  for	
  each	
  time	
  sight	
  that	
  I	
  do.	
  	
  I	
  start	
  by	
  recording	
  the	
  sun’s	
  angular	
  height	
  and	
  
the	
  exact	
  time	
  I	
  took	
  the	
  sight.	
  	
  (Recording	
  the	
  time	
  is	
  purely	
  to	
  determine	
  my	
  error	
  
–	
  if	
  I	
  were	
  actually	
  trying	
  to	
  figure	
  out	
  the	
  local	
  time	
  from	
  scratch,	
  I	
  would	
  obviously	
  
not	
  have	
  access	
  to	
  a	
  watch!)	
  	
  I	
  then	
  record	
  the	
  day’s	
  mean	
  values	
  of	
  the	
  sun’s	
  
declination	
  and	
  the	
  equation	
  of	
  time.	
  	
  (These	
  values	
  are	
  defined	
  below.)	
  	
  Using	
  my	
  
third	
  program,	
  I	
  calculate	
  the	
  local	
  apparent	
  time	
  based	
  on	
  my	
  approximate	
  latitude,	
  
the	
  sun’s	
  declination,	
  and	
  the	
  recorded	
  height	
  of	
  the	
  sun.	
  	
  To	
  this	
  time	
  (2:57:22	
  in	
  
the	
  example)	
  I	
  add	
  the	
  equation	
  of	
  time	
  value	
  for	
  that	
  day	
  (+00:05:11)	
  to	
  get	
  the	
  
local	
  mean	
  time.	
  	
  If	
  I	
  didn’t	
  have	
  a	
  watch	
  and	
  were	
  truly	
  lost,	
  I	
  would	
  stop	
  here;	
  
however,	
  I’m	
  in	
  a	
  city	
  full	
  of	
  clocks	
  and	
  appointments,	
  so	
  I	
  do	
  some	
  more	
  corrections	
  
to	
  convert	
  that	
  time	
  into	
  CST.	
  	
  By	
  adding	
  the	
  correction	
  for	
  daylight	
  savings	
  time	
  
(+1:00:00)	
  and	
  compensating	
  for	
  my	
  longitude	
  west	
  of	
  the	
  CST	
  zone	
  line	
  
(+00:21:58),	
  I	
  get	
  the	
  time	
  of	
  my	
  sight	
  in	
  CST,	
  which	
  I	
  then	
  compare	
  to	
  my	
  watch	
  
recording	
  to	
  get	
  an	
  error.	
  
Without	
  a	
  nautical	
  almanac	
  on	
  hand,	
  the	
  sun’s	
  declination	
  and	
  equation	
  of	
  time	
  
value	
  are	
  difficult	
  to	
  know	
  precisely.	
  	
  (The	
  sun’s	
  declination	
  is	
  how	
  far	
  north	
  or	
  
south	
  of	
  the	
  equator	
  the	
  sun	
  appears	
  to	
  be	
  on	
  a	
  certain	
  day	
  of	
  the	
  year;	
  the	
  equation	
  
of	
  time	
  is	
  a	
  correction	
  for	
  the	
  Earth’s	
  elliptical	
  orbit	
  and	
  its	
  tilt,	
  both	
  of	
  which	
  affect	
  
the	
  sun’s	
  position	
  in	
  the	
  sky.)	
  	
  To	
  address	
  this,	
  I	
  wrote	
  a	
  fourth	
  program;	
  it	
  uses	
  
trigonometric	
  equations	
  to	
  approximate	
  these	
  two	
  effects,	
  thus	
  calculating	
  the	
  two	
  
values	
  for	
  any	
  day	
  I	
  wish.	
  
Below	
  the	
  sample	
  time	
  calculation	
  is	
  a	
  screenshot	
  of	
  my	
  declination/equation	
  of	
  
time	
  value	
  calculation	
  program.	
  
	
  
 
	
  
Conclusions:	
  
Through	
  research,	
  careful	
  instrument	
  construction,	
  and	
  programming,	
  I	
  am	
  able	
  to	
  
practice	
  celestial	
  navigation	
  with	
  respectable	
  accuracy	
  (by	
  pre-­‐GPS	
  standards,	
  at	
  
least).	
  
I	
  can	
  sight	
  the	
  altitude	
  of	
  stars	
  to	
  within	
  a	
  fourth	
  of	
  a	
  degree,	
  using	
  my	
  homemade	
  
sextant	
  and	
  artificial	
  horizon.	
  	
  For	
  less	
  precision,	
  I	
  can	
  use	
  my	
  quadrant	
  to	
  measure	
  
angles	
  to	
  within	
  a	
  degree.	
  	
  Both	
  instruments	
  are	
  made	
  from	
  household	
  materials,	
  
too.	
  
With	
  the	
  sights,	
  I	
  can	
  use	
  my	
  own	
  calculator	
  programs	
  to	
  plot	
  lines	
  of	
  position	
  and	
  
achieve	
  location	
  fixes.	
  	
  I	
  have	
  actually	
  located	
  myself	
  to	
  within	
  a	
  tenth	
  of	
  a	
  degree	
  of	
  
latitude	
  and	
  longitude!	
  
I	
  can	
  find	
  the	
  local	
  time	
  and	
  CST	
  using	
  only	
  a	
  quadrant	
  and	
  a	
  graphing	
  calculator.	
  	
  
My	
  average	
  error,	
  decreasing	
  with	
  experience,	
  is	
  2	
  minutes	
  20	
  seconds.	
  	
  That’s	
  
about	
  as	
  accurate	
  as	
  most	
  people’s	
  watches!	
  
I	
  now	
  have	
  a	
  profound	
  appreciation	
  for	
  the	
  navigators	
  of	
  the	
  cultures	
  mentioned,	
  
made	
  stronger	
  with	
  every	
  measurement	
  I’ve	
  taken	
  over	
  the	
  past	
  three	
  years.	
  	
  This	
  
pursuit	
  has	
  been	
  truly	
  intellectually	
  fulfilling;	
  I	
  never	
  dreamed	
  it	
  would	
  take	
  me	
  this	
  
far,	
  so	
  I	
  can’t	
  wait	
  to	
  see	
  where	
  it	
  will	
  take	
  me	
  next.	
  
References	
  I’ve	
  Used:	
  
http://www.samlow.com/sail-­‐nav/starnavigation.htm	
  
This	
  site	
  teaches	
  some	
  basic	
  theory	
  behind	
  celestial	
  navigation,	
  specifically	
  how	
  the	
  
stars	
  appear	
  to	
  move	
  as	
  one’s	
  location	
  changes.	
  	
  Discusses	
  other	
  Polynesian	
  
techniques.	
  
http://www.northwestjournal.ca/dtnav.html	
  
This	
  magazine	
  article	
  discusses	
  the	
  reconstructed	
  and	
  reanalyzed	
  techniques	
  of	
  the	
  
North	
  American	
  explorer	
  David	
  Thompson.	
  	
  Provides	
  several	
  worked-­‐out	
  and	
  
explained	
  examples	
  of	
  various	
  sextant	
  and	
  navigational	
  procedures.	
  	
  This	
  is	
  where	
  I	
  
sourced	
  the	
  formulas	
  for	
  local	
  time	
  sights.	
  
http://straitofmagellan.blogspot.com/search/label/Celestial%20Navigation%2010
1	
  
This	
  is	
  a	
  collection	
  of	
  blog	
  articles	
  outlining	
  the	
  basics	
  behind	
  the	
  azimuth	
  intercept	
  
method,	
  as	
  instructed	
  by	
  a	
  USCG	
  licensed	
  captain.	
  

More Related Content

Similar to Celestial Navigation Study

We investigate if a period of time feels longer or shorter when pe.docx
We investigate if a period of time feels longer or shorter when pe.docxWe investigate if a period of time feels longer or shorter when pe.docx
We investigate if a period of time feels longer or shorter when pe.docx
melbruce90096
 
topic 4 Parts of Marine Sextant.pptx
topic 4 Parts of Marine Sextant.pptxtopic 4 Parts of Marine Sextant.pptx
topic 4 Parts of Marine Sextant.pptx
Altair8
 
Brief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docxBrief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docx
chestnutkaitlyn
 
Lenses
LensesLenses
Lenses
ozo120
 
Diameter of the Sun Activity (25 points)Brief Overview of Activity.docx
Diameter of the Sun Activity (25 points)Brief Overview of Activity.docxDiameter of the Sun Activity (25 points)Brief Overview of Activity.docx
Diameter of the Sun Activity (25 points)Brief Overview of Activity.docx
meghanthrelkeld256
 
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.pptAP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
MarkJaySilverio
 
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.pptAP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AlonaZambales
 
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.pptAP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
hananeelbasri
 

Similar to Celestial Navigation Study (20)

Measure Earth's Circumference with a Shadow
Measure Earth's Circumference with a ShadowMeasure Earth's Circumference with a Shadow
Measure Earth's Circumference with a Shadow
 
We investigate if a period of time feels longer or shorter when pe.docx
We investigate if a period of time feels longer or shorter when pe.docxWe investigate if a period of time feels longer or shorter when pe.docx
We investigate if a period of time feels longer or shorter when pe.docx
 
topic 4 Parts of Marine Sextant.pptx
topic 4 Parts of Marine Sextant.pptxtopic 4 Parts of Marine Sextant.pptx
topic 4 Parts of Marine Sextant.pptx
 
Brief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docxBrief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docx
 
Lenses
LensesLenses
Lenses
 
Diameter of the Sun Activity (25 points)Brief Overview of Activity.docx
Diameter of the Sun Activity (25 points)Brief Overview of Activity.docxDiameter of the Sun Activity (25 points)Brief Overview of Activity.docx
Diameter of the Sun Activity (25 points)Brief Overview of Activity.docx
 
Measuring doubles with 8&quot; neaf copy
Measuring doubles with 8&quot; neaf copyMeasuring doubles with 8&quot; neaf copy
Measuring doubles with 8&quot; neaf copy
 
Ray Tracing
Ray TracingRay Tracing
Ray Tracing
 
Experiment of finding the resolving power of the
Experiment of finding the resolving power of theExperiment of finding the resolving power of the
Experiment of finding the resolving power of the
 
Our sun device
Our sun deviceOur sun device
Our sun device
 
Final
FinalFinal
Final
 
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.pptAP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
 
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.pptAP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
 
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.pptAP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
 
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.pptAP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt
 
Sextante tchr
Sextante tchrSextante tchr
Sextante tchr
 
Light
LightLight
Light
 
Light - PModelo.pptx
Light - PModelo.pptxLight - PModelo.pptx
Light - PModelo.pptx
 
COMENIUS - Webquest eratosthene
COMENIUS - Webquest eratostheneCOMENIUS - Webquest eratosthene
COMENIUS - Webquest eratosthene
 
Light - Mirrors and Lenses.pptx
Light - Mirrors and Lenses.pptxLight - Mirrors and Lenses.pptx
Light - Mirrors and Lenses.pptx
 

Celestial Navigation Study

  • 1. John  Pederson                   Homemade  Celestial  Navigation   General  Overview:   For  the  past  several  years,  as  a  research-­‐based  hobby,  I’ve  set  out  to  learn  and   practice  the  “lost  art”  of  celestial  navigation.    In  the  past,  navigators  would  measure   the  angular  heights  of  the  sun  and  stars,  using  the  information  to  plot  their  position   on  the  globe  (in  degrees  of  latitude  and  longitude).    With  instruments  I  made  from   household  materials,  I’ve  sought  to  pinpoint  my  location  in  the  same  way,  drawing   on  techniques  from  various  cultures  around  the  world.   The  Polynesian  seafarers,  whom  I  researched  as  a  history  project,  used  their   knowledge  of  star  positions  to  navigate  and  colonize  a  third  of  the  Earth’s  surface   without  any  instruments.    Arab  traders  used  simple  ones  to  tell  their  latitude  in  the   featureless  Arabian  Desert.    European  and  American  navigators,  up  until  World  War   II,  used  highly  accurate  sextants  to  locate  themselves  to  within  a  mile.    I’ve   researched  all  of  their  techniques  to  help  me  do  the  same.   As  a  further  challenge,  American  explorers  used  such  instruments  to  determine  the   local  time;  this  compensated  for  their  inaccurate  timepieces.    I  researched  and   performed  this  task  as  well;  the  technique  uses  the  same  navigation  concepts.     Constructing  the  Instruments:   Building  instruments  at  home  of  the  same  caliber  as  those  of  professional  craftsmen   is  impossible,  so  I  used  various  tricks  to  overcome  the  limitations  of  household   items.   Below  is  one  of  the  first  instruments  I  created,  a  quadrant.    It  can  measure  the   vertical  angle  of  an  object  above  the  horizon  by  using  a  plumb  bob.    When  one  tilts   the  quadrant  a  certain  number  of  degrees  upward,  its  plumb  bob  points  to  the   equivalent  number  of  degrees  on  the  scale.    In  usage,  I  sight  through  the  tube  on  top,   let  the  string  swing  downward  and  settle,  pinch  the  string  to  its  place  on  the  scale,   and  read  the  angle.   I  fitted  the  sighting  tube,  a  straw,  with  a  pinhole  sight,  allowing  focus  on  both   faraway  and  nearby  objects  simultaneously.    (It’s  similar  to  the  pinhole  camera  used   to  produce  the  famous  James  Bond  gun  barrel  sequence,  where  the  target  and  the   gun  barrel’s  rifling  are  both  in  focus.)    Below  is  picture  of  the  instrument,  plus  one   showing  me  sighting  the  top  of  a  tree.  
  • 3. The  second  instrument  I  made  is  a  sextant,  an  instrument  that  relies  on  the   positioning  of  two  mirrors  to  optically  determine  angles  between  objects.    One  looks   into  the  device,  swings  the  arm  (or  in  my  case,  rotates  the  CD  mirror)  until  the  two   objects’  images  appear  superimposed,  and  reads  the  angle  on  the  scale.   Because  the  instrument  requires  a  high  degree  of  dimensional  precision,  I  used   Legos  to  provide  precise  right  angles.    The  perpendicular  pivot  point  is  also  difficult   to  replicate,  so  I  used  a  CD  case.    (Everything  that  reflects  light  on  the  sextant  must   be  perpendicular  to  the  base,  for  not  doing  so  causes  the  images  one  sees  to  be   misaligned;  this  affects  the  angle  measured.)   The  tiny  arc  (only  about  6  cm  in  radius)  is  impossible  to  read  past  integer  degrees,   so  I  drew  and  printed  a  vernier  scale  to  theoretically  achieve  minute  accuracy.    (1   degree  =  60  minutes  of  arc.)    In  practice,  I  could  only  read  the  scale  to  around  15  arc   minutes,  for  extreme  precision  is  needed  to  match  the  arc  of  the  vernier  exactly  with   the  arc  of  the  sextant  arm.   The  mirror  edges  are  rough,  for  they  are  cut-­‐up  makeup  mirrors.    I  removed  half  of   the  silvering  from  the  mirror  on  the  CD  case  –  this  allows  me  to  see  both  sighted   objects  at  the  same  time,  one  in  each  half  of  the  mirror.    
  • 4.     The  above  image  shows  the  sextant  in  operation;  I’m  measuring  the  angle  between   my  desk  lamp  and  my  globe.    The  central  mirror  on  the  CD  itself  (its  edge  is  just   visible  on  the  right)  rotates  with  the  CD,  allowing  the  angle  it  makes  with  the  mirror   on  the  CD  case  (very  center  of  picture)  to  be  easily  adjusted.    The  light  coming  from   the  lamp  (just  outside  the  picture,  to  the  right)  is  reflecting  off  the  central  mirror  on   the  CD,  reflecting  again  off  the  mirror  on  the  CD  case,  and  reaching  the  camera  as  an   image  of  the  lamp  (visible  in  the  CD  case  mirror).    In  this  picture,  the  lamp  appears   to  be  visually  lined  up  with  the  edge  of  the  globe.    By  reading  the  angle  that  the   central  mirror  was  rotated,  I  can  determine  the  angle  between  the  two  objects.   The  third  instrument  I  made  is  an  artificial  horizon.    In  the  suburbs  of  Houston,  I   cannot  see  the  horizon  –  there  are  way  too  many  trees  and  buildings  in  the  way.    A   sextant,  without  a  plumb  line,  needs  an  external  reference  to  measure  angles.    North   American  and  Antarctic  explorers  solved  this  problem:  by  using  a  pan  of  mercury   covered  with  a  windscreen,  they  would  sight  the  angle  between  a  star  and  its   reflected  image  in  the  tray.    This  measurement  was  double  the  angle  between  the   star  and  the  invisible  horizon.   For  obvious  reasons,  I  didn’t  want  to  handle  mercury,  so  I  used  plain  water  in  my   horizon.    The  windscreen  needs  to  have  perpendicular  glass  panes  (to  avoid   refraction  error),  so  I  used  Legos  again  to  get  sufficient  ninety-­‐degree  accuracy.    
  • 5. Also,  the  water’s  surface  needs  to  be  completely  shielded  from  wind,  so  pardon  the   unattractive  masking  tape  –  it’s  making  an  airtight  seal.    Below  is  a  photo  of  the   reflected  image  it  produces.    
  • 6.     You  can  see  both  a  flashlight  and  its  reflected  image  in  this  picture  of  the  artificial   horizon  (the  triple  dots  in  the  clear  plastic  dish).    If  the  flashlight  were  as  far  away  as   the  stars,  the  bisector  of  the  angle  between  the  images  would  be  the  true  horizon.     Calculator  Programming:   The  theory  behind  celestial  navigation  involves  a  lot  of  spherical  geometry  and   trigonometric  ratios,  for  one  is  calculating  angles  and  distances  on  triangles  that   span  the  globe.    In  the  past,  navigators  used  precomputed  tables  to  “reduce”  their   sights;  nowadays,  a  scientific  calculator  can  do  the  calculations  directly.    I  learned   calculator  programming  from  a  friend  of  mine,  so  I  wrote  the  requisite  formulas  into  
  • 7. a  program  that  prompts  you  for  values,  performs  the  calculations,  and  returns  the   information  I  need  to  plot  my  position  on  a  chart.   The  method  of  sight  reduction  I  use  to  turn  measured  celestial  angles  into  chart   positions  is  called  the  “azimuth  intercept  method”.    The  method  uses  the  sighted   angle  and  the  time  of  observation  to  produce  a  “line  of  position”,  or  a  line  across  the   Earth’s  surface  that  passes  through  where  I  am.    To  find  my  position  on  this  line,  I   need  at  least  two  lines  of  position  to  intersect.   I  created  a  second  program  to  plot  the  lines  on  the  calculator’s  graph  itself.    This   makes  it  easy  for  me  to  find  my  location  –  I  simply  use  the  <Intercept>  function  to   find  where  the  lines  meet.    Below  is  a  real  intersection,  or  fix  of  my  location,  from   two  sextant  sights  that  I  did.     Another  technique  of  sight  reduction,  based  on  the  same  principles,  allows  one  to   sight  the  sun  and  calculate  the  local  time  that  the  sight  was  taken  –  without  the  use   of  a  watch.    This  trick  was  useful  to  American  explorers  with  inaccurate  timepieces.   I  took  the  time  sights  with  the  quadrant,  because  using  the  sextant  would  have   required  dark  solar  shades  (to  protect  my  eyes  from  the  sun’s  image).    I  didn’t  look   directly  at  the  sun;  I  used  the  sighting  tube’s  shadow  to  reverse-­‐sight  the  sun’s   altitude.    By  this,  I  mean  that  I  aligned  the  sighting  tube  backwards;  when  I  could  see   the  light  from  the  pinhole  sight’s  hole  in  the  shadow,  it  meant  that  the  tube  was  
  • 8. perfectly  aligned  with  the  sun’s  rays.    (In  the  picture  below,  you  can  see  the  hole’s   speck  of  light  on  my  thigh,  in  the  middle  of  the  tube’s  shadow.)    I  then  read  the  angle.     I  programmed  the  necessary  trigonometry  for  the  method  into  a  third  program;  it   uses  the  sight  taken,  your  latitude,  and  the  declination  of  the  sun  on  that  day  to   provide  the  local  time.    Because  this  “local  apparent  time”  is  not  CST,  I  needed  to  add   several  corrections  to  check  my  accuracy.   Below  is  a  picture  of  a  sample  calculation  page  –  it  shows  the  various  corrections  I   make  for  each  time  sight  that  I  do.    I  start  by  recording  the  sun’s  angular  height  and   the  exact  time  I  took  the  sight.    (Recording  the  time  is  purely  to  determine  my  error   –  if  I  were  actually  trying  to  figure  out  the  local  time  from  scratch,  I  would  obviously   not  have  access  to  a  watch!)    I  then  record  the  day’s  mean  values  of  the  sun’s   declination  and  the  equation  of  time.    (These  values  are  defined  below.)    Using  my   third  program,  I  calculate  the  local  apparent  time  based  on  my  approximate  latitude,   the  sun’s  declination,  and  the  recorded  height  of  the  sun.    To  this  time  (2:57:22  in   the  example)  I  add  the  equation  of  time  value  for  that  day  (+00:05:11)  to  get  the   local  mean  time.    If  I  didn’t  have  a  watch  and  were  truly  lost,  I  would  stop  here;   however,  I’m  in  a  city  full  of  clocks  and  appointments,  so  I  do  some  more  corrections   to  convert  that  time  into  CST.    By  adding  the  correction  for  daylight  savings  time   (+1:00:00)  and  compensating  for  my  longitude  west  of  the  CST  zone  line  
  • 9. (+00:21:58),  I  get  the  time  of  my  sight  in  CST,  which  I  then  compare  to  my  watch   recording  to  get  an  error.   Without  a  nautical  almanac  on  hand,  the  sun’s  declination  and  equation  of  time   value  are  difficult  to  know  precisely.    (The  sun’s  declination  is  how  far  north  or   south  of  the  equator  the  sun  appears  to  be  on  a  certain  day  of  the  year;  the  equation   of  time  is  a  correction  for  the  Earth’s  elliptical  orbit  and  its  tilt,  both  of  which  affect   the  sun’s  position  in  the  sky.)    To  address  this,  I  wrote  a  fourth  program;  it  uses   trigonometric  equations  to  approximate  these  two  effects,  thus  calculating  the  two   values  for  any  day  I  wish.   Below  the  sample  time  calculation  is  a  screenshot  of  my  declination/equation  of   time  value  calculation  program.    
  • 10.     Conclusions:   Through  research,  careful  instrument  construction,  and  programming,  I  am  able  to   practice  celestial  navigation  with  respectable  accuracy  (by  pre-­‐GPS  standards,  at   least).   I  can  sight  the  altitude  of  stars  to  within  a  fourth  of  a  degree,  using  my  homemade   sextant  and  artificial  horizon.    For  less  precision,  I  can  use  my  quadrant  to  measure   angles  to  within  a  degree.    Both  instruments  are  made  from  household  materials,   too.   With  the  sights,  I  can  use  my  own  calculator  programs  to  plot  lines  of  position  and   achieve  location  fixes.    I  have  actually  located  myself  to  within  a  tenth  of  a  degree  of   latitude  and  longitude!   I  can  find  the  local  time  and  CST  using  only  a  quadrant  and  a  graphing  calculator.     My  average  error,  decreasing  with  experience,  is  2  minutes  20  seconds.    That’s   about  as  accurate  as  most  people’s  watches!   I  now  have  a  profound  appreciation  for  the  navigators  of  the  cultures  mentioned,   made  stronger  with  every  measurement  I’ve  taken  over  the  past  three  years.    This   pursuit  has  been  truly  intellectually  fulfilling;  I  never  dreamed  it  would  take  me  this   far,  so  I  can’t  wait  to  see  where  it  will  take  me  next.  
  • 11. References  I’ve  Used:   http://www.samlow.com/sail-­‐nav/starnavigation.htm   This  site  teaches  some  basic  theory  behind  celestial  navigation,  specifically  how  the   stars  appear  to  move  as  one’s  location  changes.    Discusses  other  Polynesian   techniques.   http://www.northwestjournal.ca/dtnav.html   This  magazine  article  discusses  the  reconstructed  and  reanalyzed  techniques  of  the   North  American  explorer  David  Thompson.    Provides  several  worked-­‐out  and   explained  examples  of  various  sextant  and  navigational  procedures.    This  is  where  I   sourced  the  formulas  for  local  time  sights.   http://straitofmagellan.blogspot.com/search/label/Celestial%20Navigation%2010 1   This  is  a  collection  of  blog  articles  outlining  the  basics  behind  the  azimuth  intercept   method,  as  instructed  by  a  USCG  licensed  captain.