SlideShare a Scribd company logo
1 of 67
Download to read offline
A Tale of Two HCV Inhibitors:
Discovery of Victrelis™ (Boceprevir)
and the Thiazolide RM5038
J. Edward Semple, Ph.D.
Romark Laboratories, L.C., Tampa, FL 33606
&
Corvas International, Inc., La Jolla, CA 92121
Originally presented June, 2011,
with minor updates June, 2016
TIZ X-ray structure:
J. N. Lisgarten
Dept of Crystallography
Birkbeck College,
London, UK
2.03 Å
2
What is Hepatitis C Virus?
 Infectious disease affecting the liver, often asymptomatic
 chronic infection can progress to fibrosis and cirrhosis, apparent after many
years
 liver failure, liver cancer, esophageal and gastric varices (extremely dilated
sub-mucosal veins)
 leading cause of liver transplantation.
 5x more widespread than HIV
 Small (60 nm), enveloped, single-stranded, positive sense RNA
virus:
 only known member of the hepacivirus genus in the family Flaviviridae
 has an icosohedral core like HIV
 similar to mRNA and can be immediately translated by the host cell
 11 major genotypes: G1-G11, each with 1-4 subtypes (e.g.G1a,
G1b, G1c, etc.)
EM image, Scale = 60 nmhttp://www.cdc.gov/hepatitis/HCV/index.htm
http://www.hepatitis-central.com/hcv/genotype/explained.html
3
Global HCV Infection: Prevalence
 ~ 270-300 million people worldwide are infected
 ~ 4-5 million in US alone
http://www.cdc.gov/hepatitis/HCV/index.htm
4
Transmission: Blood-to-Blood Contact
http://www.youtube.com/watch?v=tQIUV_cSll0
http://thehepatitisblog.com/?p=753
5
HCV: Structure & Replication
HCV Replication
Video link: http://www.youtube.com/watch?v=eI5t0PbgnBk
http://www.rmgh.net/wiki/index.php?title=HCV
http://wiki.verkata.com/en/wiki/Hepatitis_C_virus
IRES (ribosome)-> RNA translation -> HCV polyprotein
-> 10 proteins -> replication complex -> (+)RNA
6
Treatment: Current Standard of Care (SOC)
 Dual therapy with peginterferon (IFN) and ribavirin
(RBV):
 Weekly s.c. injections of PEG-IFN-a-2a (Pegasyss®) or -a2
(Pegintron®) in combination with RBV b.i.d:
 treatment of 24 weeks for G2 &G3; 48 weeks for G1 patients
 regimen poorly tolerated due to significant side effects
 side effects make it difficult to complete treatment (low compliance)
 ~40% Cure rate in US (naïve, G1a/1b), ~40-50% (other genotypes)
 Cure = sustained viral response (SVR) = HCV RNA <10 IU/ml @ 6
months post treatment
rIFNa (h) a/b domain
O
NN
N NH2
O
OHOH
HO
RBV
A J. Sadler, B.R.G. Williams Nature Rev. Immunology 2008 8, 559-568.
7
HCV Drugs: Clinical Factors & Endpoints
 Patient populations: naïve, non-naïve, non-
responders, relapsers; low to very high viral loads
 Goal to produce >2–6 log10 reduction in plasma HCV
RNA in patients (SVR)
 RVR: undetectable at week 4
 ETR: undetectable at end of Tx
 SVR: undetectable (<10 IU/ml) @ 6 months post treatment
= long-term efficacy ~ cure
 Issues: emergence of resistant HCV strains
 combination therapy (3 drugs) reduces risk
8
Current HCV Therapies:
Challenges & Opportunities
 Both IFN and RBV are indirect antivirals- do not target a
specific HCV protein or RNA element:
 low efficacy
 severe side effects
 many patients forego treatment- compliance issues
 emergence of drug resistant HCV strains
 Large unmet medical need and high market demand for
new therapies:
 market potential of new protease inhibitors alone is projected at 3-5 billion dollars
annually
 triple combination therapy > SVR and < development of resistance
 impetus for development of specifically targeted antiviral therapies for HCV (STAT-C)
 ultimate goal to develop monotherapy…feasible?
M.G. Ghany, D.B. Strader, D.L..Thomas, L.B. Seeff Hepatology 2009, 49, 1335–1374.
Y.J. Li Annu Rev Immunol. 2005, 23, 275–306.
RBV Review: Hartwell D, Jones J, Baxter L, Shepherd J. Health Technology Assessment 2011, 17, 1-210.
9
HCV NS3/4A Protease
 Trypsin/chymotrypsin-like serine protease-
 heterodimer consisting of a catalytic subunit (the N-terminal one-third of NS3
protein) and an activating cofactor (NS4A protein)
 cleavage of HCV polyprotein at the NS3/NS4A, NS4A/NS4B, NS4B/NS5A,
and NS5A/NS5B sites by the viral NS3 protease releases functional viral
proteins essential for viral replication -> “replication complex”
 considered one of the most attractive targets for developing novel anti-HCV
therapies
 proof-of-concept demonstrated for several classes of small mol inhibitors in
human clinical trials
Lin, C. HCV NS3-4A Serine Protease.In Hepatitis C Viruses
Genomes and Molecular Biology; Tan S.L., Ed.; Horizon
Bioscience: Norfolk (UK), 2006, Chapter 6.
Link: http://www.ncbi.nlm.nih.gov/books/NBK1623/
10
X-Ray Structure of HCV NS3/4A
Serine Protease
C-terminal sub-domain
of the NS3 protease
N-terminal sub-domain
of the NS3 protease
NS4A β-strand
Asp81
Cys145
His57
Asp81
Ser139
H20
Cys97
Cys99
Zn
Bartenschlager, R. J. Vir. Hepatitis 1999, 6, 165-181.
Lin, C. HCV NS3-4A Serine Protease.In Hepatitis C Viruses Genomes and Molecular
Biology; Tan S.L., Ed.; Horizon Bioscience: Norfolk (UK), 2006, Chapter 6.
Link: http://www.ncbi.nlm.nih.gov/books/NBK1623/
Heterodimer -> catalytic subunit and activating cofactor
AS region
11
Current Classes of HCV Inhibitors
Entry Inhibitors
Helicase Inhibitors
Internal Ribosome Entry Site (IRES) Inhibitors
RdRp (NS5B) Polymerase Inhibitors-NI, NNI
NS5A Inhibitors
NS3/4A Protease Inhibitors
Cyclophilin Inhibitors
Novel Immune-based Inhibitors
Thiazolide Small Molecule Modulators
Glucosidase Inhibitors
12
Current Clinical HCV NS3/4A
Protease Inhibitors
DanoprevirBI 201335
MK-5172
Narlaprevir® (SCH900518)VictrelisTM (boceprevir, SCH503034) IncivekTM (telaprevir, VX-950)
TMC-435350
Vaniprevir™ (MK-7009)
13
Current Clinical RdRp (NS5B) Inhibitors
R-7128 Valopicitabine
GL-60667
Filibuvir
Nesbuvir (HCV-796) ANA-598
Sovaldi
(Sofosbuvir)
14
Current Clinical HCV Inhibitors: Other Classes
Alisporivir® (Debio 025)
Elvitegravir® (GS-9190)
BMS-790052
Alinia® (Nitazoxanide)
15
Romark Laboratories, L.C.: Thiazolides
TIZ X-ray structure:
J. N. Lisgarten
Dept of Crystallography
Birkbeck College,
London, UK
2.03 Å
Note: Thiazolides may appear to be Mickey Mouse
molecules but they are nearly as potent in cell culture
as other classes of more structurally complex HCV inhibitors!
1616
Thiazolide Class: Antiviral Activity of Nitazoxanide
Confirmed in Human Studies
Virus Test System Stage
Rotavirus Humans Phase 2 (200 patients)
Hepatitis B Humans Phase 1b (12 patients)
Hepatitis C G4 Humans Phase 2 (251 patients)
Hepatitis C G1 Humans Phase 2 (179 patients)
Influenza A Humans Phase 2 (440 patients)
Alinia® (Nitazoxanide)
Broad spectrum antibacterial, antiparasitic, antiviral
FDA-approved for treatment of C. parvum and G. lamblia
OBA (h), F ~35%, improved with food.
17
Structural Evolution of the Thiazolides
Broad spectrum: antiviral,
antiparasitic & antibacterial
NTZ/TIZ
(R = Ac, H)
TIZ Prodrugs
(dual therapy)
Salicylanilides
Current Targets
• Antiviral-selective
• R6, R7 ≠ NO2
2nd Generation
Thiazolide
Prodrugs
Thiazolides as Novel Antiviral Agents: I. Inhibition of Hepatitis B Virus Replication. A. V. Stachulski,
B. E. Korba, J. E. Semple, J. F. Rossignol, et al. J. Med. Chem. 2011, 54, 4119-4132.
Thiazolides as Novel Antiviral Agents. 2. Inhibition of Hepatitis C Virus Replication. A. V. Stachulski,
B. E. Korba, J. E. Semple, J. F. Rossignol, et al. J. Med. Chem. 2011, 54, 8670-8680.
18
RM5038
HCV (Huh7.5,G1b): EC50= 0.23 M, SI = 19
RSV (A2): EC50= 1.04 M, SI = 22
CcoV (A72): EC50= 2.02 M, SI >83.3
RM4829
HBV (VIR): EC50= 0.22 M, SI >137
HBV (RI): EC50= 1.20 M, SI >25
RM5021
Influenza A (PR8, MDCK):
EC50= 0.028 M, SI >5000
Parainfluenza (SV, 37RC):
EC50= 0.085 M, SI >1670
RM4804
Parainfluenza (SV, 37RC):
EC50= 0.97 M, SI >167
RM4860
Rotavirus (SA11):
EC50= 0.026 M, SI >5000
RM5034
HSV-1(Hep-2):
EC50= 0.091 M, SI >1667
Broad Spectrum Antivirals:
Recent Thiazolide Leads
19
SAR of Core Thiazolides in HCV
Replicon Assay (G1b)
 SAR of 28 prototypes indicates tight, specific structural requirements for high potency
and selectivity
 pKa, steric environment & polarizability impact potency:
 EWG favored
 TIZ is most acidic analog- amide moiety pKa 5.7 will be fully deprotonated
at physiological pH (cf. TIZ vs. isomer RM5048)
 Several non-nitro thiazolide and salicylanilide acetates are reproducibly active and
demonstrate good SI
Thiazolides as Novel Antiviral Agents. 2. Inhibition of Hepatitis C Virus Replication. A. V. Stachulski, B. E. Korba, J. E. Semple, J. F.
Rossignol, et al. J. Med. Chem. 2011, 54, 8670-8680.
Substitution leads to
< potency, selectivity
OH ~OAc > NH2, NHAc >> OMe
When R6 = H, EC50 (M):
NO2 (0.15) > Cl (0.23) > SO2Me (1.5) >
CN (3.7) > Br (4.9) > 14 other FGs
(>10)
When R7 = H, EC50 (M):
CH2SO2Me (0.37) > SOMe (2.2) > Ph
(3.5) > NO2 and 5 other FGs (>10)
20
Thiazolide Core Pharmacophore & MOA
N
H
L2
OH O
EWG/HBA
Minimal pharmacophore Metal complex at active or allosteric binding site
vs. classical protein backbone H-bonds and/or
water-mediated H-bonds?
N
H
L2
O O
EWG/HBA
M
N
M
Human VAP-B Is Involved in Hepatitis C Virus Replication
Through Interaction with NS5A and NS5B.
Y. Matsuura et al. J. Virol. 2005, 79, 13473
HCV Replication Complex
& Host Protein VAP-B
21
HCV Lead RM5038: Preclinical Data
N
SN
H
OO
Cl
O
RM5038
2-(5-Chlorothiazol-2-ylcarbamoyl)phenyl acetate
C12H9ClN2O3S
Mol. Wt. 296.73
LogD (octanol/PBS, pH7.4) = 2.66
cLogP = 2.08
MR = 71.3 cm3/ mol
TPSA = 67.8 Å2
Nrot = 3
Solubility (Cerep):
PBS (pH7.4) = 8.5 mg/L
SGF = 36.3 mg/L
SIF = 17.4 mg/L
Cerep ADME-Tox and in vitro pharmacology panels
Patent Family:
PCT WO 2006/031566 A2, March 23, 2006
JP2008512474 T, April 24, 2008
US 2006/0089396 A1, April 27, 2006
US 2008/0096941 A1, April 24, 2008
US 7645783 B2, January 12, 2010.
Bacteriology:
Inactive (MIC > 64 g/ml) against 110 anaerobes.
Against 53 aerobes, modest inhibitory activity against only a few
MRSA strains, where MIC’s ranged from 4 to >64 g/ml.
Parasitology:
Against Cryptosporidium parvum, IC50 = 1 g/ml, with very low
cytotoxicity (10% of control)
Not effective against Giardia lamblia, three strains of Candida
spp. and two strains of Trichophyton spp. except
at the highest test concentration of 10 g/ml.
PK, Toxicology, [14C]-RM5038 Distribution:
Studies in mice, rats, and dogs in progress.
Virus IC50 IC90 LD50 SI Cell Line
HCV (genotype 1b) 0.23 µM 1.10 µM 4.3 µM 18.9 AVA5
HCV (genotype 1a) 0.40 µM 1.90 µM 5.7 µM 14.0 AVA5
Hepatitis B (virion) >10.0 µM >10.0 µM > 100 µM - 2.2.15
Influenza A (PR8) 1 µg/ml 7 µg/ml 20 µg/ml 20 MDCK
Avian Influenza(A/Ck) 0.5 µg/ml 6.0 µg/ml >50 µg/ml >100 MDCK
Parainfluenza (Sendai) 0.5 µg/ml 5 µg/ml >50 µg/ml >100 37RC
Coronavirus (CcoV) 0.6 µg/ml 4 µg/ml >50 µg/ml >83.3 A72
Rotavirus (SA-11) 1 µg/ml 15 µg/ml >50 µg/ml >50 MA104
HSV-1 0.15 µg/ml 0.8 µg/ml >50 µg/ml >333 Hep-2
Rhabdovirus(VSV) 1 µg/ml 10 µg/ml 50 µg/ml >50 MA104
Adenovirus (type 5) pending HeLa
Rhinovirus(type 2) pending HeLa R19
RSV (A2) 0.31 µg/ml 5.0 µg/ml 6.8 µg/ml 22 HeLa-ATCC
22
Romark: New Patents (Updated 6/16)
 “Compounds and Methods for Treating Influenza.” J. F. Rossignol and J. E. Semple. U.S.
Pat. Appl. Publ. US 20150250768 A1, September 2015. (MOU)
 “Haloalkyl Heteroaryl Benzamide Compounds.” J. F. Rossignol and J. E. Semple. US
9126992 B2, September 2015. (PC/MOU)
 “Compounds and Methods for Treating Influenza.” J. F. Rossignol and J. E. Semple. US
9023877 B2, May 2015. (PC/MOU)
 “Compounds and Methods for Treating Influenza.” J. F. Rossignol and J. E. Semple. US
9345690 B2, May 2015. (MOU)
 “Alkylsulfonyl-Substituted Thiazolide Compounds.” J. F. Rossignol and J. E. Semple. US
8895752 B2, November 2014. (COM/PC)
 “Haloalkyl Heteroaryl Benzamide Compounds.” J. F. Rossignol and J. E. Semple. US
8846727 B2, September 2014 (COM/PC)
 “Alkylsulfinyl-Substituted Thiazolide Compounds.” J. E. Semple and J. F. Rossignol. US
8772502 B2, July 2014. (COM)
 “Alkylsulfonyl-Substituted Thiazolide Compounds.” J. F. Rossignol and J. E. Semple. US
8124632 B2, February 2012. (MOU)
 “Pharmaceutical Compositions and Methods of Use of Salicylanilides for Treatment of
Hepatitis Viruses.” J. E. Semple and J. F. Rossignol. PCT Int. Appl. WO 2012058378 A1
May 2012. (PC, MOU).
 Key: COM = composition of matter claims, PC = pharmaceutical composition claims,
MOU = method of use claims.
23
Romark Acknowledgements
Romark Laboratories, L.C.:
Jean-Francois Rossignol, M.D., Ph.D.
Mark Ayers
Emmet B. Keeffe, M.D.
Maria Carrion, M.D.
Matthew Bardin, Ph.D.
Raymond Pasinski
Chemistry:
University of Liverpool:
Andrew V. Stachulski, Ph.D
Chandrakala Pidathala, Ph.D
Mazhar Iqbal, Ph.D.
Kalexsyn, Inc:
Brian Eklov, Ph.D
Mel Schroeder, M.S.
Virology and MOA:
Brent E. Korba, Ph.D. (Georgetown University Medical
Center, Rockville, MD)
Gabriella Santoro, Ph.D. (Department of Biology,
University of Rome, Italy)
Jeffrey S. Glenn, M.D., Ph.D.(Division of
Gastroenterology & Hepatology, Stanford University
School of Medicine, Palo Alto. CA)
Parasitology:
Gilles Gargala, Ph.D. & Loic Favennec, Ph.D. (Faculty of
Medicine & Pharmacy, University of Rouen, FR)
Computational Chemistry:
John H. Van Drie (Van Drie Research LLC, Andover, MA)
24
Corvas Collaboration with Schering
Plough Research Institute
CVS 4083
Victrelis™ (Boceprevir)
25
Corvas-Schering Plough Research
Institute Collaborations
 Oral antithrombotics- FIIa, FXa protease
inhibitors
 HCV NS3/4A protease inhibitors
 Corvas received >$50M in research funding
and milestones from SPRI
26
Key Stages of HCV Drug
Development Program
 Target validation
 Assay development-
 In vitro potency Ki* assay
 Cell-based replicon assay
 Med. chem. identification of lead compounds
 Lead optimization-
 SAR <-> SBDD <-> structural biology
 PK, ADME-Tox & HT-DMPK screens
 Identification of a drug candidate-
 Preclinical animal tox and [14C]-drug disposition studies,
GMP manufacture, COG
 Clinical trials and drug launch-
 Safety, efficacy, resistance issues
27
Iterative Process of Lead Optimization
Leading to a Clinical Candidate
SBDD X-Ray &
Structural biology
28
Corvas Chemistry Tools
• Structure-based drug design (X-ray, structural biology)
• SAR optimization (QSAR, computational chem/models)
• Analytical (PK, ADME/Tox, cassette dosing, phys. props., stability, etc.)
• Peptides & peptidomimetics (scaffold morphing)
• Cancer drug conjugates- Targeted drug delivery
• Heterocyclic, Aromatic, and Organometallic chemistry
• Asymmetric synthesis
• Combinatorial chemistry platforms:
- proprietary and known SPS and solution phase technologies
• Novel synthetic technology:
- Multiple-component reactions
- Natural products: semi-synthesis, total synthesis
29
Peptides:
Substrate
Motifs e.g.
- dFPR
- dRGR
- dSAR
Hirudin
Hirulogs
TAP
NAPc2
NAP5
HCV NSPs
Antithrombotic Peptidomimetics:
Mono-, Bicyclic- and Tricyclic Lactams
Aromatics
Heterocycles
Achiral
(Hetero)Aromatic
Inhibitor Scaffolds
HepC
PAI-1
Cancer Proteases
PACT Prodrugs
Evolution of Corvas Protease Inhibitors
Leverage
Technology
Leverage
Technology Scaffold Morphing II
Peptide & Scaffold
Morphing I
30
Corvas P3-Lactam Scaffold Morphing
31
Chronology of Corvas Thrombin Inhibitors
32
Sequence Alignment of HCV NS3/4A
Serine Protease and its Substrates
Scissile bond
C. Lin. HCV NS3-4A Serine Protease. In Hepatitis C Viruses
Genomes and Molecular Biology; Tan S.L., Ed.; Horizon
Bioscience: Norfolk (UK), 2006, Chapter 6.
Link: http://www.ncbi.nlm.nih.gov/books/NBK1623/
Starting point for design of
peptidic P1-aldehyde and
a-ketoamide inhibitors
(cf. next slide)
33
Peptides and a-Ketoamides
Peptide Substrate Peptidic a-ketoamide
Schechter-Berger Notation:
G Barbato et al. EMBO, 2000, 19, 1195.
I. Schechter and A. Berger Biochem. Biophys.
Res. Commun. 1967, 27, 157.
34
Undecapeptide Ketoamide Lead
 Using substrate and early P1- aldehyde inhibitor SAR data, a 64-
member ketoamide library was prepared by SPS methods (HCAM,
PAM, AM, MBHA, et al.)*
 CVS 4083, a potent inhibitor lead was discovered:
AcEEVVPnV(CO)GMSYS-NH2, Ki* = 2.8 nM, HNE/HCV = 7
CVS 4083
Mol Wt = 1265
17 H-bond donors
18 H-bond acceptors
2 negative charges
…..not quite drug-like as per
Lipinski, Weber, et al.
*Combichem Library Technology:
D. V. Siev, J. E. Semple, M.I. Weinhouse. US 6787612B1 (2004).
D. V. Siev, J. A. Gaudette, J. E. Semple Tetrahedron Lett. 1999, 40, 5123.
HCAM resin: D. V. Siev, J. E. Semple Org. Lett. 2000, 2, 19.
J. Z. Ho, O.E. Levy, T. S. Gibson, K. Nguyen, J. E. Semple. Bioorg. Med.
Chem. Lett. 1999, 9, 3459.
35
CVS 4083: Lead Optimization Goals
• Drug Candidate Criteria:
• <10 nM inhibitor
• >1000-fold selective vs. elastase
• Active in cell-based assay
• Oral bioavailable
• Good pharmacokinetics
• Low toxicity
• Absence of reactive metabolites
• IC50 > 5 uM for CYPs 3A4, 2D6, 2C8,
and 2C9
• Moderate human hepatocyte
clearance
• No CYP induction liability.
• Chemistry Objectives:
• Reduce MW
• Maintain Potency
• Increase selectivity
• Reduce hydrogen bonding groups
• Eliminate charges
• LogP of approximately 3
36
Taming the Beast: CVS 4083 Truncation Effects
CVS# Structure Ki* (nM) CVS# Structure Ki* (nM)
4083 Ac-EEVVPnV(CO)-GMSYS-NH2 2.8 4083 Ac-EEVVPnV(CO)-GMSYS-NH2 2.8
4437 Ac-EVVPnV(CO)-GMSYS-NH2 96 4488 Ac-EEVVPnV(CO)-GMSY-NH2 0.6
4438 Ac-VVPnV(CO)-GMSYS-NH2 544 4489 Ac-EEVVPnV(CO)-GMS-NH2 5.4
4439 Ac-VPnV(CO)-GMSYS-NH2 3100 4490 Ac-EEVVPnV(CO)-GM-NH2 11
4441 Ac-PnV(CO)-GMSYS-NH2 >100000 4476 Ac-EEVVPnV(CO)-G-NH2 50
4445 Ac-EEVVPnV(CO)-NH2 760
• CVS 4476 important truncated P6-P1’- heptapeptide
analog with moderate potentcy
• Potency (via binding efficiency) dependent upon P6 to P1’
residues-electrostatic and hydrophobic
Truncate P region: Truncate P’ region:
37
CVS 4083 P1 SAR Studies
AcEEVVP-P1-(CO)GMSYS-NH2 AcEEVVP-P1-(CO)G-OAllyl
CVS# P1 Ki* (nM) CVS# P1 Ki* (nM)
4083 nV 2.8 2436 nV 60
4470 G(propynyl) 9 2435 nL 110
4436 aT 60 2443 V 160
4432 L 66 2429 L 220
4433 nL 100 4487 G(propynyl) 230
4434 Abu 130 4469 G(allyl) 360
4431 V 130
• S1 pocket of HCV NS3 protease is shallow and only tolerates small
(~3-4C) P1-side chains
• Larger P1 moieties destabilize E-I* due to steric clash at S1 pocket
and result in diminished activity
• In both series, P1 -norVal is optimal; in other series Leu, c-Bua and
c-Pra are optimal
38
P1’-C-Terminal Cap SAR Studies
AcEEVVPnV(CO)G-CAP
CVS# CAP Ki* (nM)
4476 NH2 43
4453 OH 8.3
4485 NHPropyl 47
4475 NHPropynyl 60
4474 NHAllyl 140
4454 OtBu 570
4443 OEt 1400
4444 NHCH2CH2Ph 1500
• Potency of CVS 4453 > CVS 4476, however amide deriv. more attractive
• CVS4453 and CVS4476 demonstrated moderate elastase (HNE) selectivity
39
CVS 4453: Lead Compound
Ki* = 8.3 nM
Moderate elastase (HNE) selectivity
Molecular Weight: 798
9 H-bond donors
11 H-bond acceptors
3 negative charges
CVS 4453
40
Solid-Phase Synthesis of
CVS 4453 Analogs
PAM-OH =
via Passerini chemistry
41
CVS 4453: P2 Library
Ac-EEVV-P2-nV-(CO)-G-OH
CVS# P2 Ki* (nM)
4524 Tic 3.2
4581 P(3-trans-Me) 4.5
4528 C(SO2Me) 6.8
4453 P 8.3
4529 C(S-CH2CO2H) 8.6
4507 P(4-trans-OCH2CO2H) 10
4523 Pip 12
4561 F 12
4560 E 21
4527 C(Me) 38
4525 thioP 68
4504 Aze 87
4503 Sar 190
4559 D 270
4531 M(O2) 360
• P2 position tolerant of several proline and S-subst’d. cysteine variants
• P2 analogs gleaning hydrophobic and/or anionic contacts at S2 pocket in NS3
42
CVS 4453: 4-(trans-Subst’d)-Proline P2-Analogs
CVS # R Ki* (nM) CVS # R Ki* (nM)
4453 H 8 4555 NHSO2Ph(4-OMe) 4.2
4580 Ph 5 4556 NHCONHPh 7.1
4563 CH2COOH 10 4553 NHiBoc 9.3
4550 Allyl 10 4541 NH-Fmoc 14
4549 4-MeOBn 13 4557 NHCONHPh(4-OMe) 10
4548 Bn 15 4547 NHCOPh(3-OPh) 13
4545 NHCOPh(4-OMe) 20
4542 CH2NHCONHPh 4.4 4544 NHCOPh 22
4537 CH2NHCOPh 4.7 4551 NHCOPh(3,4-OMe) 52
4539 CH2NHCOPh(3-OPh) 5.2 4552 NHCOPh(4-F) 54
4540 CH2NHSO2Ph 7.5 4554 NHSO2Ph 74
4538 CH2NH-Fmoc 8 4546 NHBzl(4-OPh) 76
4536 CH2NHCO2Ph 8.5 4562 NH2 160
• Several potent P2-Pro analogs identified featuring lipophilic, aromatic, hydrophilic & anionic groups
43
CVS 4453: P3 Library
• Incorporation of more hydrophobic cyclohexylglycine and isoleucine residues afforded improved potency
• tBu-glycine, while slightly less potent, showed increased elastase selectivity
• P3 analogs glean additional productive hydrophobic contacts at S3 pocket in NS3.
Ac-EEV-P3-P-nV-(CO)-G-OH
CVS# P3 Ki* (nM) CVS# P3 Ki* (nM)
4516 G(Chx) 1.9 4671 S(O-Me) 1100
4518 I 4.5 4686 Q 2100
4453 V 8.3 4667 S 5900
4666 G(tBu) 26 4668 T 6700
4672 N 10500
4500 Phg 120 4520 dC(2-AcOH) 54000
4698 M 180 4521 dN(MeTzl) 54000
4699 C 210 4522 dQ(MeTzl) 80000
4665 L 300 4502 dD >100000
4517 F 310 4519 dE >100000
4670 Dif 310
4669 nL 460
44
P2-3,4-(Isopropylidene)Proline series
CAP-P3-P[3,4-(diMe-cyclopropyl)]-P1-(CO)-G-G(Ph)-NMe2
• CVS 4845 demonstrated good potency in replicon cell assay (G1b)
• P3 -G(1-MeChx) with P1 nV or L confers good potency and selectivity
• P3 -G(tBu) with P1 nV or L confers excellent potency and selectivity
Replicon
assay
CVS# CAP P3 P1 K i * (nM)
HNE K i
(nM)
HNE/
HCV EC90 (nM)
4845 iBoc Chg nV 10 46 4.6 200
4858 iBoc Chg c-Pra 66 18 0.3
4893 iBoc G(1-MeChx) nV 12 170 14
4894 iBoc G(1-MeChx) L 15 1100 73
4899 ((R)-1-Me)iBoc G(1-MeChx) nV 6 270 45
4895 iBoc G(tBu) L 13 1100 85
4901 iPoc G(tBu) nV 2 320 160
4902 iPoc G(tBu) L 8 3000 375
CVS 4453
45
Synthesis of 4,4-Dialkylproline Derivatives
S. Kemp, M. Lawrence, K. Matthews
46
Synthesis of 4,4-Spiropentylproline Derivatives
S. Kemp, M. Lawrence, K. Matthews
47
Synthesis of 3,4-Isopropylideneproline Peptides
S. Kemp, M. Lawrence, K. Matthews
48
Novel Modifications of the
Passerini Reaction & Applications
to HCV Protease Inhibitors
49
The Passerini Reaction
N
OH
O
R1
R4
O O
N
H
O
R1R2
R1NC + R2R3CO + R 4CO 2H
acyl
H+
O O
H
O
R3
R4
R2
R1 N
R3
R2
R4
O
R3
a-Acyloxyamide ProductM. Passerini, Gazz. Chim. Ital. 1921, 51, 126.
M. Passerini and G. Ragni, Gazz. Chim. Ital. 1931, 61, 964.
I. Ugi et al. in Isonitrile Chemistry, I. Ugi, Ed.; Academic:
New York, 1971; Chapter 7.
A. Dömling and I. Ugi, Angew. Chem. Intl. Ed. 2000, 39, 3168.
shift
50
Passerini Reactions of a-Amino Aldehydes with TFA
and Pyridine-Type Bases
PG1NH
N
OH
O
R1
CF3
O
PGNH
PGNH
O2CCF3
N
H
O
R1
H
PGNH
OH
N
H
O
R1
N
H
OH
N
H
O
R1
R3
O
N
H
N
H
O
R1
R3
O
O
H+
PGNH
OH
OH
O
R2
O
R2
R2
R2R2
R2
R2
CF3CO2H,
R1NC,
Pyridine,
CH2Cl2
acyl
shift
Hydrolytic
work-up
a-Hydroxy-b-amino amide derivatives:
• ca. 1:1 mixture @ new hydroxy center
• retention of chirality at original centers
*
Elaboration
1. Optional sidechain
deprotection
2. Oxidation
Hydrolysis
a-Ketoamide Derivatives
a-Hydroxy-b-amino acid
"norstatine" derivatives
J. E. Semple, T. D. Owens, K. Nguyen and
O. E. Levy Organic Lett. 2000, 2, 2769.
J. E. Semple and O. E. Levy. WO 0035868 A2,
June, 2000; Priority: December 1998;
U.S. Patent 6376649 B1, April 2002.
J. E. Semple et al. Abstracts of Papers, 218th
American Chemical Society National Meeting,
New Orleans, LA, August 22-26, 1999;
ORGN-419, MEDI-240.
Passerini reaction with TFA and pyridine:
W. Lumma J. Org. Chem. 1981, 46, 3668.
TiCl4-catalyzed Passerini-type reactions:
D. Seebach et al. Chem. Ber. 1988, 121, 507;
Helv. Chim. Acta 1983, 66, 1618.
51
Passerini Reactions of a-Amino Aldehydes with
TFA: Effect of Bases
Organic Base Additive pKa % Yield 3
2,6-di-t-Butyl Pyridine ~ 9 72
2,4,6-Collidine 7.4 71
2,6-Lutidine 6.6 68
Pyridine 5.2 60
N-Methylmorpholine 7.5 41
DABCO 8.2 33
4-N,N-Dimethylaminopyridine 9.7 18
N,N-Diisopropylethylamine 11 15
Fmoc
N
H
CHO CN
O
O Fmoc
N
H O
O
OH
N
H
OOrganic base,
TFA, DCM,
0 °C to RT
1 2 3
J. E. Semple, T. D. Owens,
K. Nguyen and O. E. Levy
Organic Lett. 2000, 2, 2769.
52
Passerini Reactions of a-Amino Aldehydes with TFA
Variation 1: PGNHCH(R 2)CHO + R 1 NC + CF 3CO2H = PGNHCH(R 2)CH(OH)CONHR 1
Cmpd PG Amino Acid SC R2 R1 %Yield
a Boc Cys(Me) CH2SMe CH2CO2Me 62
b Fmoc Val CH(CH3)2 CH2CO2t -Bu 68
c Fmoc Tyr(t -Bu) CH2Ph-4-(t -BuO) CH2CO2Et 69
d Boc Arg(NO2) (CH2)3NHC(=NH)NHNO2 CH2CO2Et 38
e Fmoc Arg(Pmc) (CH2)3NHC(=NH)NHPmc CH2CH2Ph 75
f Boc Arg(NO2) (CH2)3NHC(=NH)NHNO2 t -Bu 92
g Boc Phe CH2Ph CH2CO2Allyl 67
h Boc Phe CH2Ph t -Bu 24-71
i Cbz d -Phe CH2Ph (S )-CH(i -Bu)CO2Bn 65
j Boc ChxAla CH2Chx t -Bu 46
k Fmoc Gly H CH2CO2Allyl 77
l Fmoc Ala CH3 CH2CO2Allyl 83
m Fmoc Abu CH2CH3 CH2CO2Allyl 73
n Fmoc Val CH(CH3)2 CH2CO2Allyl 68
o Fmoc nor-Val (CH2)2CH3 CH2CO2Allyl 87
p Fmoc Leu CH2CH(CH3)2 CH2CO2Allyl 85
q Fmoc nor-Leu (CH2)3CH3 CH2CO2Allyl 69
r Fmoc Phe CH2Ph CH2CO2Allyl 67
s Fmoc Tyr(t -Bu) CH2Ph-4-(t -BuO) CH2CO2Allyl 66
t Fmoc Ser(t -Bu) CH2Ot -Bu CH2CO2Allyl 68
u Fmoc Asp(t -Bu) CH2CO2t -Bu CH2CO2Allyl 60
v Fmoc Arg(Pmc) (CH2)3NHC(=NH)NHPmc CH2CO2Allyl 76
w Fmoc Lys(Boc) (CH2)4NHBoc CH2CO2Allyl 79
x Fmoc Thr CH3(CH)Ot -Bu CH2CO2Allyl 62
y Fmoc allo -Thr CH3(CH)Ot -Bu CH2CO2Allyl 74
P1-P1’of
HCV
Inhibitor
libraries
Thrombin
and FXa
Inhibitors,
Libraries,
Bestatin
N
H
N
H
R2
OH
O
PG R1
J. E. Semple, T. D. Owens,
K. Nguyen and O. E. Levy
Organic Lett. 2000, 2, 2769.
J. E. Semple and O. E. Levy,
WO 0035868 A2, 2000; US
Patent 6376649 B1, 2002.
53
Passerini Reactions of a-Amino Aldehydes
with Carboxylic Acids
L. Banfi, G. Guanti, R. Riva, A. Basso, E. Calcagno
Tetrahedron Lett. 2002, 43, 4067.
L. Banfi, G. Guanti, and R. Riva Chem. Commun. 2000, 985.
J. E. Semple and O. E. Levy. WO 0035868A2, June, 2000
(Priority: 12/18/98); US Patent 6376649 B1, April 2002.
J. E. Semple et al. Abstracts of Papers, 218th American
Chemical Society National Meeting, New Orleans, LA,
August 22-26, 1999; ORGN-419, MEDI-240.
J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy
16th International Symposium for Synthesis in Organic
Chemistry, Cambridge, UK, July 19–22, 1999; P.4.
O. E. Levy, K. Nguyen, T. D. Owens and J. E. Semple
Abstracts of Papers, 16th American Peptide Symposium,
Minneapolis, MN, June 26–July 1, 1999; P-6653.
PGNH CHO PGNH
R2
NHR
O
O
R1
O
H2N
R2
NHR
O
O
R1
O
N
H
R2
NHR
O
OH
R1
O
N
H
R2
NHR
O
R1
O
O
R2
acyl migration
a-Acyloxy-b-aminoamide:
• Ca. 1,1 mixture @ new acyloxy center.
• Retention of chirality @ *.
N
OH
O
R
R1
O
PGNH
R2
*
RNC, R1CO2H,
solvent
-PG
Cleave
acyl moiety
N
H
R2
NHR
O
OH
Ketoamide target or
advanced intermediate
PG
H+
Further
chemistry
[O]
Further
chemistry
54
Concise Synthesis of Potent HCV Lead
CVS4845 via Passerini-Deprotection-Acyl
Migration (PADAM) Strategy
J. E. Semple, S.J. Kemp and T.D. Owens, unpublished
J. E. Semple, T. D. Owens Organic Lett. 2001, 3, 3301.
J. E. Semple, 219th American Chemical Society National Meeting,
San Francisco, CA March 26-30, 2000; ORGN.667.
J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy
Organic Lett. 2000, 2, 2769.
55
HCV Drug DMPK Screening Paradigm
K.-C. Cheng, W.A. Korfmacher,
R.E. White, F.G. Njoroge,
Perspectives in Medicinal
Chemistry 2007, 1, 1-9.
1000 compounds
EC90 < 1 M (rep)
3 compounds
Boceprevir (SCH503034)
56
Pathway to Discovery of Victrelis™(Boceprevir):
Part I
64-member
Library
P1-Library
Truncate
P2’-P5’
Truncate
P4-P6
Focused
CAP- and
P3-Library
P3
CAP
57
Pathway to Discovery of Victrelis™(Boceprevir):
Part II
P2-SAR
SAR
optimize
P2-P3
CVS4704
Step 1: 13-membered P2’-Library w/ P2-Leu
Step 2: 14-membered P2’-Library w/ P2-Pro (Ki* = 360 nM)*
Iterate/
optimize
P4-CAP
(X-ray)
(X-ray)
*A. Arasappan, S. Kemp, O. Levy, M. Lim-Wilby, S. Tamura, et al.
Bioorg. Med. Chem. Lett. 2005, 15, 4180–4184.
58
X-Ray of SCH225724, iBoc-Chg-L-
nV(CO)-G-Phg-NH2
 P2’-residue wraps over Lys136 side chain
 P1–P2’ moiety forms C-clamp, locking Lys136 in place
 Extensive hydrophobic interactions translated into enhanced
binding potency (Ki* = 66 nM).
A. Arasappan, S. Kemp, O. Levy, M. Lim-Wilby, S. Tamura,
et al. Bioorg. Med. Chem. Lett. 2005, 15, 4180–4184.
59
Key Interactions of CVS4901-NS3/4A Complex
Based on X-Ray Crystal Structure
Val 158
P1–P2’ moiety forms C-clamp with Lys136
60
Pathway to Discovery of Victrelis™(Boceprevir):
Part III
Final optimization
selectivity,
cell activity,
ADME/Tox & PK
EC90 = 290 nM
4 HBD
7 HBA
X-ray
EC90 = 350 nM
5 HBD
5 HBA
X-ray
A. K. Saksena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 6800434B2 (2004).
A. K. Sakena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 7012066B2 (2006).
S. Venkatraman et al. J. Med. Chem. 2006, 49, 6074.
F. G. Njoroge, K. X. Chen, N.-Y. Shih, J. J. Piwinski, Acc. Chem. Res. 2008, 41, 50.
A. J. Prongay et al. J. Med. Chem. 2007, 50, 2310.
N.A. Meanwell, J. F. Kadow, P. M. Scola. Annual Reports in Medicinal
Chemistry; J. E. Macor, Ed.; Academic Press: New York, 2009; Vol. 44, Ch. 20.
61
X-Ray Structure of Boceprevir (R = 2.3 A)
V. Madison et al. J. Synchrotron Rad. 2008, 15, 204–207
Crystal structure of the covalent Boceprevir (SCH503034)-
NS3/4A complex, generated using Pymol
62
Victrelis™ (boceprevir, SCH503034), a First-in-
Class FDA-Approved HCV NS3/4A Inhibitor
VictrelisTM (boceprevir, SCH503034)
 (1R,2S,5S)-N-((S)-4-amino-1-cyclobutyl-3,4-dioxobutan-2-yl)-
3-((S)-2-(3-tert-butylureido)-3,3-dimethylbutanoyl)-6,6-
dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide
 Chemical Formula: C27H45N5O5
 Molecular Weight: 519.7
 Log P: 0.96
 CLogP: 3.34
 MR: 141 [cm3/mol]
 tPSA: 150.7
 White to off-white amorphous powder, freely soluble in
MeOH, EtOH, iPrOH, slightly soluble in water.
A. K. Saksena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 6800434B2 (2004).
A. K. Saksena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 7012066B2 (2006).
S. Venkatraman et al. J. Med. Chem. 2006, 49, 6074.
F. G. Njoroge, K. X. Chen, N.-Y. Shih, J. J. Piwinski, Acc. Chem. Res. 2008, 41, 50.
A. J. Prongay et al. J. Med. Chem. 2007, 50, 2310.
N. A. Meanwell, J. F. Kadow, P. M. Scola. Annual Reports in Medicinal
Chemistry; J. E. Macor, Ed.; Academic Press: New York, 2009; Vol. 44, Ch. 20.
63
Victrelis™ (boceprevir, SCH503034):
ADME/Tox and PK
VictrelisTM (boceprevir, SCH503034)
 Ki* = 14 nM; EC90 = 350 nM (replicon)
 Potent, selective, mechanism-based inhibitor of
NS3/4A enzyme
 Binding studies conducted with a G1a HCV protease
indicate that dissociation of the E-I complex occurs
slowly, with a t1/2~ 1 hr
 Low to moderate OBA in mouse (34%), rat (26%), dog
(30%) and cyno (4-11%),with liver exposure in the rat
liver/plasma ratio >30 (AUC ratios)
 Human plasma protein binding is ~ 75%.
 In humans dosed @ 800 mg t.i.d., AUC(т) = 5.41
g.hr/mL (n=71), Cmax of 1.72 g/mL (n=71), Cmin of
0.088 g/mL (n=71), median Tmax = 2 hours, Vd/Fss ~
772 L
 Absolute bioavailability (F) in humans was not
determined (as of ca. 2011).
 IC50’s CYP2D6, 2C9, 2C19 >30/>30 M (co/pre)
CYP3A4 > 30/8.5 M (co/pre).
N. A. Meanwell, J. F. Kadow, P. M. Scola. Annual Reports in Medicinal
Chemistry; J. E. Macor, Ed.; Academic Press:New York, 2009; Vol. 44, Ch. 20.
F. G. Njoroge, K. X. Chen, N.-Y. Shih,J. J. Piwinski, Acc. Chem. Res. 2008, 41, 50.
A. J. Prongay et al. J. Med. Chem. 2007, 50, 2310.
MAT = mean absorption time
64
Victrelis™ Human PK Profiles (cont’d).
 VICTRELIS capsules contain a 1:1 mixture of two diastereomers-
 In plasma the ratio changes to 2:1, favoring the active (a-S)-diastereomer.
 Accumulation is minimal (0.8- to 1.5-fold) and pharmacokinetic steady state is achieved
after approximately 1 day of t.i.d. dosing.
 Food enhanced the exposure of boceprevir by up to 65% at the 800 mg t.i.d. dose,
relative to the fasting state.
 Primarily undergoes metabolism via the aldoketoreductase (AKR)-mediated pathway to
ketone-reduced metabolites that are inactive against HCV.
 After a single 800-mg oral dose of 14C-boceprevir, the most abundant circulating
metabolites were a diasteriomeric mixture of ketone-reduced metabolites with a mean
exposure approximately 4-fold greater than that of boceprevir.
65
Clinical Efficacy in Phase IIb Trials
Sustained virologic response rates in phase IIb trials of telaprevir and boceprevir. B indicates
boceprevir; P, peginterferon alfa; r, low-dose (400-1000 mg) ribavirin; R, expanded dose (800-
1400 mg) ribavirin; T, telaprevir. Numerals in regimens indicate weeks of treatment. Numerals atop
bars indicate relapse rate. Based on data from Hézode et al, N Engl J Med, 2009; Kwo et al, EASL,
2009; McHutchison et al, N Engl J Med, 2009.
66
Summary & Conclusions
 Starting with HCV substrates, a series of focused combinatorial a-ketoamide libraries were
prepared that elucidated SAR at each of the P6-P5’ positions:
 Developed novel SPPS methods (HCAM) for early P1-aldehyde libraries and Passerini MCR
methodology for rapid assembly of key intermediates and a-ketoamide inhibitors.
 Probed each of the P6-P5’ moieties with novel types of bioisosteres, unnatural amino acids,
and peptidomimetics, i.e. identified more “drug-like” scaffolds:
 Corvas discovered P3-t-BuGly and P2-3,4-(Isopropylidene)Pro moieties found in boceprevir.
 Truncation efforts coupled with iterative SAR and SBDD optimization led to CVS4083 (11-
mer, Ki* = 2.8 nM, HNE/HCV = 7), CVS4453 (7-mer, Ki* = 8.3 nM), CVS4704 (4-mer, Ki* =
2900 nM), SCH225724 (5-mer, Ki* = 66 nM), CVS4845 (5-mer, Ki* = 10 nM, HNE/HCV = 5),
CVS4882 (5-mer, Ki* = 6 nM, HNE/HCV = 200) and CVS4901 (5-mer, Ki* = 2 nM, HNE/HCV
= 160).
 Optimized drug potency (Ki* ~1-10 nM), selectivity, and oral efficacy profiles in later
generations of inhibitors.
 Multiple HT ADME/Tox and PK studies expedited selection, elimination, and optimization of
several lead classes.
 Final med chem optimization of CVS4901 at SRPI led to the identification of boceprevir (Ki*
= 14 nM, HNE/HCV = 2200, EC90 = 350 nM):
 Found that potency, selectivity, OBA, PK, and efficacy are sensitive to nature of inhibitor structure.
 Total efforts at SPRI led to screening of ~10K compounds, ~1K of which had EC90 < 1 M in
cell assays. Three main classes were identified, which through attrition in ADME/Tox, PK
and other screens afforded three preclinical candidates, one of which was boceprevir.
67
Acknowledgements
Analytical Chemistry
Kirk Kozminsky
Michael Ma
Thomas G. Nolan, Ph.D.
Molecular Modeling,
and NMR Support:
Marguerita S. Lim-Wilby, Ph.D.
Terence K. Brunck, Ph.D.
X-Ray Crystallography (SPRI):
Vincent Madison, Ph.D.
Patricia Weber, Ph.D.
Academic Consultants:
Prof. Henry Rapoport (UC Berkeley)
Prof. Andrew B. Holmes (Cambridge)
Prof. Victor A. Snieckus (Queen’s)
Prof. William Lubell (Montreal)
Tea and Sympathy:
Grace M. Semple
Eric J. Semple
Medicinal Chemistry:
Susan Y. Tamura, Ph.D.
Odile E. Levy, Ph.D.
Scott Kemp, Ph.D.
Max Lawrence, M.S.
Timothy D. Owens
Nathaniel K. Minami
Daniel V. Siev
Erick A. Goldman
John Gaudette
Christopher Roberts
Kenneth Matthews
George P. Vlasuk, Ph.D.
Ruth F. Nutt, Ph.D.
William C. Ripka, Ph.D.
J. Edward Semple, Ph.D.
SPRI (now Merck):
F. George Njoroge, Ph.D.
Bruce Malcolm, Ph.D.
Brian McKittrick, Ph.D.
Anil Saksena, Ph.D.
Kevin X. Chen, Ph.D.
Neng-Yang Shih, Ph.D.
K.-C. Cheng, Ph.D.
Walter A. Korfmacher, Ph.D.
Ronald E. White, Ph.D.
Srikanth Venkatraman, Ph.D.
Frank Bennett, Ph.D.
John Pichardo, Ph.D.
Viyyoor Girijavallabhan, Ph.D.
John J. Piwinski, Ph.D.
Ashit Ganguly, Ph.D
…and many others

More Related Content

What's hot

In vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic repliconIn vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic repliconBinodGupta27
 
Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681
Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681
Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681Dinesh Barawkar
 
Parasitology Research Poster
Parasitology Research PosterParasitology Research Poster
Parasitology Research PosterEthan Barach
 
2008Phylogenetic Analysis and Isolation of CDV
2008Phylogenetic Analysis and Isolation of CDV2008Phylogenetic Analysis and Isolation of CDV
2008Phylogenetic Analysis and Isolation of CDVDavid Chung -Tiang Liang
 
“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...
“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...
“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...Marta Talise
 
1-s2.0-S089684111500058X-main
1-s2.0-S089684111500058X-main1-s2.0-S089684111500058X-main
1-s2.0-S089684111500058X-mainMarlène CORBET
 
J. Antimicrob. Chemother.-2014-Aldape-jac-dku325
J. Antimicrob. Chemother.-2014-Aldape-jac-dku325J. Antimicrob. Chemother.-2014-Aldape-jac-dku325
J. Antimicrob. Chemother.-2014-Aldape-jac-dku325Dustin Heeney
 
12 apple characteristics of prebreeding material kellerhals markus
12 apple characteristics of prebreeding material kellerhals markus12 apple characteristics of prebreeding material kellerhals markus
12 apple characteristics of prebreeding material kellerhals markusfruitbreedomics
 
SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...
SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...
SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...Guy Boulianne
 
Managment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative InfectionsManagment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative InfectionsYazan Kherallah
 
David Russell Thaler Lecture
David Russell Thaler LectureDavid Russell Thaler Lecture
David Russell Thaler LectureAerasGlobalTB
 
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...Surya Saha
 
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...Terry Whitehead
 

What's hot (19)

In vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic repliconIn vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic replicon
 
Raju Paper
Raju PaperRaju Paper
Raju Paper
 
Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681
Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681
Antimicrobial Agents and Chemotherapy 2003 47(8)2674-2681
 
Parasitology Research Poster
Parasitology Research PosterParasitology Research Poster
Parasitology Research Poster
 
2008Phylogenetic Analysis and Isolation of CDV
2008Phylogenetic Analysis and Isolation of CDV2008Phylogenetic Analysis and Isolation of CDV
2008Phylogenetic Analysis and Isolation of CDV
 
Abbas morovvati
Abbas morovvatiAbbas morovvati
Abbas morovvati
 
Ebolav2
Ebolav2Ebolav2
Ebolav2
 
“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...
“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...
“Evaluation of antinuclear Ro / SS-A and LA / SS-B antibodies by multiplex te...
 
1-s2.0-S089684111500058X-main
1-s2.0-S089684111500058X-main1-s2.0-S089684111500058X-main
1-s2.0-S089684111500058X-main
 
J. Antimicrob. Chemother.-2014-Aldape-jac-dku325
J. Antimicrob. Chemother.-2014-Aldape-jac-dku325J. Antimicrob. Chemother.-2014-Aldape-jac-dku325
J. Antimicrob. Chemother.-2014-Aldape-jac-dku325
 
12 apple characteristics of prebreeding material kellerhals markus
12 apple characteristics of prebreeding material kellerhals markus12 apple characteristics of prebreeding material kellerhals markus
12 apple characteristics of prebreeding material kellerhals markus
 
SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...
SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...
SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination I...
 
Final year project
Final year projectFinal year project
Final year project
 
Managment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative InfectionsManagment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative Infections
 
2012 hla and ama1 dbp csp msp1
2012 hla and ama1 dbp csp msp12012 hla and ama1 dbp csp msp1
2012 hla and ama1 dbp csp msp1
 
David Russell Thaler Lecture
David Russell Thaler LectureDavid Russell Thaler Lecture
David Russell Thaler Lecture
 
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
 
1584-09
1584-091584-09
1584-09
 
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...
 

Viewers also liked

Pawlotzky du hepatites-resistance
Pawlotzky  du hepatites-resistancePawlotzky  du hepatites-resistance
Pawlotzky du hepatites-resistanceodeckmyn
 
Semple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemSemple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemJ. Edward Semple
 
JOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJ. Edward Semple
 
Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistrySemple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistryJ. Edward Semple
 
최윤소 조은지 기말 최종
최윤소 조은지 기말 최종최윤소 조은지 기말 최종
최윤소 조은지 기말 최종은지 조
 
ENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJP
ENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJPENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJP
ENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJPENJ
 
Hope Forsman_RESUME
Hope Forsman_RESUMEHope Forsman_RESUME
Hope Forsman_RESUMEHope Forsman
 
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...Артём Бондаренко
 
ENJ-300 Porte y Tenencia de Armas Blancas
ENJ-300 Porte y Tenencia de Armas BlancasENJ-300 Porte y Tenencia de Armas Blancas
ENJ-300 Porte y Tenencia de Armas BlancasENJ
 
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...Артём Бондаренко
 
Covenant SharePoint Health Assessment
Covenant SharePoint Health AssessmentCovenant SharePoint Health Assessment
Covenant SharePoint Health AssessmentMatthew W. Bowers
 
«Визуальная мотивация»
«Визуальная мотивация»«Визуальная мотивация»
«Визуальная мотивация»Timofey (Tim) Yevgrashyn
 
ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...
ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...
ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...Артём Бондаренко
 
Covenant Technology Partners Capabilities Presentation
Covenant Technology Partners Capabilities PresentationCovenant Technology Partners Capabilities Presentation
Covenant Technology Partners Capabilities PresentationMatthew W. Bowers
 
Porte y Tenencia de Arma Blanca
Porte y Tenencia de Arma BlancaPorte y Tenencia de Arma Blanca
Porte y Tenencia de Arma Blancaguestcef2a2
 
Presentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIII
Presentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIIIPresentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIII
Presentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIIIENJ
 
Методичний тиждень у початковій школі
Методичний тиждень у початковій школі Методичний тиждень у початковій школі
Методичний тиждень у початковій школі Артём Бондаренко
 

Viewers also liked (20)

Pawlotzky du hepatites-resistance
Pawlotzky  du hepatites-resistancePawlotzky  du hepatites-resistance
Pawlotzky du hepatites-resistance
 
Semple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemSemple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med Chem
 
JOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)Pipercide
 
Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistrySemple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
 
1 4 rysz k
1 4 rysz k1 4 rysz k
1 4 rysz k
 
최윤소 조은지 기말 최종
최윤소 조은지 기말 최종최윤소 조은지 기말 최종
최윤소 조은지 기말 최종
 
On time-in-time
On time-in-timeOn time-in-time
On time-in-time
 
ENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJP
ENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJPENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJP
ENJ-2-301: Presentación Módulo X Curso Teoría del Delito AJP
 
STI presentation
STI presentationSTI presentation
STI presentation
 
Hope Forsman_RESUME
Hope Forsman_RESUMEHope Forsman_RESUME
Hope Forsman_RESUME
 
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ СУЧАСНИМИ КОМП’ЮТЕРАМИ, ЇХ ЗАСТ...
 
ENJ-300 Porte y Tenencia de Armas Blancas
ENJ-300 Porte y Tenencia de Armas BlancasENJ-300 Porte y Tenencia de Armas Blancas
ENJ-300 Porte y Tenencia de Armas Blancas
 
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...
ОСОБЛИВОСТІ ОЗНАЙОМЛЕННЯ МОЛОДШИХ ШКОЛЯРІВ ІЗ ПОНЯТТЯМ ПРО ІНФОРМАЦІЮ ТА ІНФО...
 
Covenant SharePoint Health Assessment
Covenant SharePoint Health AssessmentCovenant SharePoint Health Assessment
Covenant SharePoint Health Assessment
 
«Визуальная мотивация»
«Визуальная мотивация»«Визуальная мотивация»
«Визуальная мотивация»
 
ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...
ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...
ПРОЕКТУВАННЯ УРОКІВ ІНФОРМАТКИ В ПОЧАТКОВІЙ ШКОЛІ НА ОСНОВІ ВИКОРИСТАННЯ ТЕХН...
 
Covenant Technology Partners Capabilities Presentation
Covenant Technology Partners Capabilities PresentationCovenant Technology Partners Capabilities Presentation
Covenant Technology Partners Capabilities Presentation
 
Porte y Tenencia de Arma Blanca
Porte y Tenencia de Arma BlancaPorte y Tenencia de Arma Blanca
Porte y Tenencia de Arma Blanca
 
Presentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIII
Presentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIIIPresentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIII
Presentacion power ENJ-300: Curso Teoría General del Delito. Módulo VIII
 
Методичний тиждень у початковій школі
Методичний тиждень у початковій школі Методичний тиждень у початковій школі
Методичний тиждень у початковій школі
 

Similar to HCV Overview Boceprevir & Thiazolides JES_mod062116

Semple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemSemple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemJ. Edward Semple
 
In vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic repliconIn vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic repliconBinodGupta27
 
DR. SARWAR JEHAN ZUBERI LECTURE
DR. SARWAR JEHAN ZUBERI LECTUREDR. SARWAR JEHAN ZUBERI LECTURE
DR. SARWAR JEHAN ZUBERI LECTUREicsp
 
New oral medications for hcv review
New oral medications for hcv review New oral medications for hcv review
New oral medications for hcv review Omar Darwish
 
Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...
Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...
Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...Vall d'Hebron Institute of Research (VHIR)
 
Mahra Nourbakhsh's presentation, Hepatitis C Virus #1
Mahra Nourbakhsh's presentation, Hepatitis C Virus #1Mahra Nourbakhsh's presentation, Hepatitis C Virus #1
Mahra Nourbakhsh's presentation, Hepatitis C Virus #1Mahra Nourbakhsh
 
BCC4: Pierre Janin on 4 Newer Agents for Hepatitis C
BCC4: Pierre Janin on 4 Newer Agents for Hepatitis CBCC4: Pierre Janin on 4 Newer Agents for Hepatitis C
BCC4: Pierre Janin on 4 Newer Agents for Hepatitis CSMACC Conference
 
Spring Bank Presentation Jan 09
Spring Bank Presentation Jan 09Spring Bank Presentation Jan 09
Spring Bank Presentation Jan 09Russ Scala
 
W5 HIV, HCV, and HBV Co-Infection Jayaweera
W5 HIV, HCV, and HBV Co-Infection JayaweeraW5 HIV, HCV, and HBV Co-Infection Jayaweera
W5 HIV, HCV, and HBV Co-Infection JayaweeraDSHS
 
New Treatments for Lupus by Daniel J. Wallace, MD
New Treatments for Lupus by Daniel J. Wallace, MDNew Treatments for Lupus by Daniel J. Wallace, MD
New Treatments for Lupus by Daniel J. Wallace, MDLupusNY
 
Pak Us Science And Technology Grant Project E Dited
Pak Us  Science And Technology Grant Project E DitedPak Us  Science And Technology Grant Project E Dited
Pak Us Science And Technology Grant Project E Ditedabbas491
 
J. Virol.-2013-Maqbool-5523-39
J. Virol.-2013-Maqbool-5523-39J. Virol.-2013-Maqbool-5523-39
J. Virol.-2013-Maqbool-5523-39mimach
 
Benhamou du hv hiv hcv du16
Benhamou du hv hiv hcv du16Benhamou du hv hiv hcv du16
Benhamou du hv hiv hcv du16odeckmyn
 
NUCs in Chronic Hepatitis B
NUCs in Chronic Hepatitis BNUCs in Chronic Hepatitis B
NUCs in Chronic Hepatitis Brrsolution
 
NK cells in HBV and HCV
NK cells in HBV and HCVNK cells in HBV and HCV
NK cells in HBV and HCVMario Mondelli
 

Similar to HCV Overview Boceprevir & Thiazolides JES_mod062116 (20)

Semple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemSemple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med Chem
 
In vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic repliconIn vitro transcription and transfection of HCV genomic replicon
In vitro transcription and transfection of HCV genomic replicon
 
DR. SARWAR JEHAN ZUBERI LECTURE
DR. SARWAR JEHAN ZUBERI LECTUREDR. SARWAR JEHAN ZUBERI LECTURE
DR. SARWAR JEHAN ZUBERI LECTURE
 
Chronic HEP B
Chronic HEP BChronic HEP B
Chronic HEP B
 
New oral medications for hcv review
New oral medications for hcv review New oral medications for hcv review
New oral medications for hcv review
 
Peptide inhibitors for HCV
Peptide inhibitors for HCVPeptide inhibitors for HCV
Peptide inhibitors for HCV
 
Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...
Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...
Dr. Esteban Domingo: Respuesta del virus de la hepatitis C a inhibidores. Inf...
 
Mahra Nourbakhsh's presentation, Hepatitis C Virus #1
Mahra Nourbakhsh's presentation, Hepatitis C Virus #1Mahra Nourbakhsh's presentation, Hepatitis C Virus #1
Mahra Nourbakhsh's presentation, Hepatitis C Virus #1
 
BCC4: Pierre Janin on 4 Newer Agents for Hepatitis C
BCC4: Pierre Janin on 4 Newer Agents for Hepatitis CBCC4: Pierre Janin on 4 Newer Agents for Hepatitis C
BCC4: Pierre Janin on 4 Newer Agents for Hepatitis C
 
Hcv naive ttt
Hcv naive tttHcv naive ttt
Hcv naive ttt
 
Spring Bank Presentation Jan 09
Spring Bank Presentation Jan 09Spring Bank Presentation Jan 09
Spring Bank Presentation Jan 09
 
Menouf Harper memorial 2015
Menouf Harper memorial 2015Menouf Harper memorial 2015
Menouf Harper memorial 2015
 
W5 HIV, HCV, and HBV Co-Infection Jayaweera
W5 HIV, HCV, and HBV Co-Infection JayaweeraW5 HIV, HCV, and HBV Co-Infection Jayaweera
W5 HIV, HCV, and HBV Co-Infection Jayaweera
 
POSTER-MARIA KLARIZZA PANALIGAN
POSTER-MARIA KLARIZZA PANALIGANPOSTER-MARIA KLARIZZA PANALIGAN
POSTER-MARIA KLARIZZA PANALIGAN
 
New Treatments for Lupus by Daniel J. Wallace, MD
New Treatments for Lupus by Daniel J. Wallace, MDNew Treatments for Lupus by Daniel J. Wallace, MD
New Treatments for Lupus by Daniel J. Wallace, MD
 
Pak Us Science And Technology Grant Project E Dited
Pak Us  Science And Technology Grant Project E DitedPak Us  Science And Technology Grant Project E Dited
Pak Us Science And Technology Grant Project E Dited
 
J. Virol.-2013-Maqbool-5523-39
J. Virol.-2013-Maqbool-5523-39J. Virol.-2013-Maqbool-5523-39
J. Virol.-2013-Maqbool-5523-39
 
Benhamou du hv hiv hcv du16
Benhamou du hv hiv hcv du16Benhamou du hv hiv hcv du16
Benhamou du hv hiv hcv du16
 
NUCs in Chronic Hepatitis B
NUCs in Chronic Hepatitis BNUCs in Chronic Hepatitis B
NUCs in Chronic Hepatitis B
 
NK cells in HBV and HCV
NK cells in HBV and HCVNK cells in HBV and HCV
NK cells in HBV and HCV
 

More from J. Edward Semple

More from J. Edward Semple (10)

JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616
 
JOC '96 OH-Ester HPI
JOC '96 OH-Ester HPIJOC '96 OH-Ester HPI
JOC '96 OH-Ester HPI
 
TFA Passerini JES Org Lett
TFA Passerini JES Org LettTFA Passerini JES Org Lett
TFA Passerini JES Org Lett
 
Tet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TSTet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TS
 
MCR
MCRMCR
MCR
 
JMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulf
 
HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19
 
Ct Modell JES Org Lett
Ct Modell JES Org LettCt Modell JES Org Lett
Ct Modell JES Org Lett
 
BMCL P1Bicyclic Arg Surrogates
BMCL  P1Bicyclic Arg SurrogatesBMCL  P1Bicyclic Arg Surrogates
BMCL P1Bicyclic Arg Surrogates
 
Semple-PMSE.519-ACS Denver
Semple-PMSE.519-ACS DenverSemple-PMSE.519-ACS Denver
Semple-PMSE.519-ACS Denver
 

HCV Overview Boceprevir & Thiazolides JES_mod062116

  • 1. A Tale of Two HCV Inhibitors: Discovery of Victrelis™ (Boceprevir) and the Thiazolide RM5038 J. Edward Semple, Ph.D. Romark Laboratories, L.C., Tampa, FL 33606 & Corvas International, Inc., La Jolla, CA 92121 Originally presented June, 2011, with minor updates June, 2016 TIZ X-ray structure: J. N. Lisgarten Dept of Crystallography Birkbeck College, London, UK 2.03 Å
  • 2. 2 What is Hepatitis C Virus?  Infectious disease affecting the liver, often asymptomatic  chronic infection can progress to fibrosis and cirrhosis, apparent after many years  liver failure, liver cancer, esophageal and gastric varices (extremely dilated sub-mucosal veins)  leading cause of liver transplantation.  5x more widespread than HIV  Small (60 nm), enveloped, single-stranded, positive sense RNA virus:  only known member of the hepacivirus genus in the family Flaviviridae  has an icosohedral core like HIV  similar to mRNA and can be immediately translated by the host cell  11 major genotypes: G1-G11, each with 1-4 subtypes (e.g.G1a, G1b, G1c, etc.) EM image, Scale = 60 nmhttp://www.cdc.gov/hepatitis/HCV/index.htm http://www.hepatitis-central.com/hcv/genotype/explained.html
  • 3. 3 Global HCV Infection: Prevalence  ~ 270-300 million people worldwide are infected  ~ 4-5 million in US alone http://www.cdc.gov/hepatitis/HCV/index.htm
  • 5. 5 HCV: Structure & Replication HCV Replication Video link: http://www.youtube.com/watch?v=eI5t0PbgnBk http://www.rmgh.net/wiki/index.php?title=HCV http://wiki.verkata.com/en/wiki/Hepatitis_C_virus IRES (ribosome)-> RNA translation -> HCV polyprotein -> 10 proteins -> replication complex -> (+)RNA
  • 6. 6 Treatment: Current Standard of Care (SOC)  Dual therapy with peginterferon (IFN) and ribavirin (RBV):  Weekly s.c. injections of PEG-IFN-a-2a (Pegasyss®) or -a2 (Pegintron®) in combination with RBV b.i.d:  treatment of 24 weeks for G2 &G3; 48 weeks for G1 patients  regimen poorly tolerated due to significant side effects  side effects make it difficult to complete treatment (low compliance)  ~40% Cure rate in US (naïve, G1a/1b), ~40-50% (other genotypes)  Cure = sustained viral response (SVR) = HCV RNA <10 IU/ml @ 6 months post treatment rIFNa (h) a/b domain O NN N NH2 O OHOH HO RBV A J. Sadler, B.R.G. Williams Nature Rev. Immunology 2008 8, 559-568.
  • 7. 7 HCV Drugs: Clinical Factors & Endpoints  Patient populations: naïve, non-naïve, non- responders, relapsers; low to very high viral loads  Goal to produce >2–6 log10 reduction in plasma HCV RNA in patients (SVR)  RVR: undetectable at week 4  ETR: undetectable at end of Tx  SVR: undetectable (<10 IU/ml) @ 6 months post treatment = long-term efficacy ~ cure  Issues: emergence of resistant HCV strains  combination therapy (3 drugs) reduces risk
  • 8. 8 Current HCV Therapies: Challenges & Opportunities  Both IFN and RBV are indirect antivirals- do not target a specific HCV protein or RNA element:  low efficacy  severe side effects  many patients forego treatment- compliance issues  emergence of drug resistant HCV strains  Large unmet medical need and high market demand for new therapies:  market potential of new protease inhibitors alone is projected at 3-5 billion dollars annually  triple combination therapy > SVR and < development of resistance  impetus for development of specifically targeted antiviral therapies for HCV (STAT-C)  ultimate goal to develop monotherapy…feasible? M.G. Ghany, D.B. Strader, D.L..Thomas, L.B. Seeff Hepatology 2009, 49, 1335–1374. Y.J. Li Annu Rev Immunol. 2005, 23, 275–306. RBV Review: Hartwell D, Jones J, Baxter L, Shepherd J. Health Technology Assessment 2011, 17, 1-210.
  • 9. 9 HCV NS3/4A Protease  Trypsin/chymotrypsin-like serine protease-  heterodimer consisting of a catalytic subunit (the N-terminal one-third of NS3 protein) and an activating cofactor (NS4A protein)  cleavage of HCV polyprotein at the NS3/NS4A, NS4A/NS4B, NS4B/NS5A, and NS5A/NS5B sites by the viral NS3 protease releases functional viral proteins essential for viral replication -> “replication complex”  considered one of the most attractive targets for developing novel anti-HCV therapies  proof-of-concept demonstrated for several classes of small mol inhibitors in human clinical trials Lin, C. HCV NS3-4A Serine Protease.In Hepatitis C Viruses Genomes and Molecular Biology; Tan S.L., Ed.; Horizon Bioscience: Norfolk (UK), 2006, Chapter 6. Link: http://www.ncbi.nlm.nih.gov/books/NBK1623/
  • 10. 10 X-Ray Structure of HCV NS3/4A Serine Protease C-terminal sub-domain of the NS3 protease N-terminal sub-domain of the NS3 protease NS4A β-strand Asp81 Cys145 His57 Asp81 Ser139 H20 Cys97 Cys99 Zn Bartenschlager, R. J. Vir. Hepatitis 1999, 6, 165-181. Lin, C. HCV NS3-4A Serine Protease.In Hepatitis C Viruses Genomes and Molecular Biology; Tan S.L., Ed.; Horizon Bioscience: Norfolk (UK), 2006, Chapter 6. Link: http://www.ncbi.nlm.nih.gov/books/NBK1623/ Heterodimer -> catalytic subunit and activating cofactor AS region
  • 11. 11 Current Classes of HCV Inhibitors Entry Inhibitors Helicase Inhibitors Internal Ribosome Entry Site (IRES) Inhibitors RdRp (NS5B) Polymerase Inhibitors-NI, NNI NS5A Inhibitors NS3/4A Protease Inhibitors Cyclophilin Inhibitors Novel Immune-based Inhibitors Thiazolide Small Molecule Modulators Glucosidase Inhibitors
  • 12. 12 Current Clinical HCV NS3/4A Protease Inhibitors DanoprevirBI 201335 MK-5172 Narlaprevir® (SCH900518)VictrelisTM (boceprevir, SCH503034) IncivekTM (telaprevir, VX-950) TMC-435350 Vaniprevir™ (MK-7009)
  • 13. 13 Current Clinical RdRp (NS5B) Inhibitors R-7128 Valopicitabine GL-60667 Filibuvir Nesbuvir (HCV-796) ANA-598 Sovaldi (Sofosbuvir)
  • 14. 14 Current Clinical HCV Inhibitors: Other Classes Alisporivir® (Debio 025) Elvitegravir® (GS-9190) BMS-790052 Alinia® (Nitazoxanide)
  • 15. 15 Romark Laboratories, L.C.: Thiazolides TIZ X-ray structure: J. N. Lisgarten Dept of Crystallography Birkbeck College, London, UK 2.03 Å Note: Thiazolides may appear to be Mickey Mouse molecules but they are nearly as potent in cell culture as other classes of more structurally complex HCV inhibitors!
  • 16. 1616 Thiazolide Class: Antiviral Activity of Nitazoxanide Confirmed in Human Studies Virus Test System Stage Rotavirus Humans Phase 2 (200 patients) Hepatitis B Humans Phase 1b (12 patients) Hepatitis C G4 Humans Phase 2 (251 patients) Hepatitis C G1 Humans Phase 2 (179 patients) Influenza A Humans Phase 2 (440 patients) Alinia® (Nitazoxanide) Broad spectrum antibacterial, antiparasitic, antiviral FDA-approved for treatment of C. parvum and G. lamblia OBA (h), F ~35%, improved with food.
  • 17. 17 Structural Evolution of the Thiazolides Broad spectrum: antiviral, antiparasitic & antibacterial NTZ/TIZ (R = Ac, H) TIZ Prodrugs (dual therapy) Salicylanilides Current Targets • Antiviral-selective • R6, R7 ≠ NO2 2nd Generation Thiazolide Prodrugs Thiazolides as Novel Antiviral Agents: I. Inhibition of Hepatitis B Virus Replication. A. V. Stachulski, B. E. Korba, J. E. Semple, J. F. Rossignol, et al. J. Med. Chem. 2011, 54, 4119-4132. Thiazolides as Novel Antiviral Agents. 2. Inhibition of Hepatitis C Virus Replication. A. V. Stachulski, B. E. Korba, J. E. Semple, J. F. Rossignol, et al. J. Med. Chem. 2011, 54, 8670-8680.
  • 18. 18 RM5038 HCV (Huh7.5,G1b): EC50= 0.23 M, SI = 19 RSV (A2): EC50= 1.04 M, SI = 22 CcoV (A72): EC50= 2.02 M, SI >83.3 RM4829 HBV (VIR): EC50= 0.22 M, SI >137 HBV (RI): EC50= 1.20 M, SI >25 RM5021 Influenza A (PR8, MDCK): EC50= 0.028 M, SI >5000 Parainfluenza (SV, 37RC): EC50= 0.085 M, SI >1670 RM4804 Parainfluenza (SV, 37RC): EC50= 0.97 M, SI >167 RM4860 Rotavirus (SA11): EC50= 0.026 M, SI >5000 RM5034 HSV-1(Hep-2): EC50= 0.091 M, SI >1667 Broad Spectrum Antivirals: Recent Thiazolide Leads
  • 19. 19 SAR of Core Thiazolides in HCV Replicon Assay (G1b)  SAR of 28 prototypes indicates tight, specific structural requirements for high potency and selectivity  pKa, steric environment & polarizability impact potency:  EWG favored  TIZ is most acidic analog- amide moiety pKa 5.7 will be fully deprotonated at physiological pH (cf. TIZ vs. isomer RM5048)  Several non-nitro thiazolide and salicylanilide acetates are reproducibly active and demonstrate good SI Thiazolides as Novel Antiviral Agents. 2. Inhibition of Hepatitis C Virus Replication. A. V. Stachulski, B. E. Korba, J. E. Semple, J. F. Rossignol, et al. J. Med. Chem. 2011, 54, 8670-8680. Substitution leads to < potency, selectivity OH ~OAc > NH2, NHAc >> OMe When R6 = H, EC50 (M): NO2 (0.15) > Cl (0.23) > SO2Me (1.5) > CN (3.7) > Br (4.9) > 14 other FGs (>10) When R7 = H, EC50 (M): CH2SO2Me (0.37) > SOMe (2.2) > Ph (3.5) > NO2 and 5 other FGs (>10)
  • 20. 20 Thiazolide Core Pharmacophore & MOA N H L2 OH O EWG/HBA Minimal pharmacophore Metal complex at active or allosteric binding site vs. classical protein backbone H-bonds and/or water-mediated H-bonds? N H L2 O O EWG/HBA M N M Human VAP-B Is Involved in Hepatitis C Virus Replication Through Interaction with NS5A and NS5B. Y. Matsuura et al. J. Virol. 2005, 79, 13473 HCV Replication Complex & Host Protein VAP-B
  • 21. 21 HCV Lead RM5038: Preclinical Data N SN H OO Cl O RM5038 2-(5-Chlorothiazol-2-ylcarbamoyl)phenyl acetate C12H9ClN2O3S Mol. Wt. 296.73 LogD (octanol/PBS, pH7.4) = 2.66 cLogP = 2.08 MR = 71.3 cm3/ mol TPSA = 67.8 Å2 Nrot = 3 Solubility (Cerep): PBS (pH7.4) = 8.5 mg/L SGF = 36.3 mg/L SIF = 17.4 mg/L Cerep ADME-Tox and in vitro pharmacology panels Patent Family: PCT WO 2006/031566 A2, March 23, 2006 JP2008512474 T, April 24, 2008 US 2006/0089396 A1, April 27, 2006 US 2008/0096941 A1, April 24, 2008 US 7645783 B2, January 12, 2010. Bacteriology: Inactive (MIC > 64 g/ml) against 110 anaerobes. Against 53 aerobes, modest inhibitory activity against only a few MRSA strains, where MIC’s ranged from 4 to >64 g/ml. Parasitology: Against Cryptosporidium parvum, IC50 = 1 g/ml, with very low cytotoxicity (10% of control) Not effective against Giardia lamblia, three strains of Candida spp. and two strains of Trichophyton spp. except at the highest test concentration of 10 g/ml. PK, Toxicology, [14C]-RM5038 Distribution: Studies in mice, rats, and dogs in progress. Virus IC50 IC90 LD50 SI Cell Line HCV (genotype 1b) 0.23 µM 1.10 µM 4.3 µM 18.9 AVA5 HCV (genotype 1a) 0.40 µM 1.90 µM 5.7 µM 14.0 AVA5 Hepatitis B (virion) >10.0 µM >10.0 µM > 100 µM - 2.2.15 Influenza A (PR8) 1 µg/ml 7 µg/ml 20 µg/ml 20 MDCK Avian Influenza(A/Ck) 0.5 µg/ml 6.0 µg/ml >50 µg/ml >100 MDCK Parainfluenza (Sendai) 0.5 µg/ml 5 µg/ml >50 µg/ml >100 37RC Coronavirus (CcoV) 0.6 µg/ml 4 µg/ml >50 µg/ml >83.3 A72 Rotavirus (SA-11) 1 µg/ml 15 µg/ml >50 µg/ml >50 MA104 HSV-1 0.15 µg/ml 0.8 µg/ml >50 µg/ml >333 Hep-2 Rhabdovirus(VSV) 1 µg/ml 10 µg/ml 50 µg/ml >50 MA104 Adenovirus (type 5) pending HeLa Rhinovirus(type 2) pending HeLa R19 RSV (A2) 0.31 µg/ml 5.0 µg/ml 6.8 µg/ml 22 HeLa-ATCC
  • 22. 22 Romark: New Patents (Updated 6/16)  “Compounds and Methods for Treating Influenza.” J. F. Rossignol and J. E. Semple. U.S. Pat. Appl. Publ. US 20150250768 A1, September 2015. (MOU)  “Haloalkyl Heteroaryl Benzamide Compounds.” J. F. Rossignol and J. E. Semple. US 9126992 B2, September 2015. (PC/MOU)  “Compounds and Methods for Treating Influenza.” J. F. Rossignol and J. E. Semple. US 9023877 B2, May 2015. (PC/MOU)  “Compounds and Methods for Treating Influenza.” J. F. Rossignol and J. E. Semple. US 9345690 B2, May 2015. (MOU)  “Alkylsulfonyl-Substituted Thiazolide Compounds.” J. F. Rossignol and J. E. Semple. US 8895752 B2, November 2014. (COM/PC)  “Haloalkyl Heteroaryl Benzamide Compounds.” J. F. Rossignol and J. E. Semple. US 8846727 B2, September 2014 (COM/PC)  “Alkylsulfinyl-Substituted Thiazolide Compounds.” J. E. Semple and J. F. Rossignol. US 8772502 B2, July 2014. (COM)  “Alkylsulfonyl-Substituted Thiazolide Compounds.” J. F. Rossignol and J. E. Semple. US 8124632 B2, February 2012. (MOU)  “Pharmaceutical Compositions and Methods of Use of Salicylanilides for Treatment of Hepatitis Viruses.” J. E. Semple and J. F. Rossignol. PCT Int. Appl. WO 2012058378 A1 May 2012. (PC, MOU).  Key: COM = composition of matter claims, PC = pharmaceutical composition claims, MOU = method of use claims.
  • 23. 23 Romark Acknowledgements Romark Laboratories, L.C.: Jean-Francois Rossignol, M.D., Ph.D. Mark Ayers Emmet B. Keeffe, M.D. Maria Carrion, M.D. Matthew Bardin, Ph.D. Raymond Pasinski Chemistry: University of Liverpool: Andrew V. Stachulski, Ph.D Chandrakala Pidathala, Ph.D Mazhar Iqbal, Ph.D. Kalexsyn, Inc: Brian Eklov, Ph.D Mel Schroeder, M.S. Virology and MOA: Brent E. Korba, Ph.D. (Georgetown University Medical Center, Rockville, MD) Gabriella Santoro, Ph.D. (Department of Biology, University of Rome, Italy) Jeffrey S. Glenn, M.D., Ph.D.(Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Palo Alto. CA) Parasitology: Gilles Gargala, Ph.D. & Loic Favennec, Ph.D. (Faculty of Medicine & Pharmacy, University of Rouen, FR) Computational Chemistry: John H. Van Drie (Van Drie Research LLC, Andover, MA)
  • 24. 24 Corvas Collaboration with Schering Plough Research Institute CVS 4083 Victrelis™ (Boceprevir)
  • 25. 25 Corvas-Schering Plough Research Institute Collaborations  Oral antithrombotics- FIIa, FXa protease inhibitors  HCV NS3/4A protease inhibitors  Corvas received >$50M in research funding and milestones from SPRI
  • 26. 26 Key Stages of HCV Drug Development Program  Target validation  Assay development-  In vitro potency Ki* assay  Cell-based replicon assay  Med. chem. identification of lead compounds  Lead optimization-  SAR <-> SBDD <-> structural biology  PK, ADME-Tox & HT-DMPK screens  Identification of a drug candidate-  Preclinical animal tox and [14C]-drug disposition studies, GMP manufacture, COG  Clinical trials and drug launch-  Safety, efficacy, resistance issues
  • 27. 27 Iterative Process of Lead Optimization Leading to a Clinical Candidate SBDD X-Ray & Structural biology
  • 28. 28 Corvas Chemistry Tools • Structure-based drug design (X-ray, structural biology) • SAR optimization (QSAR, computational chem/models) • Analytical (PK, ADME/Tox, cassette dosing, phys. props., stability, etc.) • Peptides & peptidomimetics (scaffold morphing) • Cancer drug conjugates- Targeted drug delivery • Heterocyclic, Aromatic, and Organometallic chemistry • Asymmetric synthesis • Combinatorial chemistry platforms: - proprietary and known SPS and solution phase technologies • Novel synthetic technology: - Multiple-component reactions - Natural products: semi-synthesis, total synthesis
  • 29. 29 Peptides: Substrate Motifs e.g. - dFPR - dRGR - dSAR Hirudin Hirulogs TAP NAPc2 NAP5 HCV NSPs Antithrombotic Peptidomimetics: Mono-, Bicyclic- and Tricyclic Lactams Aromatics Heterocycles Achiral (Hetero)Aromatic Inhibitor Scaffolds HepC PAI-1 Cancer Proteases PACT Prodrugs Evolution of Corvas Protease Inhibitors Leverage Technology Leverage Technology Scaffold Morphing II Peptide & Scaffold Morphing I
  • 31. 31 Chronology of Corvas Thrombin Inhibitors
  • 32. 32 Sequence Alignment of HCV NS3/4A Serine Protease and its Substrates Scissile bond C. Lin. HCV NS3-4A Serine Protease. In Hepatitis C Viruses Genomes and Molecular Biology; Tan S.L., Ed.; Horizon Bioscience: Norfolk (UK), 2006, Chapter 6. Link: http://www.ncbi.nlm.nih.gov/books/NBK1623/ Starting point for design of peptidic P1-aldehyde and a-ketoamide inhibitors (cf. next slide)
  • 33. 33 Peptides and a-Ketoamides Peptide Substrate Peptidic a-ketoamide Schechter-Berger Notation: G Barbato et al. EMBO, 2000, 19, 1195. I. Schechter and A. Berger Biochem. Biophys. Res. Commun. 1967, 27, 157.
  • 34. 34 Undecapeptide Ketoamide Lead  Using substrate and early P1- aldehyde inhibitor SAR data, a 64- member ketoamide library was prepared by SPS methods (HCAM, PAM, AM, MBHA, et al.)*  CVS 4083, a potent inhibitor lead was discovered: AcEEVVPnV(CO)GMSYS-NH2, Ki* = 2.8 nM, HNE/HCV = 7 CVS 4083 Mol Wt = 1265 17 H-bond donors 18 H-bond acceptors 2 negative charges …..not quite drug-like as per Lipinski, Weber, et al. *Combichem Library Technology: D. V. Siev, J. E. Semple, M.I. Weinhouse. US 6787612B1 (2004). D. V. Siev, J. A. Gaudette, J. E. Semple Tetrahedron Lett. 1999, 40, 5123. HCAM resin: D. V. Siev, J. E. Semple Org. Lett. 2000, 2, 19. J. Z. Ho, O.E. Levy, T. S. Gibson, K. Nguyen, J. E. Semple. Bioorg. Med. Chem. Lett. 1999, 9, 3459.
  • 35. 35 CVS 4083: Lead Optimization Goals • Drug Candidate Criteria: • <10 nM inhibitor • >1000-fold selective vs. elastase • Active in cell-based assay • Oral bioavailable • Good pharmacokinetics • Low toxicity • Absence of reactive metabolites • IC50 > 5 uM for CYPs 3A4, 2D6, 2C8, and 2C9 • Moderate human hepatocyte clearance • No CYP induction liability. • Chemistry Objectives: • Reduce MW • Maintain Potency • Increase selectivity • Reduce hydrogen bonding groups • Eliminate charges • LogP of approximately 3
  • 36. 36 Taming the Beast: CVS 4083 Truncation Effects CVS# Structure Ki* (nM) CVS# Structure Ki* (nM) 4083 Ac-EEVVPnV(CO)-GMSYS-NH2 2.8 4083 Ac-EEVVPnV(CO)-GMSYS-NH2 2.8 4437 Ac-EVVPnV(CO)-GMSYS-NH2 96 4488 Ac-EEVVPnV(CO)-GMSY-NH2 0.6 4438 Ac-VVPnV(CO)-GMSYS-NH2 544 4489 Ac-EEVVPnV(CO)-GMS-NH2 5.4 4439 Ac-VPnV(CO)-GMSYS-NH2 3100 4490 Ac-EEVVPnV(CO)-GM-NH2 11 4441 Ac-PnV(CO)-GMSYS-NH2 >100000 4476 Ac-EEVVPnV(CO)-G-NH2 50 4445 Ac-EEVVPnV(CO)-NH2 760 • CVS 4476 important truncated P6-P1’- heptapeptide analog with moderate potentcy • Potency (via binding efficiency) dependent upon P6 to P1’ residues-electrostatic and hydrophobic Truncate P region: Truncate P’ region:
  • 37. 37 CVS 4083 P1 SAR Studies AcEEVVP-P1-(CO)GMSYS-NH2 AcEEVVP-P1-(CO)G-OAllyl CVS# P1 Ki* (nM) CVS# P1 Ki* (nM) 4083 nV 2.8 2436 nV 60 4470 G(propynyl) 9 2435 nL 110 4436 aT 60 2443 V 160 4432 L 66 2429 L 220 4433 nL 100 4487 G(propynyl) 230 4434 Abu 130 4469 G(allyl) 360 4431 V 130 • S1 pocket of HCV NS3 protease is shallow and only tolerates small (~3-4C) P1-side chains • Larger P1 moieties destabilize E-I* due to steric clash at S1 pocket and result in diminished activity • In both series, P1 -norVal is optimal; in other series Leu, c-Bua and c-Pra are optimal
  • 38. 38 P1’-C-Terminal Cap SAR Studies AcEEVVPnV(CO)G-CAP CVS# CAP Ki* (nM) 4476 NH2 43 4453 OH 8.3 4485 NHPropyl 47 4475 NHPropynyl 60 4474 NHAllyl 140 4454 OtBu 570 4443 OEt 1400 4444 NHCH2CH2Ph 1500 • Potency of CVS 4453 > CVS 4476, however amide deriv. more attractive • CVS4453 and CVS4476 demonstrated moderate elastase (HNE) selectivity
  • 39. 39 CVS 4453: Lead Compound Ki* = 8.3 nM Moderate elastase (HNE) selectivity Molecular Weight: 798 9 H-bond donors 11 H-bond acceptors 3 negative charges CVS 4453
  • 40. 40 Solid-Phase Synthesis of CVS 4453 Analogs PAM-OH = via Passerini chemistry
  • 41. 41 CVS 4453: P2 Library Ac-EEVV-P2-nV-(CO)-G-OH CVS# P2 Ki* (nM) 4524 Tic 3.2 4581 P(3-trans-Me) 4.5 4528 C(SO2Me) 6.8 4453 P 8.3 4529 C(S-CH2CO2H) 8.6 4507 P(4-trans-OCH2CO2H) 10 4523 Pip 12 4561 F 12 4560 E 21 4527 C(Me) 38 4525 thioP 68 4504 Aze 87 4503 Sar 190 4559 D 270 4531 M(O2) 360 • P2 position tolerant of several proline and S-subst’d. cysteine variants • P2 analogs gleaning hydrophobic and/or anionic contacts at S2 pocket in NS3
  • 42. 42 CVS 4453: 4-(trans-Subst’d)-Proline P2-Analogs CVS # R Ki* (nM) CVS # R Ki* (nM) 4453 H 8 4555 NHSO2Ph(4-OMe) 4.2 4580 Ph 5 4556 NHCONHPh 7.1 4563 CH2COOH 10 4553 NHiBoc 9.3 4550 Allyl 10 4541 NH-Fmoc 14 4549 4-MeOBn 13 4557 NHCONHPh(4-OMe) 10 4548 Bn 15 4547 NHCOPh(3-OPh) 13 4545 NHCOPh(4-OMe) 20 4542 CH2NHCONHPh 4.4 4544 NHCOPh 22 4537 CH2NHCOPh 4.7 4551 NHCOPh(3,4-OMe) 52 4539 CH2NHCOPh(3-OPh) 5.2 4552 NHCOPh(4-F) 54 4540 CH2NHSO2Ph 7.5 4554 NHSO2Ph 74 4538 CH2NH-Fmoc 8 4546 NHBzl(4-OPh) 76 4536 CH2NHCO2Ph 8.5 4562 NH2 160 • Several potent P2-Pro analogs identified featuring lipophilic, aromatic, hydrophilic & anionic groups
  • 43. 43 CVS 4453: P3 Library • Incorporation of more hydrophobic cyclohexylglycine and isoleucine residues afforded improved potency • tBu-glycine, while slightly less potent, showed increased elastase selectivity • P3 analogs glean additional productive hydrophobic contacts at S3 pocket in NS3. Ac-EEV-P3-P-nV-(CO)-G-OH CVS# P3 Ki* (nM) CVS# P3 Ki* (nM) 4516 G(Chx) 1.9 4671 S(O-Me) 1100 4518 I 4.5 4686 Q 2100 4453 V 8.3 4667 S 5900 4666 G(tBu) 26 4668 T 6700 4672 N 10500 4500 Phg 120 4520 dC(2-AcOH) 54000 4698 M 180 4521 dN(MeTzl) 54000 4699 C 210 4522 dQ(MeTzl) 80000 4665 L 300 4502 dD >100000 4517 F 310 4519 dE >100000 4670 Dif 310 4669 nL 460
  • 44. 44 P2-3,4-(Isopropylidene)Proline series CAP-P3-P[3,4-(diMe-cyclopropyl)]-P1-(CO)-G-G(Ph)-NMe2 • CVS 4845 demonstrated good potency in replicon cell assay (G1b) • P3 -G(1-MeChx) with P1 nV or L confers good potency and selectivity • P3 -G(tBu) with P1 nV or L confers excellent potency and selectivity Replicon assay CVS# CAP P3 P1 K i * (nM) HNE K i (nM) HNE/ HCV EC90 (nM) 4845 iBoc Chg nV 10 46 4.6 200 4858 iBoc Chg c-Pra 66 18 0.3 4893 iBoc G(1-MeChx) nV 12 170 14 4894 iBoc G(1-MeChx) L 15 1100 73 4899 ((R)-1-Me)iBoc G(1-MeChx) nV 6 270 45 4895 iBoc G(tBu) L 13 1100 85 4901 iPoc G(tBu) nV 2 320 160 4902 iPoc G(tBu) L 8 3000 375 CVS 4453
  • 45. 45 Synthesis of 4,4-Dialkylproline Derivatives S. Kemp, M. Lawrence, K. Matthews
  • 46. 46 Synthesis of 4,4-Spiropentylproline Derivatives S. Kemp, M. Lawrence, K. Matthews
  • 47. 47 Synthesis of 3,4-Isopropylideneproline Peptides S. Kemp, M. Lawrence, K. Matthews
  • 48. 48 Novel Modifications of the Passerini Reaction & Applications to HCV Protease Inhibitors
  • 49. 49 The Passerini Reaction N OH O R1 R4 O O N H O R1R2 R1NC + R2R3CO + R 4CO 2H acyl H+ O O H O R3 R4 R2 R1 N R3 R2 R4 O R3 a-Acyloxyamide ProductM. Passerini, Gazz. Chim. Ital. 1921, 51, 126. M. Passerini and G. Ragni, Gazz. Chim. Ital. 1931, 61, 964. I. Ugi et al. in Isonitrile Chemistry, I. Ugi, Ed.; Academic: New York, 1971; Chapter 7. A. Dömling and I. Ugi, Angew. Chem. Intl. Ed. 2000, 39, 3168. shift
  • 50. 50 Passerini Reactions of a-Amino Aldehydes with TFA and Pyridine-Type Bases PG1NH N OH O R1 CF3 O PGNH PGNH O2CCF3 N H O R1 H PGNH OH N H O R1 N H OH N H O R1 R3 O N H N H O R1 R3 O O H+ PGNH OH OH O R2 O R2 R2 R2R2 R2 R2 CF3CO2H, R1NC, Pyridine, CH2Cl2 acyl shift Hydrolytic work-up a-Hydroxy-b-amino amide derivatives: • ca. 1:1 mixture @ new hydroxy center • retention of chirality at original centers * Elaboration 1. Optional sidechain deprotection 2. Oxidation Hydrolysis a-Ketoamide Derivatives a-Hydroxy-b-amino acid "norstatine" derivatives J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy Organic Lett. 2000, 2, 2769. J. E. Semple and O. E. Levy. WO 0035868 A2, June, 2000; Priority: December 1998; U.S. Patent 6376649 B1, April 2002. J. E. Semple et al. Abstracts of Papers, 218th American Chemical Society National Meeting, New Orleans, LA, August 22-26, 1999; ORGN-419, MEDI-240. Passerini reaction with TFA and pyridine: W. Lumma J. Org. Chem. 1981, 46, 3668. TiCl4-catalyzed Passerini-type reactions: D. Seebach et al. Chem. Ber. 1988, 121, 507; Helv. Chim. Acta 1983, 66, 1618.
  • 51. 51 Passerini Reactions of a-Amino Aldehydes with TFA: Effect of Bases Organic Base Additive pKa % Yield 3 2,6-di-t-Butyl Pyridine ~ 9 72 2,4,6-Collidine 7.4 71 2,6-Lutidine 6.6 68 Pyridine 5.2 60 N-Methylmorpholine 7.5 41 DABCO 8.2 33 4-N,N-Dimethylaminopyridine 9.7 18 N,N-Diisopropylethylamine 11 15 Fmoc N H CHO CN O O Fmoc N H O O OH N H OOrganic base, TFA, DCM, 0 °C to RT 1 2 3 J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy Organic Lett. 2000, 2, 2769.
  • 52. 52 Passerini Reactions of a-Amino Aldehydes with TFA Variation 1: PGNHCH(R 2)CHO + R 1 NC + CF 3CO2H = PGNHCH(R 2)CH(OH)CONHR 1 Cmpd PG Amino Acid SC R2 R1 %Yield a Boc Cys(Me) CH2SMe CH2CO2Me 62 b Fmoc Val CH(CH3)2 CH2CO2t -Bu 68 c Fmoc Tyr(t -Bu) CH2Ph-4-(t -BuO) CH2CO2Et 69 d Boc Arg(NO2) (CH2)3NHC(=NH)NHNO2 CH2CO2Et 38 e Fmoc Arg(Pmc) (CH2)3NHC(=NH)NHPmc CH2CH2Ph 75 f Boc Arg(NO2) (CH2)3NHC(=NH)NHNO2 t -Bu 92 g Boc Phe CH2Ph CH2CO2Allyl 67 h Boc Phe CH2Ph t -Bu 24-71 i Cbz d -Phe CH2Ph (S )-CH(i -Bu)CO2Bn 65 j Boc ChxAla CH2Chx t -Bu 46 k Fmoc Gly H CH2CO2Allyl 77 l Fmoc Ala CH3 CH2CO2Allyl 83 m Fmoc Abu CH2CH3 CH2CO2Allyl 73 n Fmoc Val CH(CH3)2 CH2CO2Allyl 68 o Fmoc nor-Val (CH2)2CH3 CH2CO2Allyl 87 p Fmoc Leu CH2CH(CH3)2 CH2CO2Allyl 85 q Fmoc nor-Leu (CH2)3CH3 CH2CO2Allyl 69 r Fmoc Phe CH2Ph CH2CO2Allyl 67 s Fmoc Tyr(t -Bu) CH2Ph-4-(t -BuO) CH2CO2Allyl 66 t Fmoc Ser(t -Bu) CH2Ot -Bu CH2CO2Allyl 68 u Fmoc Asp(t -Bu) CH2CO2t -Bu CH2CO2Allyl 60 v Fmoc Arg(Pmc) (CH2)3NHC(=NH)NHPmc CH2CO2Allyl 76 w Fmoc Lys(Boc) (CH2)4NHBoc CH2CO2Allyl 79 x Fmoc Thr CH3(CH)Ot -Bu CH2CO2Allyl 62 y Fmoc allo -Thr CH3(CH)Ot -Bu CH2CO2Allyl 74 P1-P1’of HCV Inhibitor libraries Thrombin and FXa Inhibitors, Libraries, Bestatin N H N H R2 OH O PG R1 J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy Organic Lett. 2000, 2, 2769. J. E. Semple and O. E. Levy, WO 0035868 A2, 2000; US Patent 6376649 B1, 2002.
  • 53. 53 Passerini Reactions of a-Amino Aldehydes with Carboxylic Acids L. Banfi, G. Guanti, R. Riva, A. Basso, E. Calcagno Tetrahedron Lett. 2002, 43, 4067. L. Banfi, G. Guanti, and R. Riva Chem. Commun. 2000, 985. J. E. Semple and O. E. Levy. WO 0035868A2, June, 2000 (Priority: 12/18/98); US Patent 6376649 B1, April 2002. J. E. Semple et al. Abstracts of Papers, 218th American Chemical Society National Meeting, New Orleans, LA, August 22-26, 1999; ORGN-419, MEDI-240. J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy 16th International Symposium for Synthesis in Organic Chemistry, Cambridge, UK, July 19–22, 1999; P.4. O. E. Levy, K. Nguyen, T. D. Owens and J. E. Semple Abstracts of Papers, 16th American Peptide Symposium, Minneapolis, MN, June 26–July 1, 1999; P-6653. PGNH CHO PGNH R2 NHR O O R1 O H2N R2 NHR O O R1 O N H R2 NHR O OH R1 O N H R2 NHR O R1 O O R2 acyl migration a-Acyloxy-b-aminoamide: • Ca. 1,1 mixture @ new acyloxy center. • Retention of chirality @ *. N OH O R R1 O PGNH R2 * RNC, R1CO2H, solvent -PG Cleave acyl moiety N H R2 NHR O OH Ketoamide target or advanced intermediate PG H+ Further chemistry [O] Further chemistry
  • 54. 54 Concise Synthesis of Potent HCV Lead CVS4845 via Passerini-Deprotection-Acyl Migration (PADAM) Strategy J. E. Semple, S.J. Kemp and T.D. Owens, unpublished J. E. Semple, T. D. Owens Organic Lett. 2001, 3, 3301. J. E. Semple, 219th American Chemical Society National Meeting, San Francisco, CA March 26-30, 2000; ORGN.667. J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy Organic Lett. 2000, 2, 2769.
  • 55. 55 HCV Drug DMPK Screening Paradigm K.-C. Cheng, W.A. Korfmacher, R.E. White, F.G. Njoroge, Perspectives in Medicinal Chemistry 2007, 1, 1-9. 1000 compounds EC90 < 1 M (rep) 3 compounds Boceprevir (SCH503034)
  • 56. 56 Pathway to Discovery of Victrelis™(Boceprevir): Part I 64-member Library P1-Library Truncate P2’-P5’ Truncate P4-P6 Focused CAP- and P3-Library P3 CAP
  • 57. 57 Pathway to Discovery of Victrelis™(Boceprevir): Part II P2-SAR SAR optimize P2-P3 CVS4704 Step 1: 13-membered P2’-Library w/ P2-Leu Step 2: 14-membered P2’-Library w/ P2-Pro (Ki* = 360 nM)* Iterate/ optimize P4-CAP (X-ray) (X-ray) *A. Arasappan, S. Kemp, O. Levy, M. Lim-Wilby, S. Tamura, et al. Bioorg. Med. Chem. Lett. 2005, 15, 4180–4184.
  • 58. 58 X-Ray of SCH225724, iBoc-Chg-L- nV(CO)-G-Phg-NH2  P2’-residue wraps over Lys136 side chain  P1–P2’ moiety forms C-clamp, locking Lys136 in place  Extensive hydrophobic interactions translated into enhanced binding potency (Ki* = 66 nM). A. Arasappan, S. Kemp, O. Levy, M. Lim-Wilby, S. Tamura, et al. Bioorg. Med. Chem. Lett. 2005, 15, 4180–4184.
  • 59. 59 Key Interactions of CVS4901-NS3/4A Complex Based on X-Ray Crystal Structure Val 158 P1–P2’ moiety forms C-clamp with Lys136
  • 60. 60 Pathway to Discovery of Victrelis™(Boceprevir): Part III Final optimization selectivity, cell activity, ADME/Tox & PK EC90 = 290 nM 4 HBD 7 HBA X-ray EC90 = 350 nM 5 HBD 5 HBA X-ray A. K. Saksena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 6800434B2 (2004). A. K. Sakena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 7012066B2 (2006). S. Venkatraman et al. J. Med. Chem. 2006, 49, 6074. F. G. Njoroge, K. X. Chen, N.-Y. Shih, J. J. Piwinski, Acc. Chem. Res. 2008, 41, 50. A. J. Prongay et al. J. Med. Chem. 2007, 50, 2310. N.A. Meanwell, J. F. Kadow, P. M. Scola. Annual Reports in Medicinal Chemistry; J. E. Macor, Ed.; Academic Press: New York, 2009; Vol. 44, Ch. 20.
  • 61. 61 X-Ray Structure of Boceprevir (R = 2.3 A) V. Madison et al. J. Synchrotron Rad. 2008, 15, 204–207 Crystal structure of the covalent Boceprevir (SCH503034)- NS3/4A complex, generated using Pymol
  • 62. 62 Victrelis™ (boceprevir, SCH503034), a First-in- Class FDA-Approved HCV NS3/4A Inhibitor VictrelisTM (boceprevir, SCH503034)  (1R,2S,5S)-N-((S)-4-amino-1-cyclobutyl-3,4-dioxobutan-2-yl)- 3-((S)-2-(3-tert-butylureido)-3,3-dimethylbutanoyl)-6,6- dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide  Chemical Formula: C27H45N5O5  Molecular Weight: 519.7  Log P: 0.96  CLogP: 3.34  MR: 141 [cm3/mol]  tPSA: 150.7  White to off-white amorphous powder, freely soluble in MeOH, EtOH, iPrOH, slightly soluble in water. A. K. Saksena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 6800434B2 (2004). A. K. Saksena, T. K. Brunck, S. J. Kemp, O. E. Levy, M. Lim-Wilby, et al. US 7012066B2 (2006). S. Venkatraman et al. J. Med. Chem. 2006, 49, 6074. F. G. Njoroge, K. X. Chen, N.-Y. Shih, J. J. Piwinski, Acc. Chem. Res. 2008, 41, 50. A. J. Prongay et al. J. Med. Chem. 2007, 50, 2310. N. A. Meanwell, J. F. Kadow, P. M. Scola. Annual Reports in Medicinal Chemistry; J. E. Macor, Ed.; Academic Press: New York, 2009; Vol. 44, Ch. 20.
  • 63. 63 Victrelis™ (boceprevir, SCH503034): ADME/Tox and PK VictrelisTM (boceprevir, SCH503034)  Ki* = 14 nM; EC90 = 350 nM (replicon)  Potent, selective, mechanism-based inhibitor of NS3/4A enzyme  Binding studies conducted with a G1a HCV protease indicate that dissociation of the E-I complex occurs slowly, with a t1/2~ 1 hr  Low to moderate OBA in mouse (34%), rat (26%), dog (30%) and cyno (4-11%),with liver exposure in the rat liver/plasma ratio >30 (AUC ratios)  Human plasma protein binding is ~ 75%.  In humans dosed @ 800 mg t.i.d., AUC(т) = 5.41 g.hr/mL (n=71), Cmax of 1.72 g/mL (n=71), Cmin of 0.088 g/mL (n=71), median Tmax = 2 hours, Vd/Fss ~ 772 L  Absolute bioavailability (F) in humans was not determined (as of ca. 2011).  IC50’s CYP2D6, 2C9, 2C19 >30/>30 M (co/pre) CYP3A4 > 30/8.5 M (co/pre). N. A. Meanwell, J. F. Kadow, P. M. Scola. Annual Reports in Medicinal Chemistry; J. E. Macor, Ed.; Academic Press:New York, 2009; Vol. 44, Ch. 20. F. G. Njoroge, K. X. Chen, N.-Y. Shih,J. J. Piwinski, Acc. Chem. Res. 2008, 41, 50. A. J. Prongay et al. J. Med. Chem. 2007, 50, 2310. MAT = mean absorption time
  • 64. 64 Victrelis™ Human PK Profiles (cont’d).  VICTRELIS capsules contain a 1:1 mixture of two diastereomers-  In plasma the ratio changes to 2:1, favoring the active (a-S)-diastereomer.  Accumulation is minimal (0.8- to 1.5-fold) and pharmacokinetic steady state is achieved after approximately 1 day of t.i.d. dosing.  Food enhanced the exposure of boceprevir by up to 65% at the 800 mg t.i.d. dose, relative to the fasting state.  Primarily undergoes metabolism via the aldoketoreductase (AKR)-mediated pathway to ketone-reduced metabolites that are inactive against HCV.  After a single 800-mg oral dose of 14C-boceprevir, the most abundant circulating metabolites were a diasteriomeric mixture of ketone-reduced metabolites with a mean exposure approximately 4-fold greater than that of boceprevir.
  • 65. 65 Clinical Efficacy in Phase IIb Trials Sustained virologic response rates in phase IIb trials of telaprevir and boceprevir. B indicates boceprevir; P, peginterferon alfa; r, low-dose (400-1000 mg) ribavirin; R, expanded dose (800- 1400 mg) ribavirin; T, telaprevir. Numerals in regimens indicate weeks of treatment. Numerals atop bars indicate relapse rate. Based on data from Hézode et al, N Engl J Med, 2009; Kwo et al, EASL, 2009; McHutchison et al, N Engl J Med, 2009.
  • 66. 66 Summary & Conclusions  Starting with HCV substrates, a series of focused combinatorial a-ketoamide libraries were prepared that elucidated SAR at each of the P6-P5’ positions:  Developed novel SPPS methods (HCAM) for early P1-aldehyde libraries and Passerini MCR methodology for rapid assembly of key intermediates and a-ketoamide inhibitors.  Probed each of the P6-P5’ moieties with novel types of bioisosteres, unnatural amino acids, and peptidomimetics, i.e. identified more “drug-like” scaffolds:  Corvas discovered P3-t-BuGly and P2-3,4-(Isopropylidene)Pro moieties found in boceprevir.  Truncation efforts coupled with iterative SAR and SBDD optimization led to CVS4083 (11- mer, Ki* = 2.8 nM, HNE/HCV = 7), CVS4453 (7-mer, Ki* = 8.3 nM), CVS4704 (4-mer, Ki* = 2900 nM), SCH225724 (5-mer, Ki* = 66 nM), CVS4845 (5-mer, Ki* = 10 nM, HNE/HCV = 5), CVS4882 (5-mer, Ki* = 6 nM, HNE/HCV = 200) and CVS4901 (5-mer, Ki* = 2 nM, HNE/HCV = 160).  Optimized drug potency (Ki* ~1-10 nM), selectivity, and oral efficacy profiles in later generations of inhibitors.  Multiple HT ADME/Tox and PK studies expedited selection, elimination, and optimization of several lead classes.  Final med chem optimization of CVS4901 at SRPI led to the identification of boceprevir (Ki* = 14 nM, HNE/HCV = 2200, EC90 = 350 nM):  Found that potency, selectivity, OBA, PK, and efficacy are sensitive to nature of inhibitor structure.  Total efforts at SPRI led to screening of ~10K compounds, ~1K of which had EC90 < 1 M in cell assays. Three main classes were identified, which through attrition in ADME/Tox, PK and other screens afforded three preclinical candidates, one of which was boceprevir.
  • 67. 67 Acknowledgements Analytical Chemistry Kirk Kozminsky Michael Ma Thomas G. Nolan, Ph.D. Molecular Modeling, and NMR Support: Marguerita S. Lim-Wilby, Ph.D. Terence K. Brunck, Ph.D. X-Ray Crystallography (SPRI): Vincent Madison, Ph.D. Patricia Weber, Ph.D. Academic Consultants: Prof. Henry Rapoport (UC Berkeley) Prof. Andrew B. Holmes (Cambridge) Prof. Victor A. Snieckus (Queen’s) Prof. William Lubell (Montreal) Tea and Sympathy: Grace M. Semple Eric J. Semple Medicinal Chemistry: Susan Y. Tamura, Ph.D. Odile E. Levy, Ph.D. Scott Kemp, Ph.D. Max Lawrence, M.S. Timothy D. Owens Nathaniel K. Minami Daniel V. Siev Erick A. Goldman John Gaudette Christopher Roberts Kenneth Matthews George P. Vlasuk, Ph.D. Ruth F. Nutt, Ph.D. William C. Ripka, Ph.D. J. Edward Semple, Ph.D. SPRI (now Merck): F. George Njoroge, Ph.D. Bruce Malcolm, Ph.D. Brian McKittrick, Ph.D. Anil Saksena, Ph.D. Kevin X. Chen, Ph.D. Neng-Yang Shih, Ph.D. K.-C. Cheng, Ph.D. Walter A. Korfmacher, Ph.D. Ronald E. White, Ph.D. Srikanth Venkatraman, Ph.D. Frank Bennett, Ph.D. John Pichardo, Ph.D. Viyyoor Girijavallabhan, Ph.D. John J. Piwinski, Ph.D. Ashit Ganguly, Ph.D …and many others