SlideShare a Scribd company logo
1 of 16
Download to read offline
Design, Synthesis, and Structure-Function
Studies of Novel Triblock Copolymers
J. Edward Semple*, Bradford T. Sullivan, Brian K. Burke,
Tomas Vojkovsky and Kevin N. Sill
Intezyne Technologies, Tampa, FL
2017 ACS National Meeting - Denver
PMSE.519
N
H
H
N
N
H
Ac
O
O zw
H
N
O
O
OMe
x y
XL
Core 1
Core 2
Typical	
  drug	
  distribu0on	
  	
  
profile	
  
	
  
Ideal	
  distribu0on	
  profile	
  using	
  
a	
  targeted	
  delivery	
  system
	
  
Drug (shown in blue) is distributed to all
areas of the body
Drug is localized at diseased site
leading to increased efficacy and
reduced side effects
Targeted Drug Delivery
Wide-range of therapeutics can be targeted using the IVECTTM Method*
*IVECT™ = Intezyne’s Versatile Encapsulation and Crosslinking Technology.
Intezyne patents: Sill, K.; Skaff, H. et al. US8980326B2 (2015), US 8263663B2 (2012), US 7638558B2 (2009).
Reviews: Boehme, D. et al. J. Pept. Sci. 2015, 21, 186-200; Beech, J. et al. Curr. Pharm. Design 2013, 19, 6560-6574
2	
  
Polymer Micelles for Drug Delivery
Core/Shell Morphology 
- Drug protected in core
- Relatively large payload of therapeutics
- PEG shell imparts aqueous solubility 
and “stealth” properties

Improved Safety Profile
- Reduced side-effects

Improved Pharmacokinetics
- Ideal micelle size is above renal (< 40 nm) and
below hepatic (>150 nm) clearance thresholds
-  Individual polymer components are cleared 
through the kidneys

Tumor Targeting
- Passively targets solid tumors due to EPR Effect
- Can be modified to actively target receptors on 
diseased cells

Relevant Work: Kataoka, Stayton, Kwon, Wooley, McCormick, Bae, Leroux, Armes
Polymer Therapeutics: Duncan, R. Nat. Rev. Drug Discov. 2003, 2, 347-360.
(Traditional Diblock)
3	
  
Traditional vs. IVECT™ Micelles
4
Traditional Micelles
(e.g. Diblock polymers)
IVECT-Stabilized Micelles
At Injection
Bloodstream
Circulation
At Tumor Site
Micelles are injected
intravenously
Prior to
Injection
Traditional micelles degrade
immediately upon injection:	
  
Reduced efficacy & increased
side effects
IVECT Micelles are more
stable and remain intact:
Greatly improved pK, tumor
retention & safety
Triggered drug release	
  
Greater tumor accumulation &
improved efficacy
Triggered
Release
5	
  
IVECT™: Polymer Structural Features 
Generic Diblock or Triblock
Crosslinkers (XL) = -CO2H,
-(CH2)n-CONHOH, -S(H, X)
N
H
H
N
N
H
Ac
O
O zw
H
N
O
O
OMe
x y
XL
Core 1
Core 2
Polar, charged FG:
metal chelator or -SS-
crosslinker
Hydrophobic Moiety:
aromatic, lipophilic and/or
VDW interactions
Aromatic: stacking,
may provide HBD, HBA
Hydrophilic PEG moiety:
imparts high aqueous solubility
Intezyne patents: Sill, K.; Skaff, H. et al. US8980326B2 (2015), US 8263663B2 (2012), US 7638558B2 (2009), US 7638558B2 (2009).
Metal-Mediated Crosslinking
Hypothetical crosslinked array via Fe+3 octahedral complex
H
N
N
H
H
N
O
O
O
N
H
H
N
N
H
H
N
O
O
O
O
O O O
O O
O O
NH NH NH
HN
NH HN HN
O O O
O O O
Fe
Fe
H
N
N
H
H
N
O
O
O
N
H
H
N
N
H
H
N
O
O
O
O
O
O
O
OO
O
O
NH
HNNH
NHHN
NH
HN
O
OO
OO
OO
Fe
O
Fe
6	
  
• Previous series utilized carboxylate (poly-Asp[OH]) in the crosslinking block
• Hydroxamate-metal complexes more stable than carboxylate-metal complexes
•  Binding constants (Ka) for acetohydroxamate with Fe(III) = 2.6 x 1011 M-1 while acetate = 2.4 x 103 M-1
(aqueous, Whitesides et al., LANGMUIR, 1995, 11, 813-824).
Sill, K. N. et al. US20140113879A1 (2014), US20130280306A1 (2013).
Coordination chemistry and chemical biology of hydroxamic acids: Codd, R. Coord. Chem. Rev. 2008, 252, 1387-1408.
Synthesis of Protected Triblock-1
Synthesis on 2.1 Kg scale
in 96% yield 
NH2
O
O
Me
270
N
H
H
N
O
CO2Bn
270
H
N
O
CO2Bn
O
O
Me
5 5
O
HN
O
O
CO2Bn
O
HN
O
O
CO2Bn
O
HN
O
O
OAc
O
HN
O
O
CH2Cl2, DMAC: 2,1
25 oC, ~16-24 hr
H
Intermediate Diblock
25 oC, ~30-36 hr
2. Ac2O, NMM,
DMAP, RT, ~ 14hr
1.
N
H
H
N
N
H
H
N
Ac
O
O
O
15 25
CO2Bn
270
H
N
O
CO2Bn
O
O
Me
5 5
OAc
MePEG12K-NH2
dried via azeotropic vacuum dist'n
Protected Triblock
7	
  
GPC	
  (DMF)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
PDI	
  =1.10	
  
Synthesis of Hydroxamic Acid Triblock (HATB)-2
- Successful synthesis of ITP-102 on 1.7 Kg scale with overall 92.5% yield
- Both Tech Transfer and GMP runs proceeded without issues and
delivered nearly identical lots of pure HATB final product

N
H
H
N
N
H
H
N
Ac
O
O
O
15 25
CO2Bn
265
H
N
O
CO2Bn
O
OMe
5 5
OBn
N
H
H
N
N
H
H
N
Ac
O
O
O
15 25265
H
N
O
O
O
Me
5 5
OH
NHOH
O
O
NHOH
1. NH2OH (5x), LiOH.H2O (1x),
THF, H2O, RT, ~36 hr
2. Acetone (10x), HOAc (1x),
RT -> reflux -> RT, 14 hrs
3. Ppt'n steps
96.1%, 1.7 Kg scale
ITP-­‐102	
  
8	
  
Characterization of HATB (ITP-102)
ITP-102 (m-PEG11.7K-b-P-(d-Glu[NHOH]5-co-
Glu[NHOH]5)-b-P-(d-Phe15-co-Tyr[OH]25)-Ac)
HATB	
  (ITP-­‐102)	
  
PDI	
  =	
  1.1	
  
Mp	
  =	
  21.69K	
  	
  
(theo	
  MW	
  =	
  19.47K)	
  	
  
HMW	
  Aggregates	
  
GPC (ACN, H2O: 40, 60 w/0.1%TFA); RED = LS, BLUE = dRI
N
H
H
N
N
H
H
N
Ac
O
O
O
15 25265
H
N
O
O
O
Me
5 5
OH
NHOH
O
O
NHOH
9	
  
Glu 
sidechains
PEGs
Tyr + Phe
Backbone
Amide NH
Tyr-(OH) + 
-CONHOH
Tyr + Phe
sidechains
Backbone 
methine
MeO-
1H-NMR (DMSO-d6, 400 MHz)
H2O
DMSO
Impact of Mixed Core Stereochemistry	
  
10	
  
• CMC: shift towards higher concentrations for D,L mixed core polymers
• DLS: micelle size for D,L-core polymers is 2.2-2.6x smaller than all L-polymers
• Turbidity data shows dramatic differences in physical appearance of the polymer micelles (cf. photo)
• Results are consistent with literature precedent-
•  CD studies show disruption of α-helical structure when D-AAs are incorporated into polymers
•  As little as 3% D-AA can disrupt α-helix; by ~ 8% observe disordered (random coil) conformations
• Mixed stereochemistry in polymer backbone results in greatly enhanced drug loading efficiency
Physical Properties of Empty Micelles
11	
  
Representative Drugs Encapsulated
N
N
N
N
H
N
O
H
N
O
OH
HO O
H2N
NH2
Aminopterin
N
N
O
HO O
O
HO
SN-38 (IT-141)
O
O
O
OH
OH
OH
O
O
O
H
OH
H2NDaunorubicin
(IT-143)
O
O O
S
N
OH
Epothilone D (IT-147)
O
O
O
OH
NH HO
O
O
O
OH
O
O
O
O
O
Paclitaxel
HN
H
N
O
NH
OH
Panobinostat
O
O
O
O O
OO
N
OH
OO
O
O
HO
OH
Everolimus
N
O
N
N
H2N
N
H
N
N
S
AMG-900
N
O
N
H
O
N
H
O
N
H
Cl
CF3
Sorafenib
Homologous HA3-20 Crosslinkers
mPEG N
H
O
H
N
O
N
H
O
H
N
Ac
x
y z
OH
O NHOH
SN-38 Formulations & PK Studies
•  Polymer 1 demonstrated inferior formulation properties
•  subtle core variation can impact phys. props.
•  In polymers 2-7, increasing #HA repeats from 3 to 7
led to significant increase of AUC
•  Increase from 7 to 10 (or 20) HA units resulted in
marginal improvement of PK properties
•  Studies with several other oncology drugs led to
selection of Polymer 5 (x =10) for advanced preclinical
development (ITP-102).
12	
  
Polymer
#
1
2
3
4
5
6
7
#HA
repeats
(x)
10
3
5
7
10
15
20
Rat PK
(10mg/kg)
y z
Efficiency
(%)
Weight
Loading
(%)
Diameter
(nm)
Micelle
Turbidity
(RTU)
AUC
(µg*h/µL)
10 30 40 1.5 >300 120 ND
15 25 68 6.4 116 25 46.7
15 25 72 6.8 118 21 ND
15 25 70 6.2 119 18 72.5
15 25 75 6.3 114 17 75.7
15 25 68 6.0 117 16 ND
15 25 70 6.6 120 15 90.7
N
N
HO O
O
OOH
SN-38
(IT-141)
“HA”
HATB Polymers (1-7)
Mol. Wt. = 18.8K-21.2K
Impact of XL Groups: "
Carboxylate vs. Hydroxamate
O
O
O
OH
OH
OH
O
O
O
H
OH
H2N
Daunorubicin
(IT-143)
• Polymers differ only in XL moiety
• Similar micelle properties
• Both IT-143 formulations demonstrated
pH-dependent drug release from the
micelle in biologically relevant range
• HATB analog demonstrated superior PK in
rats-over 100% increase of exposure (AUC)
and terminal T1/2 vs. carboxylic acid.
0
20
40
60
80
100
3 4 5 6 7 7.4 8
%DaunorubicinRemaining
Buffer pH
IT-143 NHOH
IT-143 Asp
Figure. pH dependent release from crosslinked micelles (3500 MWCO dialysis)
Daunorubicin Formulation & PK Studies
Polymer
Cross-
Linker
Moiety
Fe(III) Ka
(M-1
)
mPEG12K-b-p-[Asp(OH)10]-b-p-
[D-Phe15-co-Tyr25]Ac
Carboxylic
Acid
2.4 x 103
mPEG12K-b-p-[D/L-Glu(NHOH)5/5]-
b-p-[D-Phe15-co-Tyr25]Ac
Hydroxamic
Acid
2.6 x 1011
Rat PK Model (10mg/kg)
Encapsulation
Dialysis
(% remaining)
XL Wt.
Loading
(%)
DLS:
Diameter
(nm)
AUC
(µg*h/mL)
Cmax
(µg/mL)
T1/2
(h)
93 4.3 60 152.0 178.0 3.3
86 3.9 70 329.7 130.0 7.2
13	
  
IT-143 Rat PK Study
Administration
 AUC (μg*hr/mL)
 Cmax (μg/mL)
IT-143
 116 -> 688
 153.8 -> 160
Conventional Micelle
 1.48
 2.61
Daunorubicin
 1.30
 3.29
Plasma PK Parameters
14	
  
(original formulation)
•  IT-143 exhibits 90X greater plasma
exposure than free Daunorubicin
•  Recent refinements delivered 160 gm
of drug micelle formulation that
exhibited 529X greater plasma
exposure than free Daunorubicin
IT-143: Mouse Biodistribution Study
Organ
 IT-143
 Daunorubicin
Fold Increase
Plasma
 44.82
 0.77
 57.9
Tumor 
 7.15
 0.09
 75.6
Liver
 116.44
 70.22
 1.7
Spleen
 385.82
 546.53
 0.7
Kidney
 145.62
 0.00*
 N/A
Small Intestine
 69.36
 77.71
 0.9
Skin
 39.19
 31.78
 1.2
Brain
 0.19
 0.20
 1.0
Heart
 47.06
 33.81
 1.4
Lung
 78.31
 98.33
 0.8
AUC Summary (µg*h/g)
•  10 mg/kg daunorubicin as
free drug and IT-143
administered by single tail
vein injection to A549
xenograft mouse model
IT-143 demonstrates 75 times greater
tumor accumulation of Daunorubicin
compared to free drug
* Metabolites were observed, but Daunorubicin was not
identified by HPLC 
15	
  
Acknowledgements
Bradford Sullivan
Tomas Vojkovsky
Kevin Rodriquez
Brian Burke
Adam Carie
Tyler Ellis
Habib Skaff
Kevin Sill
16	
  

More Related Content

What's hot

vardinafil methods of analysis
vardinafil methods of analysisvardinafil methods of analysis
vardinafil methods of analysisLubna Mohammad
 
New microsoft power point presentation
New microsoft power point presentationNew microsoft power point presentation
New microsoft power point presentationSuchandra03
 
CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)
CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)
CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)Brent Hilker
 
北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014Hajime Ito
 
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...EDITOR IJCRCPS
 
Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)
Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)
Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)IOSR Journals
 
Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...
Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...
Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...Arvind singh chandel
 
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activitySynthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activityAlexander Decker
 
Catalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid CatalystsCatalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid Catalystspbpbms6
 
Development of new robust rp hplc method for analysis of levo dopa in formula...
Development of new robust rp hplc method for analysis of levo dopa in formula...Development of new robust rp hplc method for analysis of levo dopa in formula...
Development of new robust rp hplc method for analysis of levo dopa in formula...IJSIT Editor
 
ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...
ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...
ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...Jing Zang
 
Synthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-Polymer
Synthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-PolymerSynthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-Polymer
Synthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-PolymerIJERA Editor
 
Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Ibrahim Abdel-Rahman
 
2015 MSSJ presentation_Wiggins
2015 MSSJ presentation_Wiggins2015 MSSJ presentation_Wiggins
2015 MSSJ presentation_WigginsBrian Wiggins
 
2014 BPI presentation_Wiggins
2014 BPI presentation_Wiggins2014 BPI presentation_Wiggins
2014 BPI presentation_WigginsBrian Wiggins
 
Structural proteomics of glutathionylation and glycation of erythrocyte prote...
Structural proteomics of glutathionylation and glycation of erythrocyte prote...Structural proteomics of glutathionylation and glycation of erythrocyte prote...
Structural proteomics of glutathionylation and glycation of erythrocyte prote...Monita Muralidharan
 

What's hot (20)

vardinafil methods of analysis
vardinafil methods of analysisvardinafil methods of analysis
vardinafil methods of analysis
 
New microsoft power point presentation
New microsoft power point presentationNew microsoft power point presentation
New microsoft power point presentation
 
2007 revised nmr data for incartine an alkaloid from galanthus
2007 revised nmr data for incartine an alkaloid from galanthus2007 revised nmr data for incartine an alkaloid from galanthus
2007 revised nmr data for incartine an alkaloid from galanthus
 
CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)
CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)
CRS_2016_44x44_FINAL_111JUL2016_BH (1) (1)
 
北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014
 
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
 
Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)
Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)
Structural and Spectroscopical Studies for a Complex Macromolecule (hGH)
 
2 publication ifeoma
2 publication ifeoma2 publication ifeoma
2 publication ifeoma
 
Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...
Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...
Design and synthesis of polysaccharides/(co)polymers based amphiphilic conetw...
 
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activitySynthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
 
Catalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid CatalystsCatalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid Catalysts
 
FtIR and NMRof hydroxyapatit
FtIR and NMRof hydroxyapatitFtIR and NMRof hydroxyapatit
FtIR and NMRof hydroxyapatit
 
Development of new robust rp hplc method for analysis of levo dopa in formula...
Development of new robust rp hplc method for analysis of levo dopa in formula...Development of new robust rp hplc method for analysis of levo dopa in formula...
Development of new robust rp hplc method for analysis of levo dopa in formula...
 
ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...
ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...
ANTIMICROBIAL AND ANTIFUNGAL OF SOME NEW SEMISYNTHETIC TERPENOID DERIVATIVES ...
 
Synthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-Polymer
Synthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-PolymerSynthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-Polymer
Synthesis and Characterization of Nano Hydroxyapatite with Agar-Agar Bio-Polymer
 
Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016
 
2015 MSSJ presentation_Wiggins
2015 MSSJ presentation_Wiggins2015 MSSJ presentation_Wiggins
2015 MSSJ presentation_Wiggins
 
2014 BPI presentation_Wiggins
2014 BPI presentation_Wiggins2014 BPI presentation_Wiggins
2014 BPI presentation_Wiggins
 
Structural proteomics of glutathionylation and glycation of erythrocyte prote...
Structural proteomics of glutathionylation and glycation of erythrocyte prote...Structural proteomics of glutathionylation and glycation of erythrocyte prote...
Structural proteomics of glutathionylation and glycation of erythrocyte prote...
 
07_05_2015
07_05_201507_05_2015
07_05_2015
 

Similar to Semple-PMSE.519-ACS Denver

Total Synthesis of Pepluanol B
Total Synthesis of Pepluanol BTotal Synthesis of Pepluanol B
Total Synthesis of Pepluanol BAbrahamDilnesa
 
SOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESISSOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESISShikha Popali
 
Medchem Literature Update June 2022.pdf
Medchem Literature Update June 2022.pdfMedchem Literature Update June 2022.pdf
Medchem Literature Update June 2022.pdfRubiksChemistry
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATIONPaulami Bose
 
Pjb Probes 2009
Pjb Probes 2009Pjb Probes 2009
Pjb Probes 2009toluene
 
SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...
SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...
SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...Tomsk Polytechnic University
 
07 en-ton nu lien huong(46-49)
07 en-ton nu lien huong(46-49)07 en-ton nu lien huong(46-49)
07 en-ton nu lien huong(46-49)Thái Bình
 
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-6502014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650Konstantin German
 
EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...
EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...
EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...ChemAxon
 
prakash_JMS_2015
prakash_JMS_2015prakash_JMS_2015
prakash_JMS_2015omshamli
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopyBMRS Meeting
 
Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...
Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...
Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...Peter ten Holte
 
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Tomsk Polytechnic University
 
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Tomsk Polytechnic University
 
Perspective on QSAR modeling of transport
Perspective on QSAR modeling of transportPerspective on QSAR modeling of transport
Perspective on QSAR modeling of transportSean Ekins
 

Similar to Semple-PMSE.519-ACS Denver (20)

Total Synthesis of Pepluanol B
Total Synthesis of Pepluanol BTotal Synthesis of Pepluanol B
Total Synthesis of Pepluanol B
 
SOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESISSOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESIS
 
ruthin 230512
ruthin 230512ruthin 230512
ruthin 230512
 
BMCL Angibaud_ten Holte
BMCL Angibaud_ten HolteBMCL Angibaud_ten Holte
BMCL Angibaud_ten Holte
 
Medchem Literature Update June 2022.pdf
Medchem Literature Update June 2022.pdfMedchem Literature Update June 2022.pdf
Medchem Literature Update June 2022.pdf
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATION
 
Wardle let dds_2009
Wardle let dds_2009Wardle let dds_2009
Wardle let dds_2009
 
Pjb Probes 2009
Pjb Probes 2009Pjb Probes 2009
Pjb Probes 2009
 
SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...
SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...
SELF-ASSEMBLY AMPHIPHILIC CHITOSAN NANOCARRIERS FOR ORAL CO-DELIVERY OF HYDRO...
 
07 en-ton nu lien huong(46-49)
07 en-ton nu lien huong(46-49)07 en-ton nu lien huong(46-49)
07 en-ton nu lien huong(46-49)
 
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-6502014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
 
WBC 2016 Poster
WBC 2016 PosterWBC 2016 Poster
WBC 2016 Poster
 
WBC 2016 Poster
WBC 2016 PosterWBC 2016 Poster
WBC 2016 Poster
 
EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...
EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...
EUGM15 - Michael J. Bodkin (Evotec): Algorithms, Evolution and Network-Based ...
 
prakash_JMS_2015
prakash_JMS_2015prakash_JMS_2015
prakash_JMS_2015
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
 
Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...
Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...
Discovery-of-pyrimidyl-5-hydroxamic-acids-as-new-potent-histone-deacetylase-i...
 
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
 
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
 
Perspective on QSAR modeling of transport
Perspective on QSAR modeling of transportPerspective on QSAR modeling of transport
Perspective on QSAR modeling of transport
 

More from J. Edward Semple

Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistrySemple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistryJ. Edward Semple
 
HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116J. Edward Semple
 
JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616J. Edward Semple
 
JOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJ. Edward Semple
 
TFA Passerini JES Org Lett
TFA Passerini JES Org LettTFA Passerini JES Org Lett
TFA Passerini JES Org LettJ. Edward Semple
 
JMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJ. Edward Semple
 
BMCL P1Bicyclic Arg Surrogates
BMCL  P1Bicyclic Arg SurrogatesBMCL  P1Bicyclic Arg Surrogates
BMCL P1Bicyclic Arg SurrogatesJ. Edward Semple
 
Semple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemSemple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemJ. Edward Semple
 
Semple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemSemple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemJ. Edward Semple
 

More from J. Edward Semple (14)

Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistrySemple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
 
HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116
 
JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616
 
JOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)Pipercide
 
JOC '96 OH-Ester HPI
JOC '96 OH-Ester HPIJOC '96 OH-Ester HPI
JOC '96 OH-Ester HPI
 
TFA Passerini JES Org Lett
TFA Passerini JES Org LettTFA Passerini JES Org Lett
TFA Passerini JES Org Lett
 
Tet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TSTet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TS
 
MCR
MCRMCR
MCR
 
JMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulf
 
HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19
 
Ct Modell JES Org Lett
Ct Modell JES Org LettCt Modell JES Org Lett
Ct Modell JES Org Lett
 
BMCL P1Bicyclic Arg Surrogates
BMCL  P1Bicyclic Arg SurrogatesBMCL  P1Bicyclic Arg Surrogates
BMCL P1Bicyclic Arg Surrogates
 
Semple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemSemple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med Chem
 
Semple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemSemple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med Chem
 

Semple-PMSE.519-ACS Denver

  • 1. Design, Synthesis, and Structure-Function Studies of Novel Triblock Copolymers J. Edward Semple*, Bradford T. Sullivan, Brian K. Burke, Tomas Vojkovsky and Kevin N. Sill Intezyne Technologies, Tampa, FL 2017 ACS National Meeting - Denver PMSE.519 N H H N N H Ac O O zw H N O O OMe x y XL Core 1 Core 2
  • 2. Typical  drug  distribu0on     profile     Ideal  distribu0on  profile  using   a  targeted  delivery  system   Drug (shown in blue) is distributed to all areas of the body Drug is localized at diseased site leading to increased efficacy and reduced side effects Targeted Drug Delivery Wide-range of therapeutics can be targeted using the IVECTTM Method* *IVECT™ = Intezyne’s Versatile Encapsulation and Crosslinking Technology. Intezyne patents: Sill, K.; Skaff, H. et al. US8980326B2 (2015), US 8263663B2 (2012), US 7638558B2 (2009). Reviews: Boehme, D. et al. J. Pept. Sci. 2015, 21, 186-200; Beech, J. et al. Curr. Pharm. Design 2013, 19, 6560-6574 2  
  • 3. Polymer Micelles for Drug Delivery Core/Shell Morphology - Drug protected in core - Relatively large payload of therapeutics - PEG shell imparts aqueous solubility and “stealth” properties Improved Safety Profile - Reduced side-effects Improved Pharmacokinetics - Ideal micelle size is above renal (< 40 nm) and below hepatic (>150 nm) clearance thresholds -  Individual polymer components are cleared through the kidneys Tumor Targeting - Passively targets solid tumors due to EPR Effect - Can be modified to actively target receptors on diseased cells Relevant Work: Kataoka, Stayton, Kwon, Wooley, McCormick, Bae, Leroux, Armes Polymer Therapeutics: Duncan, R. Nat. Rev. Drug Discov. 2003, 2, 347-360. (Traditional Diblock) 3  
  • 4. Traditional vs. IVECT™ Micelles 4 Traditional Micelles (e.g. Diblock polymers) IVECT-Stabilized Micelles At Injection Bloodstream Circulation At Tumor Site Micelles are injected intravenously Prior to Injection Traditional micelles degrade immediately upon injection:   Reduced efficacy & increased side effects IVECT Micelles are more stable and remain intact: Greatly improved pK, tumor retention & safety Triggered drug release   Greater tumor accumulation & improved efficacy Triggered Release
  • 5. 5   IVECT™: Polymer Structural Features Generic Diblock or Triblock Crosslinkers (XL) = -CO2H, -(CH2)n-CONHOH, -S(H, X) N H H N N H Ac O O zw H N O O OMe x y XL Core 1 Core 2 Polar, charged FG: metal chelator or -SS- crosslinker Hydrophobic Moiety: aromatic, lipophilic and/or VDW interactions Aromatic: stacking, may provide HBD, HBA Hydrophilic PEG moiety: imparts high aqueous solubility Intezyne patents: Sill, K.; Skaff, H. et al. US8980326B2 (2015), US 8263663B2 (2012), US 7638558B2 (2009), US 7638558B2 (2009).
  • 6. Metal-Mediated Crosslinking Hypothetical crosslinked array via Fe+3 octahedral complex H N N H H N O O O N H H N N H H N O O O O O O O O O O O NH NH NH HN NH HN HN O O O O O O Fe Fe H N N H H N O O O N H H N N H H N O O O O O O O OO O O NH HNNH NHHN NH HN O OO OO OO Fe O Fe 6   • Previous series utilized carboxylate (poly-Asp[OH]) in the crosslinking block • Hydroxamate-metal complexes more stable than carboxylate-metal complexes •  Binding constants (Ka) for acetohydroxamate with Fe(III) = 2.6 x 1011 M-1 while acetate = 2.4 x 103 M-1 (aqueous, Whitesides et al., LANGMUIR, 1995, 11, 813-824). Sill, K. N. et al. US20140113879A1 (2014), US20130280306A1 (2013). Coordination chemistry and chemical biology of hydroxamic acids: Codd, R. Coord. Chem. Rev. 2008, 252, 1387-1408.
  • 7. Synthesis of Protected Triblock-1 Synthesis on 2.1 Kg scale in 96% yield NH2 O O Me 270 N H H N O CO2Bn 270 H N O CO2Bn O O Me 5 5 O HN O O CO2Bn O HN O O CO2Bn O HN O O OAc O HN O O CH2Cl2, DMAC: 2,1 25 oC, ~16-24 hr H Intermediate Diblock 25 oC, ~30-36 hr 2. Ac2O, NMM, DMAP, RT, ~ 14hr 1. N H H N N H H N Ac O O O 15 25 CO2Bn 270 H N O CO2Bn O O Me 5 5 OAc MePEG12K-NH2 dried via azeotropic vacuum dist'n Protected Triblock 7   GPC  (DMF)                                       PDI  =1.10  
  • 8. Synthesis of Hydroxamic Acid Triblock (HATB)-2 - Successful synthesis of ITP-102 on 1.7 Kg scale with overall 92.5% yield - Both Tech Transfer and GMP runs proceeded without issues and delivered nearly identical lots of pure HATB final product N H H N N H H N Ac O O O 15 25 CO2Bn 265 H N O CO2Bn O OMe 5 5 OBn N H H N N H H N Ac O O O 15 25265 H N O O O Me 5 5 OH NHOH O O NHOH 1. NH2OH (5x), LiOH.H2O (1x), THF, H2O, RT, ~36 hr 2. Acetone (10x), HOAc (1x), RT -> reflux -> RT, 14 hrs 3. Ppt'n steps 96.1%, 1.7 Kg scale ITP-­‐102   8  
  • 9. Characterization of HATB (ITP-102) ITP-102 (m-PEG11.7K-b-P-(d-Glu[NHOH]5-co- Glu[NHOH]5)-b-P-(d-Phe15-co-Tyr[OH]25)-Ac) HATB  (ITP-­‐102)   PDI  =  1.1   Mp  =  21.69K     (theo  MW  =  19.47K)     HMW  Aggregates   GPC (ACN, H2O: 40, 60 w/0.1%TFA); RED = LS, BLUE = dRI N H H N N H H N Ac O O O 15 25265 H N O O O Me 5 5 OH NHOH O O NHOH 9   Glu sidechains PEGs Tyr + Phe Backbone Amide NH Tyr-(OH) + -CONHOH Tyr + Phe sidechains Backbone methine MeO- 1H-NMR (DMSO-d6, 400 MHz) H2O DMSO
  • 10. Impact of Mixed Core Stereochemistry   10   • CMC: shift towards higher concentrations for D,L mixed core polymers • DLS: micelle size for D,L-core polymers is 2.2-2.6x smaller than all L-polymers • Turbidity data shows dramatic differences in physical appearance of the polymer micelles (cf. photo) • Results are consistent with literature precedent- •  CD studies show disruption of α-helical structure when D-AAs are incorporated into polymers •  As little as 3% D-AA can disrupt α-helix; by ~ 8% observe disordered (random coil) conformations • Mixed stereochemistry in polymer backbone results in greatly enhanced drug loading efficiency Physical Properties of Empty Micelles
  • 11. 11   Representative Drugs Encapsulated N N N N H N O H N O OH HO O H2N NH2 Aminopterin N N O HO O O HO SN-38 (IT-141) O O O OH OH OH O O O H OH H2NDaunorubicin (IT-143) O O O S N OH Epothilone D (IT-147) O O O OH NH HO O O O OH O O O O O Paclitaxel HN H N O NH OH Panobinostat O O O O O OO N OH OO O O HO OH Everolimus N O N N H2N N H N N S AMG-900 N O N H O N H O N H Cl CF3 Sorafenib
  • 12. Homologous HA3-20 Crosslinkers mPEG N H O H N O N H O H N Ac x y z OH O NHOH SN-38 Formulations & PK Studies •  Polymer 1 demonstrated inferior formulation properties •  subtle core variation can impact phys. props. •  In polymers 2-7, increasing #HA repeats from 3 to 7 led to significant increase of AUC •  Increase from 7 to 10 (or 20) HA units resulted in marginal improvement of PK properties •  Studies with several other oncology drugs led to selection of Polymer 5 (x =10) for advanced preclinical development (ITP-102). 12   Polymer # 1 2 3 4 5 6 7 #HA repeats (x) 10 3 5 7 10 15 20 Rat PK (10mg/kg) y z Efficiency (%) Weight Loading (%) Diameter (nm) Micelle Turbidity (RTU) AUC (µg*h/µL) 10 30 40 1.5 >300 120 ND 15 25 68 6.4 116 25 46.7 15 25 72 6.8 118 21 ND 15 25 70 6.2 119 18 72.5 15 25 75 6.3 114 17 75.7 15 25 68 6.0 117 16 ND 15 25 70 6.6 120 15 90.7 N N HO O O OOH SN-38 (IT-141) “HA” HATB Polymers (1-7) Mol. Wt. = 18.8K-21.2K
  • 13. Impact of XL Groups: " Carboxylate vs. Hydroxamate O O O OH OH OH O O O H OH H2N Daunorubicin (IT-143) • Polymers differ only in XL moiety • Similar micelle properties • Both IT-143 formulations demonstrated pH-dependent drug release from the micelle in biologically relevant range • HATB analog demonstrated superior PK in rats-over 100% increase of exposure (AUC) and terminal T1/2 vs. carboxylic acid. 0 20 40 60 80 100 3 4 5 6 7 7.4 8 %DaunorubicinRemaining Buffer pH IT-143 NHOH IT-143 Asp Figure. pH dependent release from crosslinked micelles (3500 MWCO dialysis) Daunorubicin Formulation & PK Studies Polymer Cross- Linker Moiety Fe(III) Ka (M-1 ) mPEG12K-b-p-[Asp(OH)10]-b-p- [D-Phe15-co-Tyr25]Ac Carboxylic Acid 2.4 x 103 mPEG12K-b-p-[D/L-Glu(NHOH)5/5]- b-p-[D-Phe15-co-Tyr25]Ac Hydroxamic Acid 2.6 x 1011 Rat PK Model (10mg/kg) Encapsulation Dialysis (% remaining) XL Wt. Loading (%) DLS: Diameter (nm) AUC (µg*h/mL) Cmax (µg/mL) T1/2 (h) 93 4.3 60 152.0 178.0 3.3 86 3.9 70 329.7 130.0 7.2 13  
  • 14. IT-143 Rat PK Study Administration AUC (μg*hr/mL) Cmax (μg/mL) IT-143 116 -> 688 153.8 -> 160 Conventional Micelle 1.48 2.61 Daunorubicin 1.30 3.29 Plasma PK Parameters 14   (original formulation) •  IT-143 exhibits 90X greater plasma exposure than free Daunorubicin •  Recent refinements delivered 160 gm of drug micelle formulation that exhibited 529X greater plasma exposure than free Daunorubicin
  • 15. IT-143: Mouse Biodistribution Study Organ IT-143 Daunorubicin Fold Increase Plasma 44.82 0.77 57.9 Tumor 7.15 0.09 75.6 Liver 116.44 70.22 1.7 Spleen 385.82 546.53 0.7 Kidney 145.62 0.00* N/A Small Intestine 69.36 77.71 0.9 Skin 39.19 31.78 1.2 Brain 0.19 0.20 1.0 Heart 47.06 33.81 1.4 Lung 78.31 98.33 0.8 AUC Summary (µg*h/g) •  10 mg/kg daunorubicin as free drug and IT-143 administered by single tail vein injection to A549 xenograft mouse model IT-143 demonstrates 75 times greater tumor accumulation of Daunorubicin compared to free drug * Metabolites were observed, but Daunorubicin was not identified by HPLC 15  
  • 16. Acknowledgements Bradford Sullivan Tomas Vojkovsky Kevin Rodriquez Brian Burke Adam Carie Tyler Ellis Habib Skaff Kevin Sill 16