SlideShare a Scribd company logo
1 of 58
OPTIMIZATION OF PROCESS PARAMETERS
FOR PHARMACEUTICAL GRADE
MICROCRYSTALLINE CELLULOSE (MCC)
PRODUCTION FROM
GROUNDNUT HUSK (GH)
MSc. RESEARCH FINAL DEFENCE
BY
HASSANA GWANDI AUDU
P14EGCE8044
DEPARTMENT OF CHEMICAL ENGINEERING
AHMADU BELLO UNIVERSITY, ZARIA
APRIL, 2020
1
OUTLINE
INTRODUCTION
LITERATURE SURVEY
PROBLEM STATEMENTS
AIM AND OBJECTIVES
JUSTIFICATION
SCOPE
MATERIALS AND METHODOLOGY
DISCUSSION OF RESULTS
REFERENCES
2
INTRODUCTION
Microcrystalline Cellulose is purified, partially depolymerized cellulose
prepared by treating alpha cellulose, obtained as a pulp from fibrous plant
material with mineral acids.
Types of cellulose
There are three types of cellulose:
1. Alpha cellulose
2. Beta cellulose
3. Gamma cellulose
3
4
INTRODUCTION CONT’D
Microcrystalline cellulose obtained from both soft and hard wood differ in
chemical composition:
 Cellulose,
 Hemicellulose
 Lignin
 Structural organization
Table 1: Groundnut husk chemical composition
(Lakshunmu, 2013)
4
CELLULOSE,
wt %
HEMICELLULOSE,
wt %
LIGNIN ,
wt %
ASH,
wt %
37.5-40.5 14.7-18.7 26.4-30.2 0.4-5.9
INTRODUCTION CONT’D
SOURCES
Sources of cellulose and its derivatives obtained from Agricultural waste are:
 Cotton linters
 Rice husk
 Corn cob
 Groundnut husk
 Sugar cane bagasse
 Calabash
 Bark of palm nut trees and so on (Chukwuemeka, 2012).
5
INTRODUCTION CONT’D
APPLICATION
Cosmetic, pharmaceutical, food and other industry uses microcrystalline
celluloses as:
 Fat substitute
 Stabilizer
 Thickener
 Filler-binder
 Anticaking agent
 Adsorbent (Matrosovich et al, 2006)
 Plaque tests for counting viruses
 Alternative to carboxymethyl cellulose (Hindi, 2016).
6
7
INTRODUCTION CONT’D
Process Description
 Alkali Treatment (Sodium hydroxide) : To remove fats and oils, and lignin.
 Acid Hydrolysis (Nitric acid with ethanol) : to remove traces of lignin in the
form of soluble nitrolignins and complete removal of hemicellulose.
 Bleaching with sodium hypochlorite : To obtain white colour.
8
INTRODUCTION CONT’D
Grades of Microcrystalline Cellulose
MCC are of different particle size, moisture contents, flow, and physical properties
because of the pulp used as raw material and different process conditions.
Different trade names for final product such as: Avicel®: PH 101, PH 102, PH
103, PH 105, PH 113
Vivapur®: 101, 102, 12
Emcocel® 50M, 90M, LP200
Comprecel®: CP- 101, CP 102
Microcel®: MC-102, MC-200,MC- 205 (Glicher, 2005)
9
INTRODUCTION CONT’D
Percentage Yield of MCC:
Percent yield (%) of MCC=
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑓𝑟𝑒𝑒 𝑙𝑖𝑔𝑛𝑖𝑛 (𝑝𝑢𝑟𝑒 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒)
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑟𝑎𝑤 𝑠𝑎𝑚𝑝𝑙𝑒
* 100%
.....(1)
Crystallinity of MCC :
CrI=
𝐼002
−𝐼𝑎𝑚
𝐼002
* 100% .............(2)
Where CrI= crystalline index
I002= maximum intensity of the (002) maximum intensity of the principal peak (at
22.4° of 2θ)
Iam = intensity diffraction attributed to amorphous cellulose (at 15.4° of 2θ)
10
AUTHOR TITLE CONCLUSION REMARKS
Frank et al.
(2009)
Processing
pharmaceutical grade
microcrystalline cellulose
from groundnut husk:
Extraction methods and
characterization
The results showed complete pulping was
achieved by multistage pulping method
given 15% yield. This concludes that
GH-MCC compared favourably with
commercial-grade MCC and conforms to
specifications for MCC in the British
pharmacopoeia.
Effect of process
parameters were not
studied
John et al.
(2011)
Evaluation of several
microcrystalline
celluloses obtained from
agricultural by-products
MCC obtained from rice husk, sugar cane
bagasse, corn cob, and cotton are use as
direct compression agent. The results
offer an inexpensive and a simple method
to produce MCC for use in the
manufacture of solid dosage forms.
Effect of process
parameters were not
studied and groundnut
husk was not
considered.
LITERATURE SURVEY CONT’D
Table 2: Previous Related Research
11
AUTHOR TITLE CONCLUSION REMARKS
Chukwuemeka
et al.
(2012)
Investigation of physico
technical, spectroscopic and
thermo gravimetric
properties of powdered
cellulose and
microcrystalline cellulose
derived from groundnut
shells
XRD and FTIR spectra analysis showed α-
cellulose had lower crystallinity due to
treatment with 2N hydrochloric acid which
increase the crystallinity index. The physical
properties of microcrystalline celluloses have
better flow properties than the α-cellulose
Effect of
process
parameters
were not
studied
Sirikalaya et al.
(2013)
Optimization of Micro
Crystalline Cellulose
Production
from Corn Cob for
Pharmaceutical Industry
Investment
The degree of crystallinity of alkaline degradation,
bleaching and hydrolysis at 10% of NaOH 95 °C for
2h, NaClO2 1.5 g 10% of C2H4O2 0.5 mL 70 °C for
2h, 2N of HCl, 105 °C for 60 min showed maximum
crystallinity of 77.07%, 75.98% and 86.84%,
respectively. The crystallinity and morphology of
the MCC corresponded to Avicel PH 101. The
investment of the plant will break even over 6 years.
• RSM can be
used for
optimsation
of process
parameters.
• It’s a viable
business.
LITERATURE SURVEY CONT’D
12
AUTHOR TITLE CONCLUSION REMARKS
Rani et al.
(2016)
Isolation of
microcrystalline
cellulose and nano
cellulose from peanut
shells
The FTIR spectra indicated extensive removal of
hemicellulose and lignin. XRD pattern showed
that the isolated MCC is crystalline in nature
Effect of process
parameters were
not studied
LITERATURE SURVEY CONT’D
13
PROBLEM STATEMENT
Optimisation of Microcrystalline Cellulose Production from Corn Cob has been
reported but optimisation MCC from groundnut husk was not reported.
JUSTIFICATION
This research work will establish the following:
1. Production of microcrystalline cellulose with optimum quality for
pharmaceutical applications.
2. Availability of raw material in Northern Nigeria which can substitute wood
pulp and also serve as second income for farmers.
3. Nigeria produce about 3.8 million metric tonnes per annum of Groundnut husk
as an agricultural waste, however, if not used it will becomes abandon
resource.
4. Further production of MCC will reduce dependence on importation.
14
AIM AND OBJECTIVE
Research Aim (s):
This research aims to study the effect of process parameters on
Microcrystalline Cellulose production from Groundnut Husk.
Objective:
The objectives of this research is :
1. To Collect, identify and characterize type of groundnut husk.
2. To select the effect of particle size for the production of
microcrystalline cellulose.
3. To use design expert to study the effect of process parameters: such
as concentration, temperature, time on the production of
microcrystalline cellulose.
4. To characterize the microcrystalline cellulose produced. 15
16
SCOPE OF THE WORK
The scope of this work will cover:
1. To study the effect of particle size of the groundnut husk microcrystalline
cellulose.
2. To study the effects of concentration sodium hydroxide (0.25-0.9 g),
temperature (80-980C) and time (1-2 hr) on the alkali treatment process using
RSM.
3. To study the effect of Nitric acid to ethanol ratio (4-18.7), temperature (81.5-
98.40C) and time (0.5-2.5 hr) on multistage pulping using RSM.
4. To characterize microcrystalline cellulose using pH meter, pycnometer,
scanning electron microscopy (SEM), Fourier-transform infra-red spectra
(FTIR) and X-ray diffractometer (XRD)
17
MATERIALS AND METHODOLOGY
List of Material
The material required includes:
 Groundnut Husk- Arachis hypogaea
 Ethanol-70% JHD, China
 Nitric Acid-69% MERCK, Germany
 Sodium Hydroxide- 98% AR, India
 Sodium Hypochloride- 3.5%, Nigeria
 Distilled Water
18
MATERIALAND METHODOLOGY CONT’D
Table 3: List of Equipment
S/NO EQUIPMENT MODEL TYPE LOCATION OF LABORATORY
1. X-ray Diffractometer Rigaku Miniflex, China Beijing Research Institute of Chemical Industry, China
2. Scanning Electron Microscopy S4800 Hitachi, China Beijing Research Institute of Chemical Industry, China
3. Fourier-Transform Infra-red
Radiometer
Shimadzu FTIR-8400S Japan National Research Institute for Chemical Technology, Zaria
4. pH meter Corning, model 10 England A.B.U Chemical Engineering Department, Zaria
6. Pyconometer England A.B.U Chemical Engineering Department, Zaria
7. Dryer DH-9140 Dongguan HongTuo
Instrument
A.B.U Chemical Engineering Department, Zaria
8. Sieves Shaker Endecotts Ltd London
England
A.B.U Civil Engineering Department, Zaria
9. Pulverizer Jas Model TW-MP-4 A.B.U Chemical Engineering Department, Zaria
10. Erlenmeyer flask
Beakers and Cylinders
England A.B.U Chemical Engineering Department, Zaria
11. Thermostatic water Bath HH. S6 USA A.B.U Chemical Engineering Department, Zaria
12. Computer System Predictive Analytical Software
version 22 (PASW, USA)
A.B.U. Department of Mathematics, Zaria
METHODOLOGY
Process Flow Chart: Microcrystalline cellulose process from groundnut husk
Sample collection
and identification (Groundnut Husk)
Figure 1: Process flow chart for Microcrystalline production 19
Washing and filtration
Drying at Room
Temperature Alkali Method
(RSM) Parameters:
1. Time
2. Temperature
3. Concentration
Washing
Characterization using
proximate analysis
Multistage pulping (Hydrolysis)
(RSM) Parameters: conc, time, tempt
Step 1:HNO3 + C2H5OH
Bleaching NaClO (conc, time,tempt)
Characterization of Microcrystalline cellulose : FTIR, XRD,
SEM, physicochemical properties
Washing and Filtration
Washing and Filtration
Selection of
particle sizes
Drying at 60°C for 4hr
Drying at 60°C for 4hr
RESULTS AND DISCUSSION
20
Table 4: Identification of Groundnut Husk
Table 5: Proximate Properties of untreated Groundnut husk
Kingdom: Plantae
Family: Fabaceae
Subfamily: Papilionaceae
Genus: Arachis
Species: Arachis hypogaea
Binomial name Arachis hypogaea
CELLULOSE
wt %
HEMICELLULOSE
wt %
LIGNIN
wt %
ASH
wt %
48.4 17.9 25.7 6.1
21
RESULTS AND DISCUSSION
Sample ID Particle sizes (mm)
F1 3.35
F2 2.80
F3 2.36
F4 2.00
F5 1.70
F6 1.40
F7 1.19
F8 1.18
F9 1.00
F10 0.560
F11 0.500
F12 0.425
F13 0.212
Table 6: Selected Particle sizes of untreated Groundnut
husk
22
RESULTS AND DISCUSSION
Sample
ID
Powder property of Avicel PH101, untreated GH and treated GH
Particle
Size
(µm)
Bulk
density
(g/cm3)
Tap
density
(g/cm3)
True
density
(g/cm3)
Carr’s
Index
Hausne
r ratio
Angle
of
repose
Percentage
yield
microcryst
alline
cellulose
%
Porosity
(%)
pH Crystallinity
index
(%)
F11 500 0.163 0.185 0.811 11.89 1.14 39.11 56 78.97 5.8 91
F9 1000 0.163 0.185 0.877 11.89 1.14 32.72 52 78.90 5.8 89
F12 425 0.163 0.185 0.877 11.89 1.14 33.68 48 78.91 5.8 92
F6 1400 0.163 0.185 0.874 11.89 1.14 32.57 44 78.84 5.8 88
Table 7: The Summary of the favourable results of the GH-MCC
23
RESULTS AND DISCUSSION
Table 8: The Actual Design of the Experiment and Results of Percentage Yield and Percentage Purity of the Alpha
Cellulose
ACTUAL DESIGN
Std Factor 1
A:Time
(hr)
Factor 2
B:Temperature
(0C)
Factor 3
C:
Concentration (g/750ml)
Response 1 Percentage Yield of
Alpha Cellulose (%)
Response 2 Percentage Purity of
Alpha Cellulose (%)
1 1.00 80.00 0.25 78 45.68
2 2.00 80.00 0.25 70 43.57
3 1.00 98.00 0.25 73 47.8
4 2.00 98.00 0.25 74 44.65
5 1.00 80.00 0.90 80 43.3
6 2.00 80.00 0.90 75 44.98
7 1.00 98.00 0.90 70 35.85
8 2.00 98.00 0.90 75 53.2
9 0.66 89.00 0.57 73 45.45
10 2.34 89.00 0.57 68 47.86
11 1.50 73.86 0.57 75 39.3
12 1.50 104.14 0.57 76 38.08
13 1.50 89.00 0.03 74 49.32
14 1.50 89.00 1.12 76 43.35
15 1.50 89.00 0.57 73 43.03
16 1.50 89.00 0.57 70 45.66
17 1.50 89.00 0.57 72 46.6
18 1.50 89.00 0.57 72.19 37.65
19 1.50 89.00 0.57 74 50.93
20 1.50 89.00 0.57 73 41.07
DISCUSSION OF RESULTS CONT’D
Constraints
Lower Upper Lower Upper
Name Goal Limit Limit Weight Weight Importance
A:Time is in range 1 2 1 1 3
B:Tempt is in range 80 98 1 1 3
C:Conc is in range 0.25 0.9 1 1 3
percentage
yield
maximize 68 80 1 1 3
percentage
purity
maximize 35.85 53.2 1 1 3
Table 9: Summary of Factors input and the Responses of Upper and Lower Limits for Alpha Cellulose
24
25
DISCUSSION OF RESULTS CONT’D
ANOVA for Response Surface Quadratic model
Analysis of variance table [Partial sum of squares - Type III]
Source
Sum of
Squares
df
Mean
Square
F
Value
p-value
Prob > F
Model 133.26 9 14.81 7.01 0.0027 Significant
A-Time 17.39 1 17.39 8.23 0.0167
B-Tempt 6.36 1 6.36 3.01 0.1135
C-Conc 5.12 1 5.12 2.42 0.1506
AB 45.13 1 45.13 21.35 0.0009
AC 6.13 1 6.13 2.90 0.1195
BC 10.12 1 10.12 4.79 0.0535
A2 4.00 1 4.00 1.89 0.1992
B2 22.20 1 22.20 10.50 0.0089
C2 16.33 1 16.33 7.73 0.0195
Residual 21.14 10 2.11
Lack of Fit 11.90 5 2.38 1.29 0.3939not significant
Pure Error 9.24 5 1.85
Cor Total 154.40 19
Table 10: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Yield of Alpha Cellulose
26
Percentage Yield of Alpha Cellulose:
Percent yield (%) of Alpha Cellulose=
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
* 100% ........... (1)
Std.Dev--------- 1.45 R-Square ---------------- 0.8631
Mean --------- 73.56 Adj-Square ------------- 0.7399
C.V. % --------- 1.98 Pred R-Square --------- 0.3276
PRESS --------- 103.82 Adeq Precision -------- 10.196
The Model Equation
Percentage Yield = 72.34
-1.13A - 0.68B + 0.61C + 2.38AB + 0.88AC - 1.12BC - 0.53A2 + 1.24B2 + 1.06C2........... (3)
DISCUSSION OF RESULTS CONT’D
27
DISCUSSION OF RESULTS CONT’D
ANOVA for Response Surface Quadratic model
Analysis of variance table [Partial sum of squares - Type III]
Sum of Mean F p-value
Source Squares df Square Value Prob > F
Model 221.81 9 24.65 1.58 0.2433not significant
A-Time 23.26 1 23.26 1.49 0.2503
B-Tempt 0.27 1 0.27 0.017 0.8981
C-Conc 15.21 1 15.21 0.97 0.3470
AB 26.75 1 26.75 1.71 0.2198
AC 73.75 1 73.75 4.72 0.0549
BC 0.74 1 0.74 0.047 0.8323
A2 17.27 1 17.27 1.11 0.3177
B2 42.71 1 42.71 2.74 0.1292
C2 13.88 1 13.88 0.89 0.3679
Residual 156.14 10 15.61
Lack of Fit 48.90 5 9.78 0.46 0.7955not significant
Pure Error 107.24 5 21.45
Cor Total 377.95 19
Table 11: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Purity of Alpha Cellulose
28
DISCUSSION OF RESULTS CONT’D
Std.Dev--------- 3.95 R-Square ---------------- 0.5869
Mean --------- 44.37 Adj-Square ------------- 0.2151
C.V. % --------- 8.91 Pred R-Square --------- -0.5360
PRESS --------- 580.52 Adeq Precision -------- 4.417
The Model Equation
Percentage Purity = 44.12
1.13A + 0.14B - 1.06C + 1.83AB + 3.04AC - 0.30BC + 1.09A2 - 1.72B2 + 0.98C2........... (4)
29
DISCUSSION OF RESULTS
CONT’D
b
Design-Expert® Software
percentage purity
Color points by value of
percentage purity:
53.2
35.85
Actual
Predicted
Predicted vs. Actual
35
40
45
50
55
35 40 45 50 55
Design-Expert® Software
percentage yield
Color points by value of
percentage yield:
80
68
Actual
Predicted
Predicted vs. Actual
68
70
72
74
76
78
80
68 70 72 74 76 78 80
Figure 2: Plot of Predicted verses Actual on the percentage yield (a) and percentage purity of the alpha cellulose (b)
b
a
DISCUSSION OF RESULTS CONT’D
30
Figure 3: 3D plot of (a) percentage yield and (b) percentage purity of alpha cellulose
Design-Expert® Software
Factor Coding: Actual
percentage yield (%)
80
68
X1 = A: Time
X2 = B: Tempt
Actual Factor
C: Conc = 0.58
80.00
83.00
86.00
89.00
92.00
95.00
98.00
1.00
1.20
1.40
1.60
1.80
2.00
68
70
72
74
76
78
80
percentage
yield
(%)
A: Time (hr)
B: Tempt (0C)
Design-Expert® Software
Factor Coding: Actual
percentage purity (%)
Design points above predicted value
Design points below predicted value
53.2
35.85
X1 = A: Time
X2 = B: Tempt
Actual Factor
C: Conc = 0.57
80.00
83.00
86.00
89.00
92.00
95.00
98.00
1.00
1.20
1.40
1.60
1.80
2
35
40
45
50
55
percentage
purity
(%)
A: Time (h
B: Tempt (0C)
a b
DISCUSSION OF RESULTS CONT’D
Table 12: Solutions of the optimization of the extraction of Alpha Cellulose
OPTIMIZE SOLUTION OF ALPHA CELLULOSE
Number Time (hr) Tempt (0C)
Conc
(g/ml)
Percentage yield
(%)
Percentage purity
(%)
Desirability
1 1.00 80.00 0.90 79.17 41.07 0.93 Selected
2 1.01 80.00 0.90 79.15 41.07 0.92
3 1.00 80.00 0.89 79.13 41.09 0.92
4 1.02 80.00 0.90 79.11 41.08 0.92
5 1.00 80.08 0.90 79.10 41.08 0.92
6 1.00 80.00 0.89 79.10 41.11 0.92
7 1.02 80.00 0.90 79.09 41.09 0.92
8 1.00 80.14 0.90 79.06 41.09 0.92
9 1.04 80.00 0.90 79.04 41.10 0.92
10 1.00 80.00 0.88 79.04 41.15 0.92
11 1.00 80.00 0.88 79.01 41.17 0.91
12 1.05 80.00 0.90 79.01 41.11 0.91
13 1.00 80.24 0.90 78.98 41.11 0.91
14 1.00 80.00 0.87 78.94 41.22 0.91
15 1.08 80.00 0.90 78.90 41.15 0.90
16 1.00 80.44 0.90 78.84 41.14 0.90
17 1.10 80.00 0.90 78.83 41.18 0.90
18 1.10 80.00 0.90 78.81 41.19 0.90
19 1.00 80.00 0.85 78.80 41.32 0.90
20 1.00 80.63 0.90 78.71 41.16 0.89 31
DISCUSSION OF RESULTS CONT’D
VALIDATED SOLUTION OF ALPHA CELLULOSE
Number
Time
(hr)
Tempt
(0C)
Conc
(g/ml)
Percentage
yield (%)
Percentage
purity (%)
Desirability
1 1.00 80.00 0.90 76.44 40.89 0.93 Selected
2 1.01 80.00 0.90 76.40 39.75 0.92
3 1.00 80.00 0.89 77.16 38.28 0.92
4 1.02 80.00 0.90 78.60 36.56 0.92
5 1.00 80.08 0.90 76.16 39.13 0.92
Table 13: The validated Solutions of the optimized of Alpha Cellulose
32
DISCUSSION OF RESULTS CONT’D
MULTI STAGE PULPING
The multi stage pulping method was used to obtain the cellulose from groundnut husk. Central Composite
Design was used to design the experiment and presented in Table 12 showing the responses obtained.
33
DISCUSSION OF RESULTS CONT’D
Table 14: The Actual Design of the Experiment for the multi stage pulping and the results obtained as the Response of
Percentage Yield and Percentage Purity of the Microcrystalline Cellulose
ACTUAL DESIGN
Std Factor 1
A:Temperature
(0C)
Factor 2
B:Time
(hr)
Factor 3
C:
Concentration (g/750ml)
Response 1 Percentage Yield
of Microcrystalline Cellulose
(%)
Response 2 Percentage
Purity of Microcrystalline
Cellulose (%)
1 85 1 4 62.47 75.27
2 95 1 4 43.68 71
3 85 2.5 4 53.73 83.47
4 95 2.5 4 53.79 70.84
5 85 1 15 61 80.94
6 95 1 15 57.95 86.94
7 85 2.5 15 53.58 82.99
8 95 2.5 15 62.89 85.01
9 81.591 1.75 9.5 62.05 72.62
10 98.409 1.75 9.5 57.95 77.84
11 90 0.488655 9.5 51 89.71
12 90 3.01134 9.5 56.37 85.25
13 90 1.75 0.250139 47.05 66.42
14 90 1.75 18.7499 52.95 78.53
15 90 1.75 9.5 51.42 71.99
16 90 1.75 9.5 53.63 72.01
17 90 1.75 9.5 50.26 80.61
18 90 1.75 9.5 55.68 72.07
19 90 1.75 9.5 54.79 70.78
20 90 1.75 9.5 51.16 73.11
34
DISCUSSION OF RESULTS CONT’D
Constraints
Lower Upper Lower Upper
Name Goal Limit Limit Weight Weight Importance
A:temp is in range 81.5 98.4 1 1 3
B:time is in range 0.5 2.5 1 1 3
C:ethanol:
nitric
is in range 4 18.7 1 1 3
R1 (%) Yield Maximize 43.68 62.89 1 1 3
R2 (%) Purity Maximize 66.42 89.71 1 1 3
Table 15: Summary of Factors input and the Responses of Upper and Lower Limits for the Multi stage pulping
35
DISCUSSION OF RESULTS CONT’D
Table 16: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Yield of Microcrystalline Cellulose
ANOVA for Response Surface Quadratic model
Analysis of variance table [Partial sum of squares - Type III]
Sum of Mean F p-value
Source Squares df Square Value Prob > F
Model 440.32 9 48.92 9.87 0.0007 Significant
A-temp 27.46 1 27.46 5.54 0.0404
B-time 4.59 1 4.59 0.93 0.3585
C-ethanol:
nitric
73.45 1 73.45 14.81 0.0032
AB 121.76 1 121.76 24.55 0.0006
AC 78.06 1 78.06 15.74 0.0027
BC 1.85 1 1.85 0.37 0.5547
A2 116.84 1 116.84 23.56 0.0007
B2 5.44 1 5.44 1.10 0.3194
C2 6.82 1 6.82 1.38 0.2679
Residual 49.59 10 4.96
Lack of Fit 25.60 5 5.12 1.07 0.4723 not significant
Pure Error 23.99 5 4.80
Cor Total 489.91 19
36
DISCUSSION OF RESULTS CONT’D
In this case A, C, AB, AC, A^2 are significant model terms.
Std.Dev--------- 2.23 R-Square ---------------- 0.8988
Mean --------- 54.67 Adj-Square -------------- 0.8077
C.V. % --------- 4.07 Pred R-Square ---------- 0.5163
PRESS --------- 236.95 Adeq Precision -------- 12.605
The Model Equation
Percentage Yield of MCC (R1) = 52.78
-1.42A + 0.58B + 2.32C + 3.90AB + 3.12AC – 0.48BC + 2.85A2 + 0.61B2 – 0.69C2
37
DISCUSSION OF RESULTS CONT’D
ANOVA for Response Surface Quadratic model
Analysis of variance table [Partial sum of squares - Type III]
Sum of Mean F p-value
Source Squares Df Square Value Prob > F
Model 722.07 9 80.23 7.08 0.0026 significant
A-temp 7.476E-004 1 7.476E-004 6.599E-005 0.9937
B-time 0.032 1 0.032 2.809E-003 0.9588
C-ethanol:
nitric
226.90 1 226.90 20.03 0.0012
AB 19.03 1 19.03 1.68 0.2240
AC 77.63 1 77.63 6.85 0.0257
BC 7.84 1 7.84 0.69 0.4249
A2 9.66 1 9.66 0.85 0.3775
B2 382.19 1 382.19 33.74 0.0002
C2 0.35 1 0.35 0.031 0.8644
Residual 113.29 10 11.33
Lack of Fit 48.67 5 9.73 0.75 0.6183 not significant
Pure Error 64.62 5 12.92
Cor Total 835.36 19
Table 17: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Purity of Microcrystalline Cellulose
38
DISCUSSION OF RESULTS CONT’D
In this case C, AC, B^2 are significant model terms.
Std.Dev--------- 3.37 R-Square ---------------- 0.8644
Mean --------- 77.37 Adj-Square -------------- 0.7423
C.V. % --------- 4.35 Pred R-Square ---------- 0.4417
PRESS --------- 466.37 Adeq Precision -------- 9.570
The Model Equation
Percentage Purity of MCC (R2) = 73.40
-7.399E - 003A + 0.048B + 4.08C - 1.54AB + 3.12AC - 0.99BC + 0.82A2 + 5.15B2 - 0.16C2
39
DISCUSSION OF RESULTS CONT’D
Design-Expert® Software
R2
Color points by value of
R2:
89.71
66.42
Actual
Predicted
Predicted vs. Actual
65
70
75
80
85
90
65 70 75 80 85 90
Figure 4: Plot of Predicted verses Actual on the percentage yield (a) and percentage purity (b) of the cellulose
Design-Expert® Software
R1
Color points by value of
R1:
62.89
43.68
Actual
Predicted
Predicted vs. Actual
40
45
50
55
60
65
40 45 50 55 60 65
a b
40
DISCUSSION OF RESULTS CONT’D
Design-Expert® Software
Factor Coding: Actual
R1 (% yield mcc)
Design points above predicted value
Design points below predicted value
62.89
43.68
X1 = A: temp
X2 = B: time
Actual Factor
C: ethanol: nitric = 9.5
1
1.3
1.6
1.9
2.2
2.5
85
87
89
91
93
95
40
45
50
55
60
65
R1
(%
yield
mcc)
A: temp (0C)
B: time (Hr)
Design-Expert® Software
Factor Coding: Actual
R2 (% mcc purity )
Design points above predicted value
Design points below predicted value
89.71
66.42
X1 = A: temp
X2 = B: time
Actual Factor
C: ethanol: nitric = 9.5
1
1.3
1.6
1.9
2.2
2.5
85
87
89
91
93
95
65
70
75
80
85
90
R2
(%
mcc
purity
)
A: temp (0C)
B: time (Hr)
a b
Figure 5: 3D Plot of percentage yield (a) and percentage purity (b) of the cellulose
41
DISCUSSION OF RESULTS CONT’D
Number Temperature
(0C)
Time
(hr)
Ethanol:
Nitric
Response 1
Cellulose
Yield (%)
Response 2
Cellulose Purity (%)
Desirability
1 98.36 2.45 18.22 75.06 90.67 1 Selected
2 98.39 2.39 18.43 74.72 90.59 1
3 98.38 2.50 17.34 74.81 89.82 1
4 98.19 2.47 17.72 74.24 89.91 1
5 98.15 2.46 17.89 74.15 90.01 1
6 98.03 2.38 18.66 73.64 90.38 1
7 98.28 2.44 17.67 74.18 89.71 1
8 98.03 2.41 18.31 73.63 90.09 1
9 97.74 2.45 18.52 73.23 90.28 1
Sample
ID
Temperatur
e (0C)
Time
(hr)
Ethanol:
Nitric
Response 1
Cellulose Yield (%)
Response 2
Cellulose Purity
(%)
Desirability
V0 98.36 2.45 18.22 73.79 88.08 1 Selected
Table 18: Solutions of the Optimization of the Microcrystalline Cellulose.
Table 19: The validated Solution of the optimized Microcrystalline Cellulose
42
DISCUSSION OF RESULTS CONT’D
PARAMETERS GROUNDNUT
HUSK CELLULOSE
Percentage Yield (%) 73.79
Percentage Purity (%) 88.08
Bulk density (gcm-3) 0.216
Tapped density (gcm-3) 0.24
True density (gcm-3) 0.84
Carr’s index (%) 10
Hausner ratio 1.11
Powder porosity (%) 71.32
Angle of repose (°) 32
Particle Size (µm) 500
Table 20: Summary of the Optimal
Parameters of the Groundnut husk
Microcrystalline cellulose
Compressibility index
(per cent)
Flow character Angle of Repose Hausner ratio
1-10 Excellent 25-30 1.00-1.11
11-15 Good 31-35 1.12-1.18
16-20 Fair 36-40 1.19-1.25
21-25 Passable 41-45 1.26-1.34
26-31 Poor 46-55 1.35-1.45
32-37 Very poor 56-65 1.46-1.59
> 38 Very, very poor >66 > 1.60
Bulk Density- 0.139- 0.391 g/cm3
Tapped Density- 0.210- 0.481 g/cm3
True Density - 1.56 g/cm3
Carr RL. Evaluating flow properties of solids. Chem Eng 1965; 72:163-168.
Table 21: The Flow Properties of Solid Data Ranges
43
DISCUSSION OF RESULTS CONT’D
10 20 30 40
-50
0
50
100
150
200
250
300
INTENSITY
ABS
2 THETA (DEGREE)
(15.62)
(34.64)
(23.1)
Figure 6: (a) XRD Pattern of the Optimal Sample V0 of the GH- MCC (b) normal cellulose of Eucalyptus sulphate
b
a
44
RESULTS AND DISCUSSION
45
4000 3500 3000 2500 2000 1500 1000 500
Transmittance
(a.u)
wavelenght (1/cm)
F0
(1257.62976)
(1728.27648)
(3333.10464)
(2924.18208)
Figure 7: FTIR of untreated groundnut husk
DISCUSSION OF RESULTS CONT’D
4000 3500 3000 2500 2000 1500 1000 500
10
20
30
40
50
60
Transmittance
%
Wavelenght (1/cm)
(3417.97536)
(2908.75104)
(1635.69024)
(1396.50912)
(1064.74176)
(1141.89696)
Figure 8: FTIR spectra of the optimal sample of groundnut husk microcrystalline cellulose produced (V0)
46
47
Peak of
Reference
(Cm¯1)
3600-3200 2970–2850 2349- 2370 1750-1715 1662-1626 1550-1500 1600-1400 1390-1310 1275-1200 1300-1100
Functional
group
O-H
(alcohol)
C-H
(alkanes)
O=C=O
(carbondioxi
de)
C=O
(β-
unsaturated
ester,liginin)
H2O
(water)
N-O (nitro
compound)
C-H2
(alkane)
O-H
(alcohol)
C-O
(alkyl ether)
C-O-C
Type of
Vibration
Stretch,
H-bonded
Stretch Stretch stretch Stretch Stretch Bending Stretch Stretch
Intensity Strong Strong Strong Strong Medium Strong Weak Medium Strong Medium
Sample ID
F0 3333.10 2924.18 2345.52 1728.28 1627.97 1504.53 1419.66 1373.36
1327.07
1257.63
1226.77
-
V0 3402.54 2924.18
2870.17
2345.52 1643.41 - -- 1381.08 - 1141.90
AVICEL PH
101
3275 2887 - - 1638 1425 1363 -- 1154
RESULTS AND DISCUSSION
Table 22: FTIR spectra of untreated Groundnut husk, groundnut husk microcrystalline cellulose andAvicel PH 101
48
Plate 1: Photographs of (a) untreated groundnut husk (b) alkali treated
(c) HNO3/ ethanol refluxed (d) GH-MCC
RESULTS AND DISCUSSION
(a) (b) (c) (d)
Plate 2: Photographs of laboratory work
49
50
The Fourier Transform Infrared Spectroscopy (FTIR) confirmed the removal of hemicellulose
and lignin from the GH- microcrystalline cellulose. The x-ray diffractometer (XRD) shows two
prominent peak of crystallinity.
The scanning electron microscopy (SEM) image of GH-MCC shows that the fibers are uneven,
rod shaped having a rough surface. Also, the physicochemical properties are within the
acceptable range as compared to the Pharmaceutical encyclopedia
The Analysis of variance (ANOVA) showed that temperature is the most influential factor for
alkali treatment and the multi stage pulping of microcrystalline cellulose. Under optimal
conditions, the percentage yield and percentage purity of the cellulose obtained were 73.79 %
and 88.08 % respectively. The theoretical values for the percentage yield of the microcrystalline
cellulose were close to the experimental results having an error difference of 1.27 % percentage
yield and 2.59 % percentage purity respectively. Therefore, RSM technique based on CCD
design is suitable for optimizing the variables influencing the production of microcrystalline
cellulose.
CONCLUSION
51
The Researcher acknowledge
Plateau Tin Mines of Nigeria Ltd and Kaffo Mines Ltd
for
financially supporting
this research
ACKNOWLEDGEMENT
52
H.G Audu, Ameh A.O, and M.T Isa “The effect of particle size of Groundnut Husk for the
Microcrystalline Cellulose Production from Groundnut husk”. ABU NEC2018 170
Hassana A. G, Ameh A.O. and M. T. Isa “Optimization of Process Parameters for the
Alkali Treatment of Alpha Cellulose from Groundnut Husk (Arachis hypogaea)”. Nigeria
Society of Chemical Engineering Annual Conference, P3B‐09:2019
PUBLICATION
REFERENCES
Achor M, Oyeniyi YJ and Yahaya A., Extraction and characterization of microcrystalline cellulose obtained from
the back of the fruit of Lageriana siceraria (water gourd), Journal of Applied Pharmaceutical Science Vol. 4 (01),
pp. 057-060, January, 2014 DOI 10.7324/JAPS.2014.40109 ,ISSN 2231-3354
Alidadi Shamsabadi, T. Behzad, R. Bagheri.,Optimization of acid hydrolysis conditions to improve cellulose
nanofibers extraction from wheat straw, Fibers and Polymers. March 2015, Volume 16, Issue 3, pp 579–584
Ansel CH, Popovich GN. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. New York: Lippincott
Williams and Wilkins; 2005. p. 189.
Audu-Peter JD, Ojile JE, Bhatia PG. Physicochemical and Powder Properties of Alpha- and Microcrystalline
cellulose Derived from Maize Cobs. J Pharm Biores 2004; 1:41-5.
Chukwuemeka P. A, Odulaja, J.O. and Okhamafe A.O, Physicotechnical, spectroscopic and thermogravimetric
properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells Journal of Excipients
and Food Chemicals. 2012; 3(3): 106-115
Chukwuemeka P. A, Okhamafe A.O, Physicochemical, spectroscopic and thermal properties of microcrystalline
cellulose derived from corn cobs. International Journal of Recycling of Organic Waste in Agriculture. 2012; 1(1): 9
Chukwuemeka P. A, Silva B.O. and Okhamafe A.O. Pharmacopoeial and physicochemical properties of cellulose
and microcrystalline cellulose powders derived from cornstalks. International Journal of Green Pharmacy. 2012;
6(3): 193-198
53
REFERENCES CONT’D
Duret X, Fredon E, Masson E, Deshamus L, and Gerardin P, Optimization of acid pretreatment in
order to increase the phenolic content of picea abies by surface research methodology, Bioresources 2013, 8 (1),
1258-1273.
Gervasio David Feria, Jean-Roch Mouret, Nathalie Gorret, Gérard Goma, Stéphane E. Guillouet, Oleic acid delays
and modulates the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae after exposure
to glucose excess, Applied Microbiology and Biotechnology, February 2008, Volume 78, Issue 2, pp 377–377.
Gregory Thoorens, Microcrystalline cellulose, a direct compression binder in a quality by design environment—A
review. International journal of pharmaceutics, volume 474, issue 1-2, October 2014, page 64-72
Hindi, S.S.Z. Microcrystalline Cellulose: Its specifications and pharmaceutical processing Biocrystals Journal.1
March 2016, (1): 26-38 improvement of drug photostability in solid dosage forms. Expert Opinion on Drug Delivery.
2013; 10(10): 1335
Hou X.J and Chen W., Optimization of extraction process of crude polysaccharides from wild edible Bachus
mushroom by research surface methodology, carbohydrates polymers, 2008, 72 (1), 67-74.
Javad Shokri and Khosro Adibkia, Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries,
29 August 2013, DOI: 10.5772/55178
Jinbao Li, Xiangrongrong Zhang, Meiyun Zhang, Huijuan Xin, and Hany He, Optimization of selective acid
hydrolysis of cellulose for microcrystalline cellulose using FeCL3, Bioresources , 2014, 9 (1), 1334-1345.
54
REFERENCES CONT’D
Matrosovich M, Matrosovich T, Garten W, Klenk HD., New low-viscosity overlay medium for viral plaque
assays. Virol J. Aug 31; 3:63. (2006).
Ohwoavworhua FO, Kunle O.O, Extraction and characterization of microcrystalline cellulose derived from
Luffa cylindrica plant. African J Pharm Res December 2004; 1:1-6.
Ohwoavworhua, F.O. and Adelakun, T.A, Some Physical Characteristics of Microcrystalline Cellulose Obtained
from Raw Cotton of Cochlospermum planchonii, Tropical Journal of Pharmaceutical Research, Vol. 4, No. 2,
December 2005, pp. 501-507
Orts W.J, Shey J, Imam S.H, Glenn G.M, Guttman M.E, Application of Cellulose Microfibrils in Polymer Nano
composites, Revol. J. Polymer. Enviroment., 13,2005, 301-306
Qi B.K., Chen X.R., Shen F., Su Y., and Wan Y. H., Optimization of enzymic hydrolysis of wheat straw
pretreated by alkaline peroxide using research surface methodology, industrial and engineering chemistry
research, 2000, 48 (15), 7346-7353.
Rani K. P, Sreejith M. P and E. Purushothaman., Isolation of microcrystalline and nano cellulose from peanut
shells, Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115 JCHPS Special Issue 1: January
2016
Reddy N, Yang Y, Properties and potential applications of natural cellulose fibers from cornhusks, Green
Chem.,7, 2005, 190-195.
Reddy N, Yang Y, Structure and properties of high quality natural cellulose fibers from cornstalks, Polymer, 46,
2005, 5494-5500. 55
REFERENCES CONT’D
Rojas .J, Ospina L., Fonseca S., International Journal of Pharmaceutical Sciences Review and Research. 2012;
13(1): 1-8
Rosa M.F, Medeiros E.S, Malmonge J.A, Gregorski K.S, Wood D.F, Mattoso L.H.C, Glenn G, Orts W.J, Imam
S.H, Cellulose nano whiskers from coconut husk fibers: Effect of preparation conditions on their thermal and
morphological behavior, Carbohydrate. Polymer, 81, 2010, 83-92.
Sathavornvichit, N., Bookkamana, P., and Plubin, B. "Central Composite Design in Optimization of the Factors of
Automatic Flux Cored Arc Welding for Steel ST37" in Proceedings IMT-GT Regional Conferen ce on
Mathematics, Statistics and Applications, Penang, Malaysia 2006.
Sun J.X, Mao F.C, Sun X.F and Sun R.C., Comparative study of hemicelluloses isolated with alkaline peroxide
from lignocellulosic materials. J. Wood Chem. Technol, 2004, 24, 239-262.
56
THANK YOU
FOR
LISTENING
57
58
CHINA SEM IMAGE OF SAMPLE F9
SEM image of sample F9

More Related Content

Similar to optimization of microcrystalline cellulose production from groundnuts husk

IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...IRJET Journal
 
IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...
IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...
IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...IRJET Journal
 
Karim712015IRJPAC16163
Karim712015IRJPAC16163Karim712015IRJPAC16163
Karim712015IRJPAC16163Ankit Singh
 
IRJET - Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...
IRJET -  	  Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...IRJET -  	  Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...
IRJET - Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...IRJET Journal
 
6-8-10 Presentation1 - Copy.ppt
6-8-10 Presentation1 - Copy.ppt6-8-10 Presentation1 - Copy.ppt
6-8-10 Presentation1 - Copy.pptAsifAli165576
 
Cellulose nanofibre from energy cane
Cellulose nanofibre from energy caneCellulose nanofibre from energy cane
Cellulose nanofibre from energy caneDrAriharasudhanS
 
www.eco-web.com_edi_03336-02.html
www.eco-web.com_edi_03336-02.htmlwww.eco-web.com_edi_03336-02.html
www.eco-web.com_edi_03336-02.htmlDr. Mukesh Raikwar
 
Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...
Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...
Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...IJERA Editor
 
Nnr 4-1-3
Nnr 4-1-3Nnr 4-1-3
Nnr 4-1-3vthm10
 
OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE
OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE
OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE Yash Nandwani
 
Eco-Moisture Sorption
Eco-Moisture SorptionEco-Moisture Sorption
Eco-Moisture SorptionAliff Sabri
 
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir FibersSynthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir FibersIOSR Journals
 
Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)
Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)
Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)Alexander Decker
 
A comparison of cardanol and its derivatives as reactive
A comparison of cardanol and its derivatives as reactiveA comparison of cardanol and its derivatives as reactive
A comparison of cardanol and its derivatives as reactiveAlexander Decker
 

Similar to optimization of microcrystalline cellulose production from groundnuts husk (20)

IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
 
IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...
IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...
IRJET- Improvement of Sludge Reduction Efficiency of Ozonation by Microbubble...
 
Karim712015IRJPAC16163
Karim712015IRJPAC16163Karim712015IRJPAC16163
Karim712015IRJPAC16163
 
Mr2420972098
Mr2420972098Mr2420972098
Mr2420972098
 
IRJET - Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...
IRJET -  	  Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...IRJET -  	  Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...
IRJET - Evaluation of Wheat Husk as Environment Friendly Fluid Loss Addit...
 
6-8-10 Presentation1 - Copy.ppt
6-8-10 Presentation1 - Copy.ppt6-8-10 Presentation1 - Copy.ppt
6-8-10 Presentation1 - Copy.ppt
 
Cellulose nanofibre from energy cane
Cellulose nanofibre from energy caneCellulose nanofibre from energy cane
Cellulose nanofibre from energy cane
 
www.eco-web.com_edi_03336-02.html
www.eco-web.com_edi_03336-02.htmlwww.eco-web.com_edi_03336-02.html
www.eco-web.com_edi_03336-02.html
 
Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...
Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...
Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PV...
 
Microbial Fuel Cell
Microbial Fuel CellMicrobial Fuel Cell
Microbial Fuel Cell
 
H0365158
H0365158H0365158
H0365158
 
Nnr 4-1-3
Nnr 4-1-3Nnr 4-1-3
Nnr 4-1-3
 
OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE
OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE
OPHTHALMIC NANOSUSPENSION OF PREDNISOLONE ACETATE
 
20320140501007
2032014050100720320140501007
20320140501007
 
Power point 2010
Power point 2010Power point 2010
Power point 2010
 
Eco-Moisture Sorption
Eco-Moisture SorptionEco-Moisture Sorption
Eco-Moisture Sorption
 
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir FibersSynthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
 
Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)
Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)
Synthesis of bulk calcium oxide (cao) catalyst and its efficacy (2)
 
crosslinked chitosan
crosslinked chitosancrosslinked chitosan
crosslinked chitosan
 
A comparison of cardanol and its derivatives as reactive
A comparison of cardanol and its derivatives as reactiveA comparison of cardanol and its derivatives as reactive
A comparison of cardanol and its derivatives as reactive
 

Recently uploaded

Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...narwatsonia7
 
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...Miss joya
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Miss joya
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...indiancallgirl4rent
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...Miss joya
 
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call girls in Ahmedabad High profile
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...narwatsonia7
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...astropune
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Miss joya
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...CALL GIRLS
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...Neha Kaur
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Deliverynehamumbai
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.MiadAlsulami
 

Recently uploaded (20)

Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCREscort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
 
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
VIP Call Girls Pune Vani 9907093804 Short 1500 Night 6000 Best call girls Ser...
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
 
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
 
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
 

optimization of microcrystalline cellulose production from groundnuts husk

  • 1. OPTIMIZATION OF PROCESS PARAMETERS FOR PHARMACEUTICAL GRADE MICROCRYSTALLINE CELLULOSE (MCC) PRODUCTION FROM GROUNDNUT HUSK (GH) MSc. RESEARCH FINAL DEFENCE BY HASSANA GWANDI AUDU P14EGCE8044 DEPARTMENT OF CHEMICAL ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA APRIL, 2020 1
  • 2. OUTLINE INTRODUCTION LITERATURE SURVEY PROBLEM STATEMENTS AIM AND OBJECTIVES JUSTIFICATION SCOPE MATERIALS AND METHODOLOGY DISCUSSION OF RESULTS REFERENCES 2
  • 3. INTRODUCTION Microcrystalline Cellulose is purified, partially depolymerized cellulose prepared by treating alpha cellulose, obtained as a pulp from fibrous plant material with mineral acids. Types of cellulose There are three types of cellulose: 1. Alpha cellulose 2. Beta cellulose 3. Gamma cellulose 3
  • 4. 4 INTRODUCTION CONT’D Microcrystalline cellulose obtained from both soft and hard wood differ in chemical composition:  Cellulose,  Hemicellulose  Lignin  Structural organization Table 1: Groundnut husk chemical composition (Lakshunmu, 2013) 4 CELLULOSE, wt % HEMICELLULOSE, wt % LIGNIN , wt % ASH, wt % 37.5-40.5 14.7-18.7 26.4-30.2 0.4-5.9
  • 5. INTRODUCTION CONT’D SOURCES Sources of cellulose and its derivatives obtained from Agricultural waste are:  Cotton linters  Rice husk  Corn cob  Groundnut husk  Sugar cane bagasse  Calabash  Bark of palm nut trees and so on (Chukwuemeka, 2012). 5
  • 6. INTRODUCTION CONT’D APPLICATION Cosmetic, pharmaceutical, food and other industry uses microcrystalline celluloses as:  Fat substitute  Stabilizer  Thickener  Filler-binder  Anticaking agent  Adsorbent (Matrosovich et al, 2006)  Plaque tests for counting viruses  Alternative to carboxymethyl cellulose (Hindi, 2016). 6
  • 7. 7 INTRODUCTION CONT’D Process Description  Alkali Treatment (Sodium hydroxide) : To remove fats and oils, and lignin.  Acid Hydrolysis (Nitric acid with ethanol) : to remove traces of lignin in the form of soluble nitrolignins and complete removal of hemicellulose.  Bleaching with sodium hypochlorite : To obtain white colour.
  • 8. 8 INTRODUCTION CONT’D Grades of Microcrystalline Cellulose MCC are of different particle size, moisture contents, flow, and physical properties because of the pulp used as raw material and different process conditions. Different trade names for final product such as: Avicel®: PH 101, PH 102, PH 103, PH 105, PH 113 Vivapur®: 101, 102, 12 Emcocel® 50M, 90M, LP200 Comprecel®: CP- 101, CP 102 Microcel®: MC-102, MC-200,MC- 205 (Glicher, 2005)
  • 9. 9 INTRODUCTION CONT’D Percentage Yield of MCC: Percent yield (%) of MCC= 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑓𝑟𝑒𝑒 𝑙𝑖𝑔𝑛𝑖𝑛 (𝑝𝑢𝑟𝑒 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒) 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑟𝑎𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 * 100% .....(1) Crystallinity of MCC : CrI= 𝐼002 −𝐼𝑎𝑚 𝐼002 * 100% .............(2) Where CrI= crystalline index I002= maximum intensity of the (002) maximum intensity of the principal peak (at 22.4° of 2θ) Iam = intensity diffraction attributed to amorphous cellulose (at 15.4° of 2θ)
  • 10. 10 AUTHOR TITLE CONCLUSION REMARKS Frank et al. (2009) Processing pharmaceutical grade microcrystalline cellulose from groundnut husk: Extraction methods and characterization The results showed complete pulping was achieved by multistage pulping method given 15% yield. This concludes that GH-MCC compared favourably with commercial-grade MCC and conforms to specifications for MCC in the British pharmacopoeia. Effect of process parameters were not studied John et al. (2011) Evaluation of several microcrystalline celluloses obtained from agricultural by-products MCC obtained from rice husk, sugar cane bagasse, corn cob, and cotton are use as direct compression agent. The results offer an inexpensive and a simple method to produce MCC for use in the manufacture of solid dosage forms. Effect of process parameters were not studied and groundnut husk was not considered. LITERATURE SURVEY CONT’D Table 2: Previous Related Research
  • 11. 11 AUTHOR TITLE CONCLUSION REMARKS Chukwuemeka et al. (2012) Investigation of physico technical, spectroscopic and thermo gravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells XRD and FTIR spectra analysis showed α- cellulose had lower crystallinity due to treatment with 2N hydrochloric acid which increase the crystallinity index. The physical properties of microcrystalline celluloses have better flow properties than the α-cellulose Effect of process parameters were not studied Sirikalaya et al. (2013) Optimization of Micro Crystalline Cellulose Production from Corn Cob for Pharmaceutical Industry Investment The degree of crystallinity of alkaline degradation, bleaching and hydrolysis at 10% of NaOH 95 °C for 2h, NaClO2 1.5 g 10% of C2H4O2 0.5 mL 70 °C for 2h, 2N of HCl, 105 °C for 60 min showed maximum crystallinity of 77.07%, 75.98% and 86.84%, respectively. The crystallinity and morphology of the MCC corresponded to Avicel PH 101. The investment of the plant will break even over 6 years. • RSM can be used for optimsation of process parameters. • It’s a viable business. LITERATURE SURVEY CONT’D
  • 12. 12 AUTHOR TITLE CONCLUSION REMARKS Rani et al. (2016) Isolation of microcrystalline cellulose and nano cellulose from peanut shells The FTIR spectra indicated extensive removal of hemicellulose and lignin. XRD pattern showed that the isolated MCC is crystalline in nature Effect of process parameters were not studied LITERATURE SURVEY CONT’D
  • 13. 13 PROBLEM STATEMENT Optimisation of Microcrystalline Cellulose Production from Corn Cob has been reported but optimisation MCC from groundnut husk was not reported.
  • 14. JUSTIFICATION This research work will establish the following: 1. Production of microcrystalline cellulose with optimum quality for pharmaceutical applications. 2. Availability of raw material in Northern Nigeria which can substitute wood pulp and also serve as second income for farmers. 3. Nigeria produce about 3.8 million metric tonnes per annum of Groundnut husk as an agricultural waste, however, if not used it will becomes abandon resource. 4. Further production of MCC will reduce dependence on importation. 14
  • 15. AIM AND OBJECTIVE Research Aim (s): This research aims to study the effect of process parameters on Microcrystalline Cellulose production from Groundnut Husk. Objective: The objectives of this research is : 1. To Collect, identify and characterize type of groundnut husk. 2. To select the effect of particle size for the production of microcrystalline cellulose. 3. To use design expert to study the effect of process parameters: such as concentration, temperature, time on the production of microcrystalline cellulose. 4. To characterize the microcrystalline cellulose produced. 15
  • 16. 16 SCOPE OF THE WORK The scope of this work will cover: 1. To study the effect of particle size of the groundnut husk microcrystalline cellulose. 2. To study the effects of concentration sodium hydroxide (0.25-0.9 g), temperature (80-980C) and time (1-2 hr) on the alkali treatment process using RSM. 3. To study the effect of Nitric acid to ethanol ratio (4-18.7), temperature (81.5- 98.40C) and time (0.5-2.5 hr) on multistage pulping using RSM. 4. To characterize microcrystalline cellulose using pH meter, pycnometer, scanning electron microscopy (SEM), Fourier-transform infra-red spectra (FTIR) and X-ray diffractometer (XRD)
  • 17. 17 MATERIALS AND METHODOLOGY List of Material The material required includes:  Groundnut Husk- Arachis hypogaea  Ethanol-70% JHD, China  Nitric Acid-69% MERCK, Germany  Sodium Hydroxide- 98% AR, India  Sodium Hypochloride- 3.5%, Nigeria  Distilled Water
  • 18. 18 MATERIALAND METHODOLOGY CONT’D Table 3: List of Equipment S/NO EQUIPMENT MODEL TYPE LOCATION OF LABORATORY 1. X-ray Diffractometer Rigaku Miniflex, China Beijing Research Institute of Chemical Industry, China 2. Scanning Electron Microscopy S4800 Hitachi, China Beijing Research Institute of Chemical Industry, China 3. Fourier-Transform Infra-red Radiometer Shimadzu FTIR-8400S Japan National Research Institute for Chemical Technology, Zaria 4. pH meter Corning, model 10 England A.B.U Chemical Engineering Department, Zaria 6. Pyconometer England A.B.U Chemical Engineering Department, Zaria 7. Dryer DH-9140 Dongguan HongTuo Instrument A.B.U Chemical Engineering Department, Zaria 8. Sieves Shaker Endecotts Ltd London England A.B.U Civil Engineering Department, Zaria 9. Pulverizer Jas Model TW-MP-4 A.B.U Chemical Engineering Department, Zaria 10. Erlenmeyer flask Beakers and Cylinders England A.B.U Chemical Engineering Department, Zaria 11. Thermostatic water Bath HH. S6 USA A.B.U Chemical Engineering Department, Zaria 12. Computer System Predictive Analytical Software version 22 (PASW, USA) A.B.U. Department of Mathematics, Zaria
  • 19. METHODOLOGY Process Flow Chart: Microcrystalline cellulose process from groundnut husk Sample collection and identification (Groundnut Husk) Figure 1: Process flow chart for Microcrystalline production 19 Washing and filtration Drying at Room Temperature Alkali Method (RSM) Parameters: 1. Time 2. Temperature 3. Concentration Washing Characterization using proximate analysis Multistage pulping (Hydrolysis) (RSM) Parameters: conc, time, tempt Step 1:HNO3 + C2H5OH Bleaching NaClO (conc, time,tempt) Characterization of Microcrystalline cellulose : FTIR, XRD, SEM, physicochemical properties Washing and Filtration Washing and Filtration Selection of particle sizes Drying at 60°C for 4hr Drying at 60°C for 4hr
  • 20. RESULTS AND DISCUSSION 20 Table 4: Identification of Groundnut Husk Table 5: Proximate Properties of untreated Groundnut husk Kingdom: Plantae Family: Fabaceae Subfamily: Papilionaceae Genus: Arachis Species: Arachis hypogaea Binomial name Arachis hypogaea CELLULOSE wt % HEMICELLULOSE wt % LIGNIN wt % ASH wt % 48.4 17.9 25.7 6.1
  • 21. 21 RESULTS AND DISCUSSION Sample ID Particle sizes (mm) F1 3.35 F2 2.80 F3 2.36 F4 2.00 F5 1.70 F6 1.40 F7 1.19 F8 1.18 F9 1.00 F10 0.560 F11 0.500 F12 0.425 F13 0.212 Table 6: Selected Particle sizes of untreated Groundnut husk
  • 22. 22 RESULTS AND DISCUSSION Sample ID Powder property of Avicel PH101, untreated GH and treated GH Particle Size (µm) Bulk density (g/cm3) Tap density (g/cm3) True density (g/cm3) Carr’s Index Hausne r ratio Angle of repose Percentage yield microcryst alline cellulose % Porosity (%) pH Crystallinity index (%) F11 500 0.163 0.185 0.811 11.89 1.14 39.11 56 78.97 5.8 91 F9 1000 0.163 0.185 0.877 11.89 1.14 32.72 52 78.90 5.8 89 F12 425 0.163 0.185 0.877 11.89 1.14 33.68 48 78.91 5.8 92 F6 1400 0.163 0.185 0.874 11.89 1.14 32.57 44 78.84 5.8 88 Table 7: The Summary of the favourable results of the GH-MCC
  • 23. 23 RESULTS AND DISCUSSION Table 8: The Actual Design of the Experiment and Results of Percentage Yield and Percentage Purity of the Alpha Cellulose ACTUAL DESIGN Std Factor 1 A:Time (hr) Factor 2 B:Temperature (0C) Factor 3 C: Concentration (g/750ml) Response 1 Percentage Yield of Alpha Cellulose (%) Response 2 Percentage Purity of Alpha Cellulose (%) 1 1.00 80.00 0.25 78 45.68 2 2.00 80.00 0.25 70 43.57 3 1.00 98.00 0.25 73 47.8 4 2.00 98.00 0.25 74 44.65 5 1.00 80.00 0.90 80 43.3 6 2.00 80.00 0.90 75 44.98 7 1.00 98.00 0.90 70 35.85 8 2.00 98.00 0.90 75 53.2 9 0.66 89.00 0.57 73 45.45 10 2.34 89.00 0.57 68 47.86 11 1.50 73.86 0.57 75 39.3 12 1.50 104.14 0.57 76 38.08 13 1.50 89.00 0.03 74 49.32 14 1.50 89.00 1.12 76 43.35 15 1.50 89.00 0.57 73 43.03 16 1.50 89.00 0.57 70 45.66 17 1.50 89.00 0.57 72 46.6 18 1.50 89.00 0.57 72.19 37.65 19 1.50 89.00 0.57 74 50.93 20 1.50 89.00 0.57 73 41.07
  • 24. DISCUSSION OF RESULTS CONT’D Constraints Lower Upper Lower Upper Name Goal Limit Limit Weight Weight Importance A:Time is in range 1 2 1 1 3 B:Tempt is in range 80 98 1 1 3 C:Conc is in range 0.25 0.9 1 1 3 percentage yield maximize 68 80 1 1 3 percentage purity maximize 35.85 53.2 1 1 3 Table 9: Summary of Factors input and the Responses of Upper and Lower Limits for Alpha Cellulose 24
  • 25. 25 DISCUSSION OF RESULTS CONT’D ANOVA for Response Surface Quadratic model Analysis of variance table [Partial sum of squares - Type III] Source Sum of Squares df Mean Square F Value p-value Prob > F Model 133.26 9 14.81 7.01 0.0027 Significant A-Time 17.39 1 17.39 8.23 0.0167 B-Tempt 6.36 1 6.36 3.01 0.1135 C-Conc 5.12 1 5.12 2.42 0.1506 AB 45.13 1 45.13 21.35 0.0009 AC 6.13 1 6.13 2.90 0.1195 BC 10.12 1 10.12 4.79 0.0535 A2 4.00 1 4.00 1.89 0.1992 B2 22.20 1 22.20 10.50 0.0089 C2 16.33 1 16.33 7.73 0.0195 Residual 21.14 10 2.11 Lack of Fit 11.90 5 2.38 1.29 0.3939not significant Pure Error 9.24 5 1.85 Cor Total 154.40 19 Table 10: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Yield of Alpha Cellulose
  • 26. 26 Percentage Yield of Alpha Cellulose: Percent yield (%) of Alpha Cellulose= 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 * 100% ........... (1) Std.Dev--------- 1.45 R-Square ---------------- 0.8631 Mean --------- 73.56 Adj-Square ------------- 0.7399 C.V. % --------- 1.98 Pred R-Square --------- 0.3276 PRESS --------- 103.82 Adeq Precision -------- 10.196 The Model Equation Percentage Yield = 72.34 -1.13A - 0.68B + 0.61C + 2.38AB + 0.88AC - 1.12BC - 0.53A2 + 1.24B2 + 1.06C2........... (3) DISCUSSION OF RESULTS CONT’D
  • 27. 27 DISCUSSION OF RESULTS CONT’D ANOVA for Response Surface Quadratic model Analysis of variance table [Partial sum of squares - Type III] Sum of Mean F p-value Source Squares df Square Value Prob > F Model 221.81 9 24.65 1.58 0.2433not significant A-Time 23.26 1 23.26 1.49 0.2503 B-Tempt 0.27 1 0.27 0.017 0.8981 C-Conc 15.21 1 15.21 0.97 0.3470 AB 26.75 1 26.75 1.71 0.2198 AC 73.75 1 73.75 4.72 0.0549 BC 0.74 1 0.74 0.047 0.8323 A2 17.27 1 17.27 1.11 0.3177 B2 42.71 1 42.71 2.74 0.1292 C2 13.88 1 13.88 0.89 0.3679 Residual 156.14 10 15.61 Lack of Fit 48.90 5 9.78 0.46 0.7955not significant Pure Error 107.24 5 21.45 Cor Total 377.95 19 Table 11: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Purity of Alpha Cellulose
  • 28. 28 DISCUSSION OF RESULTS CONT’D Std.Dev--------- 3.95 R-Square ---------------- 0.5869 Mean --------- 44.37 Adj-Square ------------- 0.2151 C.V. % --------- 8.91 Pred R-Square --------- -0.5360 PRESS --------- 580.52 Adeq Precision -------- 4.417 The Model Equation Percentage Purity = 44.12 1.13A + 0.14B - 1.06C + 1.83AB + 3.04AC - 0.30BC + 1.09A2 - 1.72B2 + 0.98C2........... (4)
  • 29. 29 DISCUSSION OF RESULTS CONT’D b Design-Expert® Software percentage purity Color points by value of percentage purity: 53.2 35.85 Actual Predicted Predicted vs. Actual 35 40 45 50 55 35 40 45 50 55 Design-Expert® Software percentage yield Color points by value of percentage yield: 80 68 Actual Predicted Predicted vs. Actual 68 70 72 74 76 78 80 68 70 72 74 76 78 80 Figure 2: Plot of Predicted verses Actual on the percentage yield (a) and percentage purity of the alpha cellulose (b) b a
  • 30. DISCUSSION OF RESULTS CONT’D 30 Figure 3: 3D plot of (a) percentage yield and (b) percentage purity of alpha cellulose Design-Expert® Software Factor Coding: Actual percentage yield (%) 80 68 X1 = A: Time X2 = B: Tempt Actual Factor C: Conc = 0.58 80.00 83.00 86.00 89.00 92.00 95.00 98.00 1.00 1.20 1.40 1.60 1.80 2.00 68 70 72 74 76 78 80 percentage yield (%) A: Time (hr) B: Tempt (0C) Design-Expert® Software Factor Coding: Actual percentage purity (%) Design points above predicted value Design points below predicted value 53.2 35.85 X1 = A: Time X2 = B: Tempt Actual Factor C: Conc = 0.57 80.00 83.00 86.00 89.00 92.00 95.00 98.00 1.00 1.20 1.40 1.60 1.80 2 35 40 45 50 55 percentage purity (%) A: Time (h B: Tempt (0C) a b
  • 31. DISCUSSION OF RESULTS CONT’D Table 12: Solutions of the optimization of the extraction of Alpha Cellulose OPTIMIZE SOLUTION OF ALPHA CELLULOSE Number Time (hr) Tempt (0C) Conc (g/ml) Percentage yield (%) Percentage purity (%) Desirability 1 1.00 80.00 0.90 79.17 41.07 0.93 Selected 2 1.01 80.00 0.90 79.15 41.07 0.92 3 1.00 80.00 0.89 79.13 41.09 0.92 4 1.02 80.00 0.90 79.11 41.08 0.92 5 1.00 80.08 0.90 79.10 41.08 0.92 6 1.00 80.00 0.89 79.10 41.11 0.92 7 1.02 80.00 0.90 79.09 41.09 0.92 8 1.00 80.14 0.90 79.06 41.09 0.92 9 1.04 80.00 0.90 79.04 41.10 0.92 10 1.00 80.00 0.88 79.04 41.15 0.92 11 1.00 80.00 0.88 79.01 41.17 0.91 12 1.05 80.00 0.90 79.01 41.11 0.91 13 1.00 80.24 0.90 78.98 41.11 0.91 14 1.00 80.00 0.87 78.94 41.22 0.91 15 1.08 80.00 0.90 78.90 41.15 0.90 16 1.00 80.44 0.90 78.84 41.14 0.90 17 1.10 80.00 0.90 78.83 41.18 0.90 18 1.10 80.00 0.90 78.81 41.19 0.90 19 1.00 80.00 0.85 78.80 41.32 0.90 20 1.00 80.63 0.90 78.71 41.16 0.89 31
  • 32. DISCUSSION OF RESULTS CONT’D VALIDATED SOLUTION OF ALPHA CELLULOSE Number Time (hr) Tempt (0C) Conc (g/ml) Percentage yield (%) Percentage purity (%) Desirability 1 1.00 80.00 0.90 76.44 40.89 0.93 Selected 2 1.01 80.00 0.90 76.40 39.75 0.92 3 1.00 80.00 0.89 77.16 38.28 0.92 4 1.02 80.00 0.90 78.60 36.56 0.92 5 1.00 80.08 0.90 76.16 39.13 0.92 Table 13: The validated Solutions of the optimized of Alpha Cellulose 32
  • 33. DISCUSSION OF RESULTS CONT’D MULTI STAGE PULPING The multi stage pulping method was used to obtain the cellulose from groundnut husk. Central Composite Design was used to design the experiment and presented in Table 12 showing the responses obtained. 33
  • 34. DISCUSSION OF RESULTS CONT’D Table 14: The Actual Design of the Experiment for the multi stage pulping and the results obtained as the Response of Percentage Yield and Percentage Purity of the Microcrystalline Cellulose ACTUAL DESIGN Std Factor 1 A:Temperature (0C) Factor 2 B:Time (hr) Factor 3 C: Concentration (g/750ml) Response 1 Percentage Yield of Microcrystalline Cellulose (%) Response 2 Percentage Purity of Microcrystalline Cellulose (%) 1 85 1 4 62.47 75.27 2 95 1 4 43.68 71 3 85 2.5 4 53.73 83.47 4 95 2.5 4 53.79 70.84 5 85 1 15 61 80.94 6 95 1 15 57.95 86.94 7 85 2.5 15 53.58 82.99 8 95 2.5 15 62.89 85.01 9 81.591 1.75 9.5 62.05 72.62 10 98.409 1.75 9.5 57.95 77.84 11 90 0.488655 9.5 51 89.71 12 90 3.01134 9.5 56.37 85.25 13 90 1.75 0.250139 47.05 66.42 14 90 1.75 18.7499 52.95 78.53 15 90 1.75 9.5 51.42 71.99 16 90 1.75 9.5 53.63 72.01 17 90 1.75 9.5 50.26 80.61 18 90 1.75 9.5 55.68 72.07 19 90 1.75 9.5 54.79 70.78 20 90 1.75 9.5 51.16 73.11 34
  • 35. DISCUSSION OF RESULTS CONT’D Constraints Lower Upper Lower Upper Name Goal Limit Limit Weight Weight Importance A:temp is in range 81.5 98.4 1 1 3 B:time is in range 0.5 2.5 1 1 3 C:ethanol: nitric is in range 4 18.7 1 1 3 R1 (%) Yield Maximize 43.68 62.89 1 1 3 R2 (%) Purity Maximize 66.42 89.71 1 1 3 Table 15: Summary of Factors input and the Responses of Upper and Lower Limits for the Multi stage pulping 35
  • 36. DISCUSSION OF RESULTS CONT’D Table 16: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Yield of Microcrystalline Cellulose ANOVA for Response Surface Quadratic model Analysis of variance table [Partial sum of squares - Type III] Sum of Mean F p-value Source Squares df Square Value Prob > F Model 440.32 9 48.92 9.87 0.0007 Significant A-temp 27.46 1 27.46 5.54 0.0404 B-time 4.59 1 4.59 0.93 0.3585 C-ethanol: nitric 73.45 1 73.45 14.81 0.0032 AB 121.76 1 121.76 24.55 0.0006 AC 78.06 1 78.06 15.74 0.0027 BC 1.85 1 1.85 0.37 0.5547 A2 116.84 1 116.84 23.56 0.0007 B2 5.44 1 5.44 1.10 0.3194 C2 6.82 1 6.82 1.38 0.2679 Residual 49.59 10 4.96 Lack of Fit 25.60 5 5.12 1.07 0.4723 not significant Pure Error 23.99 5 4.80 Cor Total 489.91 19 36
  • 37. DISCUSSION OF RESULTS CONT’D In this case A, C, AB, AC, A^2 are significant model terms. Std.Dev--------- 2.23 R-Square ---------------- 0.8988 Mean --------- 54.67 Adj-Square -------------- 0.8077 C.V. % --------- 4.07 Pred R-Square ---------- 0.5163 PRESS --------- 236.95 Adeq Precision -------- 12.605 The Model Equation Percentage Yield of MCC (R1) = 52.78 -1.42A + 0.58B + 2.32C + 3.90AB + 3.12AC – 0.48BC + 2.85A2 + 0.61B2 – 0.69C2 37
  • 38. DISCUSSION OF RESULTS CONT’D ANOVA for Response Surface Quadratic model Analysis of variance table [Partial sum of squares - Type III] Sum of Mean F p-value Source Squares Df Square Value Prob > F Model 722.07 9 80.23 7.08 0.0026 significant A-temp 7.476E-004 1 7.476E-004 6.599E-005 0.9937 B-time 0.032 1 0.032 2.809E-003 0.9588 C-ethanol: nitric 226.90 1 226.90 20.03 0.0012 AB 19.03 1 19.03 1.68 0.2240 AC 77.63 1 77.63 6.85 0.0257 BC 7.84 1 7.84 0.69 0.4249 A2 9.66 1 9.66 0.85 0.3775 B2 382.19 1 382.19 33.74 0.0002 C2 0.35 1 0.35 0.031 0.8644 Residual 113.29 10 11.33 Lack of Fit 48.67 5 9.73 0.75 0.6183 not significant Pure Error 64.62 5 12.92 Cor Total 835.36 19 Table 17: Statistical Analysis (ANOVA) Analysis of Response for the Percentage Purity of Microcrystalline Cellulose 38
  • 39. DISCUSSION OF RESULTS CONT’D In this case C, AC, B^2 are significant model terms. Std.Dev--------- 3.37 R-Square ---------------- 0.8644 Mean --------- 77.37 Adj-Square -------------- 0.7423 C.V. % --------- 4.35 Pred R-Square ---------- 0.4417 PRESS --------- 466.37 Adeq Precision -------- 9.570 The Model Equation Percentage Purity of MCC (R2) = 73.40 -7.399E - 003A + 0.048B + 4.08C - 1.54AB + 3.12AC - 0.99BC + 0.82A2 + 5.15B2 - 0.16C2 39
  • 40. DISCUSSION OF RESULTS CONT’D Design-Expert® Software R2 Color points by value of R2: 89.71 66.42 Actual Predicted Predicted vs. Actual 65 70 75 80 85 90 65 70 75 80 85 90 Figure 4: Plot of Predicted verses Actual on the percentage yield (a) and percentage purity (b) of the cellulose Design-Expert® Software R1 Color points by value of R1: 62.89 43.68 Actual Predicted Predicted vs. Actual 40 45 50 55 60 65 40 45 50 55 60 65 a b 40
  • 41. DISCUSSION OF RESULTS CONT’D Design-Expert® Software Factor Coding: Actual R1 (% yield mcc) Design points above predicted value Design points below predicted value 62.89 43.68 X1 = A: temp X2 = B: time Actual Factor C: ethanol: nitric = 9.5 1 1.3 1.6 1.9 2.2 2.5 85 87 89 91 93 95 40 45 50 55 60 65 R1 (% yield mcc) A: temp (0C) B: time (Hr) Design-Expert® Software Factor Coding: Actual R2 (% mcc purity ) Design points above predicted value Design points below predicted value 89.71 66.42 X1 = A: temp X2 = B: time Actual Factor C: ethanol: nitric = 9.5 1 1.3 1.6 1.9 2.2 2.5 85 87 89 91 93 95 65 70 75 80 85 90 R2 (% mcc purity ) A: temp (0C) B: time (Hr) a b Figure 5: 3D Plot of percentage yield (a) and percentage purity (b) of the cellulose 41
  • 42. DISCUSSION OF RESULTS CONT’D Number Temperature (0C) Time (hr) Ethanol: Nitric Response 1 Cellulose Yield (%) Response 2 Cellulose Purity (%) Desirability 1 98.36 2.45 18.22 75.06 90.67 1 Selected 2 98.39 2.39 18.43 74.72 90.59 1 3 98.38 2.50 17.34 74.81 89.82 1 4 98.19 2.47 17.72 74.24 89.91 1 5 98.15 2.46 17.89 74.15 90.01 1 6 98.03 2.38 18.66 73.64 90.38 1 7 98.28 2.44 17.67 74.18 89.71 1 8 98.03 2.41 18.31 73.63 90.09 1 9 97.74 2.45 18.52 73.23 90.28 1 Sample ID Temperatur e (0C) Time (hr) Ethanol: Nitric Response 1 Cellulose Yield (%) Response 2 Cellulose Purity (%) Desirability V0 98.36 2.45 18.22 73.79 88.08 1 Selected Table 18: Solutions of the Optimization of the Microcrystalline Cellulose. Table 19: The validated Solution of the optimized Microcrystalline Cellulose 42
  • 43. DISCUSSION OF RESULTS CONT’D PARAMETERS GROUNDNUT HUSK CELLULOSE Percentage Yield (%) 73.79 Percentage Purity (%) 88.08 Bulk density (gcm-3) 0.216 Tapped density (gcm-3) 0.24 True density (gcm-3) 0.84 Carr’s index (%) 10 Hausner ratio 1.11 Powder porosity (%) 71.32 Angle of repose (°) 32 Particle Size (µm) 500 Table 20: Summary of the Optimal Parameters of the Groundnut husk Microcrystalline cellulose Compressibility index (per cent) Flow character Angle of Repose Hausner ratio 1-10 Excellent 25-30 1.00-1.11 11-15 Good 31-35 1.12-1.18 16-20 Fair 36-40 1.19-1.25 21-25 Passable 41-45 1.26-1.34 26-31 Poor 46-55 1.35-1.45 32-37 Very poor 56-65 1.46-1.59 > 38 Very, very poor >66 > 1.60 Bulk Density- 0.139- 0.391 g/cm3 Tapped Density- 0.210- 0.481 g/cm3 True Density - 1.56 g/cm3 Carr RL. Evaluating flow properties of solids. Chem Eng 1965; 72:163-168. Table 21: The Flow Properties of Solid Data Ranges 43
  • 44. DISCUSSION OF RESULTS CONT’D 10 20 30 40 -50 0 50 100 150 200 250 300 INTENSITY ABS 2 THETA (DEGREE) (15.62) (34.64) (23.1) Figure 6: (a) XRD Pattern of the Optimal Sample V0 of the GH- MCC (b) normal cellulose of Eucalyptus sulphate b a 44
  • 45. RESULTS AND DISCUSSION 45 4000 3500 3000 2500 2000 1500 1000 500 Transmittance (a.u) wavelenght (1/cm) F0 (1257.62976) (1728.27648) (3333.10464) (2924.18208) Figure 7: FTIR of untreated groundnut husk
  • 46. DISCUSSION OF RESULTS CONT’D 4000 3500 3000 2500 2000 1500 1000 500 10 20 30 40 50 60 Transmittance % Wavelenght (1/cm) (3417.97536) (2908.75104) (1635.69024) (1396.50912) (1064.74176) (1141.89696) Figure 8: FTIR spectra of the optimal sample of groundnut husk microcrystalline cellulose produced (V0) 46
  • 47. 47 Peak of Reference (Cm¯1) 3600-3200 2970–2850 2349- 2370 1750-1715 1662-1626 1550-1500 1600-1400 1390-1310 1275-1200 1300-1100 Functional group O-H (alcohol) C-H (alkanes) O=C=O (carbondioxi de) C=O (β- unsaturated ester,liginin) H2O (water) N-O (nitro compound) C-H2 (alkane) O-H (alcohol) C-O (alkyl ether) C-O-C Type of Vibration Stretch, H-bonded Stretch Stretch stretch Stretch Stretch Bending Stretch Stretch Intensity Strong Strong Strong Strong Medium Strong Weak Medium Strong Medium Sample ID F0 3333.10 2924.18 2345.52 1728.28 1627.97 1504.53 1419.66 1373.36 1327.07 1257.63 1226.77 - V0 3402.54 2924.18 2870.17 2345.52 1643.41 - -- 1381.08 - 1141.90 AVICEL PH 101 3275 2887 - - 1638 1425 1363 -- 1154 RESULTS AND DISCUSSION Table 22: FTIR spectra of untreated Groundnut husk, groundnut husk microcrystalline cellulose andAvicel PH 101
  • 48. 48 Plate 1: Photographs of (a) untreated groundnut husk (b) alkali treated (c) HNO3/ ethanol refluxed (d) GH-MCC RESULTS AND DISCUSSION (a) (b) (c) (d)
  • 49. Plate 2: Photographs of laboratory work 49
  • 50. 50 The Fourier Transform Infrared Spectroscopy (FTIR) confirmed the removal of hemicellulose and lignin from the GH- microcrystalline cellulose. The x-ray diffractometer (XRD) shows two prominent peak of crystallinity. The scanning electron microscopy (SEM) image of GH-MCC shows that the fibers are uneven, rod shaped having a rough surface. Also, the physicochemical properties are within the acceptable range as compared to the Pharmaceutical encyclopedia The Analysis of variance (ANOVA) showed that temperature is the most influential factor for alkali treatment and the multi stage pulping of microcrystalline cellulose. Under optimal conditions, the percentage yield and percentage purity of the cellulose obtained were 73.79 % and 88.08 % respectively. The theoretical values for the percentage yield of the microcrystalline cellulose were close to the experimental results having an error difference of 1.27 % percentage yield and 2.59 % percentage purity respectively. Therefore, RSM technique based on CCD design is suitable for optimizing the variables influencing the production of microcrystalline cellulose. CONCLUSION
  • 51. 51 The Researcher acknowledge Plateau Tin Mines of Nigeria Ltd and Kaffo Mines Ltd for financially supporting this research ACKNOWLEDGEMENT
  • 52. 52 H.G Audu, Ameh A.O, and M.T Isa “The effect of particle size of Groundnut Husk for the Microcrystalline Cellulose Production from Groundnut husk”. ABU NEC2018 170 Hassana A. G, Ameh A.O. and M. T. Isa “Optimization of Process Parameters for the Alkali Treatment of Alpha Cellulose from Groundnut Husk (Arachis hypogaea)”. Nigeria Society of Chemical Engineering Annual Conference, P3B‐09:2019 PUBLICATION
  • 53. REFERENCES Achor M, Oyeniyi YJ and Yahaya A., Extraction and characterization of microcrystalline cellulose obtained from the back of the fruit of Lageriana siceraria (water gourd), Journal of Applied Pharmaceutical Science Vol. 4 (01), pp. 057-060, January, 2014 DOI 10.7324/JAPS.2014.40109 ,ISSN 2231-3354 Alidadi Shamsabadi, T. Behzad, R. Bagheri.,Optimization of acid hydrolysis conditions to improve cellulose nanofibers extraction from wheat straw, Fibers and Polymers. March 2015, Volume 16, Issue 3, pp 579–584 Ansel CH, Popovich GN. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. New York: Lippincott Williams and Wilkins; 2005. p. 189. Audu-Peter JD, Ojile JE, Bhatia PG. Physicochemical and Powder Properties of Alpha- and Microcrystalline cellulose Derived from Maize Cobs. J Pharm Biores 2004; 1:41-5. Chukwuemeka P. A, Odulaja, J.O. and Okhamafe A.O, Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells Journal of Excipients and Food Chemicals. 2012; 3(3): 106-115 Chukwuemeka P. A, Okhamafe A.O, Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. International Journal of Recycling of Organic Waste in Agriculture. 2012; 1(1): 9 Chukwuemeka P. A, Silva B.O. and Okhamafe A.O. Pharmacopoeial and physicochemical properties of cellulose and microcrystalline cellulose powders derived from cornstalks. International Journal of Green Pharmacy. 2012; 6(3): 193-198 53
  • 54. REFERENCES CONT’D Duret X, Fredon E, Masson E, Deshamus L, and Gerardin P, Optimization of acid pretreatment in order to increase the phenolic content of picea abies by surface research methodology, Bioresources 2013, 8 (1), 1258-1273. Gervasio David Feria, Jean-Roch Mouret, Nathalie Gorret, Gérard Goma, Stéphane E. Guillouet, Oleic acid delays and modulates the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae after exposure to glucose excess, Applied Microbiology and Biotechnology, February 2008, Volume 78, Issue 2, pp 377–377. Gregory Thoorens, Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. International journal of pharmaceutics, volume 474, issue 1-2, October 2014, page 64-72 Hindi, S.S.Z. Microcrystalline Cellulose: Its specifications and pharmaceutical processing Biocrystals Journal.1 March 2016, (1): 26-38 improvement of drug photostability in solid dosage forms. Expert Opinion on Drug Delivery. 2013; 10(10): 1335 Hou X.J and Chen W., Optimization of extraction process of crude polysaccharides from wild edible Bachus mushroom by research surface methodology, carbohydrates polymers, 2008, 72 (1), 67-74. Javad Shokri and Khosro Adibkia, Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries, 29 August 2013, DOI: 10.5772/55178 Jinbao Li, Xiangrongrong Zhang, Meiyun Zhang, Huijuan Xin, and Hany He, Optimization of selective acid hydrolysis of cellulose for microcrystalline cellulose using FeCL3, Bioresources , 2014, 9 (1), 1334-1345. 54
  • 55. REFERENCES CONT’D Matrosovich M, Matrosovich T, Garten W, Klenk HD., New low-viscosity overlay medium for viral plaque assays. Virol J. Aug 31; 3:63. (2006). Ohwoavworhua FO, Kunle O.O, Extraction and characterization of microcrystalline cellulose derived from Luffa cylindrica plant. African J Pharm Res December 2004; 1:1-6. Ohwoavworhua, F.O. and Adelakun, T.A, Some Physical Characteristics of Microcrystalline Cellulose Obtained from Raw Cotton of Cochlospermum planchonii, Tropical Journal of Pharmaceutical Research, Vol. 4, No. 2, December 2005, pp. 501-507 Orts W.J, Shey J, Imam S.H, Glenn G.M, Guttman M.E, Application of Cellulose Microfibrils in Polymer Nano composites, Revol. J. Polymer. Enviroment., 13,2005, 301-306 Qi B.K., Chen X.R., Shen F., Su Y., and Wan Y. H., Optimization of enzymic hydrolysis of wheat straw pretreated by alkaline peroxide using research surface methodology, industrial and engineering chemistry research, 2000, 48 (15), 7346-7353. Rani K. P, Sreejith M. P and E. Purushothaman., Isolation of microcrystalline and nano cellulose from peanut shells, Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115 JCHPS Special Issue 1: January 2016 Reddy N, Yang Y, Properties and potential applications of natural cellulose fibers from cornhusks, Green Chem.,7, 2005, 190-195. Reddy N, Yang Y, Structure and properties of high quality natural cellulose fibers from cornstalks, Polymer, 46, 2005, 5494-5500. 55
  • 56. REFERENCES CONT’D Rojas .J, Ospina L., Fonseca S., International Journal of Pharmaceutical Sciences Review and Research. 2012; 13(1): 1-8 Rosa M.F, Medeiros E.S, Malmonge J.A, Gregorski K.S, Wood D.F, Mattoso L.H.C, Glenn G, Orts W.J, Imam S.H, Cellulose nano whiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior, Carbohydrate. Polymer, 81, 2010, 83-92. Sathavornvichit, N., Bookkamana, P., and Plubin, B. "Central Composite Design in Optimization of the Factors of Automatic Flux Cored Arc Welding for Steel ST37" in Proceedings IMT-GT Regional Conferen ce on Mathematics, Statistics and Applications, Penang, Malaysia 2006. Sun J.X, Mao F.C, Sun X.F and Sun R.C., Comparative study of hemicelluloses isolated with alkaline peroxide from lignocellulosic materials. J. Wood Chem. Technol, 2004, 24, 239-262. 56
  • 58. 58 CHINA SEM IMAGE OF SAMPLE F9 SEM image of sample F9