SlideShare a Scribd company logo
1 of 78
TEXT
ACUTE DECOMPENSATED HEART FAILURE
▸Ingo Moeller
▸SCGH Registrar Teaching 08/06/2017
ACUTE DECOMPENSATED HEART FAILURE
CLINICAL VIGNETTE - MY PATIENT FROM
SATURDAY NIGHT
Its 6:32 am and you are the Registrar in charge of the Saturday night shift at Charlie’s.
You are tired after battling through Amphetamine and ETOH inebriated Patients, its quiet,
….too quiet!
“Its quite quiet” the Intern says…… and 2 minutes later SJA rushes a patient into T2.
The patient is an overweight middle-aged man who is also struggling
to breathe. SJA report that his blood pressure was 220/130 mm Hg at the scene.
Shifty immediately attaches the patient to the cardiac monitor and obtains vital signs.
His blood pressure is now 240/140 mm Hg. HR is 140. You listen to his lungs and notice coarse, wet breath
sounds. Your patient is tachypnoeic, sweaty, leaning forward in bed, and saturating 72% on room air. His oxygen
saturation improves to 88% on a 100% nonrebreather mask.
His legs are oedematous, and he has marked conversational dyspnea(single words).
Respiratory arrest seems certain unless appropriate action is taken, and you wonder what to do…..
ACUTE HEART FAILURE
INTRODUCTION…..
ACUTE DECOMPENSATED HEART FAILURE
▸incidence of in-hospital mortality among patients admitted to the hospital
for decompensated heart failure is 6.4%
▸in individuals aged 65 to 69 years, the prevalence of heart failure is
roughly 20 per 1000,
▸Among people >65 years of age presenting to primary care with
breathlessness on exertion, one in six will have unrecognized HF
(mainly HFpEF)
▸prevalence jumps to more than 80 per 1000 in individuals older than 85
years.
ACUTE DECOMPENSATED HEART FAILURE
ACUTE HEART FAILURE
▸Acute heart failure (AHF) is a relevant public health problem
causing the majority of unplanned hospital admissions in
patients aged of 65 years or more.
▸AHF was historically described as a pump failure with
downstream hypoperfusion and upstream congestion.
▸AHF remain poor with 90-day rehospitalization and 1-year
mortality rates reaching 30%
Understanding acute heart failure: pathophysiology and diagnosis, Eur Heart J Suppl (2016)
EPIDEMIOLOGY OF HEART
MORE DEATHS FROM
HEART FAILURE THAN
FROM ALL FORMS OF
CANCER COMBINED
550,000 NEW CASES/YEAR
4.7 MILLION SYMPTOMATIC
PATIENTS;
ESTIMATED 10 MILLION IN
2037
*Rich M. J Am Geriatric Soc. 1997;45:968–974.
American Heart Association. 2001 Heart and Stroke
Statistical Update. 2000.
3.5
4.7
10
0
2
4
6
8
10
F
12 AILURE (IN THE US)
1991 2000 2037*
Heart
Failure
Patients
in
US
(Millions)
ACUTE DECOMPENSATED HEART FAILURE
NOT ALL HEART FAILURE IS THE
SAME.
- Heart failure with preserved ejection fraction (HFpEF)
- and heart failure with reduced ejection fraction (HFrEF)
- may present with either hypertension or hypotension
-represent distinct underlying pathophysiologies that
require different approaches in treatment.
-HFpEF and HFrEF are equal in terms of occurrence,
morbidity, and mortality.
Karrowni W, Chatterjee K. Diastolic heart failure: the current understanding and approach for management with focus on intensive care unit patients. J Intensive Care Med. 2014;29(3):119-127. (Review article)
ACUTE DECOMPENSATED HEART FAILURE
SYSTOLIC AND DIASTOLIC HEART FAILURE
Heart failure occurs when the heart is either unable-
-to Pump blood during systole (HFrEF) or
-to Fill with blood during diastole (HFpEF)
Systolic heart failure results in heart failure with reduced ejection fraction. Diastolic heart failure results in heart failure with preserved ejection fractio
ACUTE DECOMPENSATED HEART FAILURE
HEART FAILURE WITH PRESERVED
E
H
J
F
p
E
E
C
Fi
s
Td
Ie
Of
i
n
e
Nda
s
Fh
Re
a
Ar
tf
a
Ci
l
u
Tr
e
Iw
Oi
t
h
Ne
j
e
c
t
i
o
nfraction that is either borderline (41%-
49%) or normal (> 50%).
Diastolic dysfunction
is characterised by elevated left ventricular filling pressures with impaired myocardial
relaxation.
responds differently to traditional heart failure therapies that were intended for the
traditional treatment of HFrEF
ACUTE DECOMPENSATED HEART FAILURE
ETIOLOGY AND PATHOPHYSIOLOGY
▸Injury to Myocardium
▸secondary to a number of causes that develop slowly over time (uncontrolled
hypertension, diabetes) or
▸more suddenly (eg, coronary ischaemia, STEMI)
▸Regardless of the cause, myocardial injury results in
▸structural-abnormalities of the ventricular wall that impair systolic
contraction or diastolic relaxation
▸electrophysiological, ->impaired conduction,(QRS widening on ECG),
which can lead to conduction blocks and re-entrant dysrhythmias and
▸biochemical remodeling -> impaired myocyte functionality and
increased risk of dysrhythmia
ACUTE DECOMPENSATED HEART FAILURE
THE ISSUE IS…
▸Regardless of the underlying aetiology, patients presenting
with AHF appear very similar to each other:
▸Sodium and Fluid retention,
▸excess Fluid backing up into the lungs, abdomen, and
extremities.
▸The result is fatigue, peripheral oedema, and dyspnea that
is often worse with exertion
ACUTE DECOMPENSATED HEART FAILURE
PATHOPHYSIOLOGY OF ACUTE HEART FAILURE
▸Acute heart failure is defined as new-onset or worsening of
symptoms and signs of HF
▸AHF typically includes symptoms or signs related to
congestion and volume overload rather than to
hypoperfusion
▸level of congestion and the number of congested organs
have prognostic relevance in HF patients
Gheorghiade M. European Society of Cardiology, European Society of Intensive Care
Medicine. Assessing and grading congestion in acute heart failure: a scientific statement
from the acute heart failure committee of the heart failure association of the European
Society of Cardiology and endorsed by the European Society of Intensive Care
Medicine. Eur J Heart Fail 2010
ACUTE DECOMPENSATED HEART FAILURE
CIRCLING THE DRAIN
ACUTE DECOMPENSATED HEART FAILURE
PATIENT EVALUATION IN ED
▸history,
▸physical examination,
▸chest radiography,
▸12-lead ECG,
▸Troponin
▸electrolytes, and a
▸complete blood cell count
▸BNP
Collins SP, . Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann Emerg Med. 2006;47:13–18.
ACUTE DECOMPENSATED HEART FAILURE
DIFFERENTIAL DIAGNOSIS
▸look for alternative diagnoses
▸do not miss reversible causes and
▸other life threatening causes
ACUTE DECOMPENSATED HEART FAILURE
CAUSES OF AHF
ACUTE DECOMPENSATED HEART FAILURE
PRECIPITANTS AND DIFFERENTIAL
DIAGNOSIS
▸Differential Diagnosis for Patients
Presenting With Dyspnea
▸Life-Threatening causes
▸Decompensated heart failure
▸Chronic obstructive pulmonary
disease
▸Asthma
▸Pneumonia
▸Pulmonary embolism
▸Acute coronary syndromes
▸Aortic dissection
▸Pericarditis or pericardial effusion
▸Pneumothorax
▸Precipitants of Acute heart failure
▸Acute coronary ischaemia
▸Valvular dysfunction
▸Cardiac arrhythmia
▸Pulmonary embolism
▸Myocarditis
▸Hypertensive emergency
▸Pericardial tamponade
▸Severe anemia
▸Worsening renal failure
▸Sepsis
▸Drug noncompliance
▸Dietary indiscretion
▸Medication side effect / change
▸Thyroid dysfunction
ACUTE DECOMPENSATED HEART FAILURE
HISTORY TAKING PEARLS ON SEVERITY OF
UNDERLYING DISEASE
▸Expect more severe disease in Patients with
▸AICD or PPM (automated implantable cardioverter defibrillator
▸Medication clues e.g. Patient on Spironolactone
▸Patients on homeopathic doses of Beta Blockers or ACE might
have baseline low BP
▸whilst patients with big doses are truely Hypertensive’s at baseline
▸Weight change if known?
ACUTE DECOMPENSATED HEART FAILURE
AHF - SIGNS AND SYMPTOMS
▸Exertional dyspnea and/or dyspnea at rest
▸Orthopnea
▸Acute pulmonary oedema
▸Chest pain/pressure and palpitations
▸Tachycardia
▸Fatigue and weakness
▸Nocturia and oliguria
▸Anorexia, weight loss, nausea
▸Exophthalmos and/or visible pulsation of eyes
▸Distention of neck veins
▸Weak, rapid, and thready pulse
▸Rales, wheezing
▸S 3 gallop and/or pulsus alternans
▸Increased intensity of P 2 heart sound
▸Hepatojugular reflux
▸Ascites, hepatomegaly, and/or anasarca
▸Central or peripheral cyanosis, pallor
▸Big Ticket items:
▸Patient Position
▸Hypertensive/Hypotensive
▸Distention of neck veins - Surrogate
for Right Heart pressure
▸Auscultation —>Rales, wheezing -
worse rales>worse AHD
▸New Heart Murmur / Distant Heart
sound
▸S3 gallop - Diagnostic for AHD
▸uni/bilateral Leg swelling
ACUTE DECOMPENSATED HEART FAILURE
ASSESSMENT OF HF PROBABILITY
▸1. Clinical history:
▸History of CAD (MI, revascularization)
▸History of arterial hypertension
▸Exposition to cardiotoxic drug/radiation
▸Use of diuretics
▸Orthopnoea / paroxysmal nocturnal dyspnoea
▸2. Physical examination:
▸Rales
▸Bilateral ankle oedema
▸Heart murmur
▸Jugular venous dilatation
▸Laterally displaced/broadened apical beat
▸3. ECG:
▸Any abnormality
ACUTE DECOMPENSATED HEART FAILURE
ASSESSMENT OF HEART FAILURE
PROBABILITY
▸1. Clinical history; 2. Physical examination; 3. ECG
▸≥1 present
▸NATRIURETIC PEPTIDES
▸NT-proBNP ≥125 pg/mL
▸BNP ≥35 pg/mL
▸Consider aetiology and start appropriate treatment
▸ECHOCARDIOGRAPHY
ACUTE DECOMPENSATED HEART FAILURE
ESC HEART FAILURE GUIDELINES
▸Use transthoracic echocardiography in patients with
suspected or established HF for the assessment of
myocardial structure and function along with the
measurement of LVEF to establish the diagnosis of
▸HF with reduced (HFrEF, LVEF<40%),
▸mid-range (HFmrEF, LVEF: 40-49%) or
▸preserved ejection fraction (HFpEF, LVEF≥50%)
ACUTE DECOMPENSATED HEART FAILURE
CLINICAL CLASSIFICATION
ACUTE DECOMPENSATED HEART FAILURE
FORRESTER HAEMODYNAMIC SUBSETS -
AHF IN NUMBERS
Subset Description
I: Warm and dry (normal) PCWP 15–18 mmHg and CI >2.2 L/min/m2
II: Warm and wet (congestion) PCWP >18 mmHg and CI >2.2 L/min/m2
III: Cold and dry (hypoperfusion) PCWP 15–18 mmHg and CI <2.2 L/min/m2
IV: Cold and wet (congestion and
PCWP >18 mmHg and CI <2.2 L/min/m2
hypoperfusion)
Forrester Hemodynamic Subsets
CI: cardiac index; PCWP: pulmonary capillary wedge pressure.
Forrester JS, Diamond G, Chatterjee K, et al. Medical therapy of acute myocardial infarction by application of hemodynamic subsets. N Engl J Med. 1976;295:1356–1362.
ACUTE DECOMPENSATED HEART FAILURE
BEDSIDE TEST - ECG
ACUTE DECOMPENSATED HEART FAILURE
ECG - INFERIOR STEMI WITH RV INFARCTION
ST elevation in V1 – the only standard ECG lead that looks directly at the right ventricle.
ST elevation in lead III > lead II – because lead III is more “rightward facing” than lead II and hence
more sensitive to the injury current produced by the right ventricle.
Right ventricular infarction complicates up to 40% of inferior STEMIs.
Patients with RV infarction are very preload sensitive (due to poor RV contractility) and can develop
severe hypotension in response to nitrates or other preload-reducing agents.
Hypotension in right ventricular infarction is treated with cautious fluid loading, and nitrates are
contraindicated.
ACUTE DECOMPENSATED HEART FAILURE
IMAGING IN AHF
▸CXR
▸ECHOCARDIOGRAPHY
▸LUNG ULTRASOUND
ACUTE DECOMPENSATED HEART FAILURE
RADIOLOGICAL FEATURES OF ACUTE
PULMONARY OEDEMA
▸There are distinct radiological phases.
▸Interstitial phase is the fluid filling up spaces between acini;
▸the alveolar phase is where that fluid floods the air spaces.
▸Interstitial pulmonary oedema may develop first.
▸Small pulmonary vessels lose their definition
▸Peribronchial cuffing occurs:
▸Kerley B lines
▸Thickening of fissures
▸Pleural effusions
▸Bat Wing" oedema
▸15% Normal CXR
ACUTE DECOMPENSATED HEART FAILURE
RADIOLOGICAL STAGES OF HEART FAILURE
ACUTE DECOMPENSATED HEART FAILURE
MILD PULMONARY CONGESTION WITH
CEPHALISATION
AP chest radiograph demonstrates cephalisation (upper lobe vascular redistribution) in stage I CCF where
there is elevation of the left atrial pressure 10-15 mmHg. Normal left atrial pressure is 5-10 mmHg.
http://www.radiologyassistant.nl/en/p4c132f36513d
ACUTE DECOMPENSATED HEART FAILURE
MORE ADVANCED CONGESTION - KERLEY B
LINES
Stage II - Interstitial oedema
Stage II of CHF is characterised by fluid leakage into the interlobular and peribronchial interstitium as a result of the
When fluid leaks into the peripheral interlobular septa it is seen as Kerley B or septal lines.
Kerley-B lines are seen as peripheral short 1-2 cm horizontal lines near the costophrenic angles.
These lines run perpendicular to the pleura.
ACUTE DECOMPENSATED HEART FAILURE
EVEN MORE ADVANCED CONGESTION
When fluid leaks into the peribronchovascular interstitium it is seen as thickening of the bronchial walls (peribronchial
cuffing) and as loss of definition of these vessels (perihilar haze).
On the left a patient with heart failure.
There is an increase in the caliber of the pulmonary vessels and they have lost their definition because they are
ACUTE DECOMPENSATED HEART FAILURE
ENDSTAGE - PULMONARY
CONGESTION WITH
CARDIOMEGALY
ULTRASOUND
IS YOUR NEW
STETHOSCOP
E
ACUTE DECOMPENSATED HEART FAILURE
ECHOCARDIOGRAPHY
▸Primary imaging modality to
evaluate a patient’s cardiac
function and evaluate for
either systolic or diastolic
dysfunction
▸only part of the initial ED
examination where systolic
and diastolic dysfunction can
be distinguished
▸approximation of LVEF
▸visual assessment that looks
for the general quality of the
“heart’s squeeze”
ACUTE DECOMPENSATED HEART FAILURE
ECHOCARDIOGRAPHY
▸A more precise way to examine left
ventricular ejection fraction is via E-point
septal separation (EPSS),
▸measures the smallest distance between
the tip of the mitral leaflet and the
interventricular septum during diastole.
▸This distance is assessed using M-mode,
with the indicator overlying the tip of the
mitral lea et.
▸The larger this distance, the lower the
ejection fraction. EPSS > 7 mm is
indicative of poor left ventricular
Secko MA, Lazar JM, Salciccioli LA, et al. Can junior emer- gency physicians use E-point septal
separation to accurately estimate left ventricular function in acutely dyspneic pa- tients? Acad Emerg
Med. 2011;18(11):1223-1226. (Prospective observational study; 58 patients)
Normal
Abnormal
M-Mode
ACUTE DECOMPENSATED HEART FAILURE
PULMONARY
ULTRASOUND - B LINES
Multiple B-lines from a case of cardiogenic pulmonaryoedema.
When a similar pattern is visualised on multiple locations in the anterior and lateral chest, it
is diagnostic of the interstitial syndrome.
Interstitial
Pulmonary fluid is identifiable on ultrasound as vertical hyper-echoic lines that arise from,
and run perpendicular to, the pleura.
These lines extend into the lung parenchyma and are referred to as B-lines.
The presence of 3 or more B-lines in at least 2 bilateral lung zones is indicative of
pulmonary oedema.
The greater the number of zones demonstrating B-lines, the higher the likelihood ofADHF
Combined with BNP - High Dx accuracy!
Liteplo AS, et al. Emergency thoracic ultrasound in the differentiation of the etiology of shortness of breath (ETUDES): sonographic B-lines and N-terminal pro-brain-type natriuretic peptide in diagnosing congestive heart failure. Aca
ACUTE DECOMPENSATED HEART FAILURE
INITIAL EVALUATION - LABORATORY
TESTING
▸BNP
▸Troponin
▸FBC
▸U/E’s
▸Supplementary Testing
ACUTE DECOMPENSATED HEART FAILURE
BNP
▸BNP Cutoff of 100 ng/l,
▸BNP had a sensitivity 90%, specificity 76%, negative predictive 79%, and
positive predictive value of 89%.
▸In this capacity, BNP is highly useful to exclude AHF
▸negative likelihood ratio of BNP at 100 pg/mL is 0.13 -LR
▸< 100 ng/l strongly suggestive against AHF
▸>400ng/l suggestive of AHF exacerbation
• However may be falsely elevated in:
• Renal disease, atrial fibrillation, pulmonary HTN
• May be falsely low in:
• Obese patients, HFPEF
• High BNP increased Mortality in men
1. Maisel AS, et all . Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–167.
ACUTE DECOMPENSATED HEART FAILURE
TROPONIN
▸Useful for risk stratification
▸? underlying primary cause of AHF (cardiac strain,
ischaemia, infarction)
▸elevated trop = increased in hospital mortality 8% versus 2.7
% if Neg Trop
▸increased re-hospitalisation rate
▸increased risk at death at 90 days
ACUTE DECOMPENSATED HEART FAILURE
FBC, U/E,S + SUPPLEMENTAL TESTS
▸Anaemia- HB under 8 (in IHD under 10)- improve Oxygen
carrying capacity by transfusion
▸Sodium and Renal function (AKI?-end organ damage)
▸Liver function (end organ damage)
▸Thyroid function (cause of failure?)
▸Calcium - low? improves cardiac contractility
▸amyloidosis, pheochromocytoma etc as rare causes.
ACUTE DECOMPENSATED HEART FAILURE
TREATMENT AIMS
▸Decrease left ventricular diastolic pressure, by decreasing
systemic vascular resistance and improving systolic and
diastolic functional reserve.
▸Promote coronary blood flow.
▸Correct acute respiratory failure.
▸In-hospital mortality for APO is up to 12%, with one-year
mortality up to 40% !
ACUTE DECOMPENSATED HEART FAILURE
MANAGEMENT OF PRELOAD
▸ Diuretics
▸ Fluid restriction
▸ Venodilators
▸ Aldosterone agonists
▸ Beta-blockers
▸ Maintenance of sinus rhythm and atrial systolic contribution
▸ Pacing to maintain AV synchrony
ACUTE DECOMPENSATED HEART FAILURE
MANAGEMENT OF AFTERLOAD
▸Left ventricle
▸Vasodilators
▸ACE-inhibitors
▸Beta-blockers
▸Right ventricle
▸Normoxia
▸Normocapnea
▸Avoidance of excessive postive respiratory pressures
▸Pulmonary vasodilators
ACUTE DECOMPENSATED HEART FAILURE
MANAGEMENT OF CARDIAC CONTRACTILITY
▸ Inotropes
▸Digoxin
▸Dobutamine
▸Levosimendan
▸ Cardiac resychronisation
▸ Supportive hormones and micronutrients (cortisol, insulin, calcium,
glucagon, thyroxine, thiamine etc
ACUTE DECOMPENSATED HEART FAILURE
DIAGNOSIS AND INITIAL PROGNOSTIC EVALUATION - BE A CHAMP
Jessup, M. et al. (2016) 2016 ESC and
ACC/AHA/HFSA heart failure guideline
update — what is new and why is it
important?
Nat. Rev. Cardiol.
doi:10.1038/nrcardio.2016.134
ACUTE DECOMPENSATED HEART FAILURE
IDENTIFICATION OF PRECIPITANTS/CAUSES LEADING TO DECOMPENSATION
THAT NEEDS URGENT MANAGEMENT
▸Acute coronary syndrome.
▸Coexistence of these two clinical conditions (ACS and AHF) always identifies a very-high-risk group where an immediate (i.e. <2 h from hospital admission in patients
with NSTEMI, analogous to STEMI management)
▸invasive strategy with intent to perform revascularization is recommended, irrespective of ECG or biomarker findings.
▸Hypertensive emergency.
▸AHF precipitated by rapid and excessive increase in arterial blood pressure typically manifests as acute pulmonary oedema. Aggressive blood pressure reduction (in
the range of 25% during the first few hours and cautiously thereafter) with i.v. vasodilators in combination with loop diuretics is recommended.
▸Rapid arrhythmias or severe bradycardia/conduction disturbance.
▸Severe rhythm disturbances in patients with AHF and unstable conditions should be corrected urgently with medical therapy, electrical cardioversion or temporary
pacing
▸Electrical cardioversion is recommended if an atrial or ventricular arrhythmia is thought to be contributing to the patient's haemodynamic compromise in order to
restore sinus rhythm and improve the patient's clinical condition.
▸Acute mechanical cause underlying AHF.
▸mechanical complication of ACS (free wall rupture, ventricular septal defect, acute mitral regurgitation),
▸chest trauma or cardiac intervention
▸Echocardiography is essential for diagnosis, and treatment typically requires circulatory support with surgical or percutaneous intervention.
▸ • Acute pulmonary embolism. When acute pulmonary embolism is confirmed as the cause of shock or hypotension, immediate specific treatment is recommended with
primary reperfusion either with thrombolysis, catheter-based approach or surgical embolectomy.
CUTE DECOMPENSATED HEART FAILURE
INITIAL
MANAGE
MENT
PATHWAY
ACUTE DECOMPENSATED HEART FAILURE
5 DISTINCT TREATMENT GROUPS
▸Acute heart failure syndrome (AHFS) spectrum can be divided into 5 groups as
regards therapeutic management:
▸Dyspnoea + /- congestion with elevated systolic blood pressure (SBP)>140
mmHg, usually with abrupt onset APO (most frequent type)
▸Dyspnoea + /- congestion with normal SBP 100-140 mmHg, usually with gradual
onset predominant systemic oedema and milder APO
▸Dyspnoea + /- congestion with low SBP <100 mmHg, with predominant
cardiogenic shock or end-stage cardiac failure (most fatal type)
▸Dyspnoea + /- congestion with signs of ACS such as chest pain
▸Isolated RV failure usually without APO
Mebazza A, Gheoghiade M, Pina I et al. Practical recommendations for pre- hospital and early in-hospital management of patients presenting with acute heart failure. Crit Care Med 2008;36:S129-39.
ACUTE DECOMPENSATED HEART FAILURE
CLINICAL CLASSIFICATION
Classification of patients presenting with acutely decompensated heart failu
Yancy C W et al. Circulation.2013;128:e240-e327
ACUTE DECOMPENSATED HEART FAILURE
PRACTICAL RECOMMENDATION
Alexandre Mebazaa, MD, PhD et all “Practical recommendations
for prehospital and early inhospital management of patients
presenting with acute heart failure
syndromes” Crit Care Med 2008 Vol. 36, No. 1
CUTE DECOMPENSATED HEART FAILURE
INITIAL
MANAGE
MENT
PATHWAY
ACUTE DECOMPENSATED HEART FAILURE
VASODILATORS
▸ Safety of high dose initial GTN:
▸ 800 mcg(2x0,4mg sl tab) GTN sl if BP>180mmHg
▸ 1200 mcg(3x0.4mg sl Tab) for BP>200 mmHg
▸ only 3/75 incidence of Hypotension
▸ Initial GTN dose iv 50-100mcg/min up to 400mcg/min for 2 min max with Physician
in attendance
▸ Vasodilators should be used with extreme caution in patients with significant mitral
or aortic stenosis.
Clemency BM, Thompson JJ, Tundo GN, et al.
Prehospital Disaster Medicine high-dose
sublingual nitroglycerin rarely causes hypoten- sion.
Prehosp Disaster Med. 2013;28(5):477-481.
(Retrospective cohort study; 75 patients)
ACUTE DECOMPENSATED HEART FAILURE
VASODILATORS
‣ No robust evidence confirming their beneficial effects.
‣ They have dual benefit by
‣ decreasing venous tone (to optimize preload)
‣ decreasing arterial tone (decrease afterload).
‣ they may also increase stroke volume.
‣ Vasodilators are especially useful in patients with hypertensive AHF, whereas in SBP <90 mmHg (or with s
ACUTE DECOMPENSATED HEART FAILURE
INOTROPIC AGENTS
▸ Digoxin - no improvement over placebo in one (older) study
▸ Dopamine was compared with norepinephrine in the treatment of various shock patients.
▸ Increased Mortality
▸ A subgroup analysis suggested that norepinephrine would have fewer side effects and lower mortality
▸ Norepinephrine 1st choice but increasing Oxygen demand in Heart
De Backer D , Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance
P, Gottignies P, Vincent J-L. Comparison of dopamine and norepinephrine in the treatment of
shock. N Engl J Med 2010;362:779–789.
ACUTE DECOMPENSATED HEART FAILURE
INOTROPES
ACUTE DECOMPENSATED HEART FAILURE
DIGOXIN
▸Digoxin is if at all indicated in patients with AF and rapid
ventricular rate (>110 bpm)
▸boluses of 0.25–0.5 mg i.v. if not used previously
ACUTE DECOMPENSATED HEART FAILURE
MANAGEMENT OF PATIENTS WITH CARDIOGENIC SHOCK
▸Pharmacologic therapy aims to improve organ perfusion
▸by increasing cardiac output and blood pressure.
▸fluid challenge,
▸inotropic agent (Dobutamine)and a
▸vasopressor (noradrenaline) as needed.
▸immediate Coronary Angiogram recommended
ACUTE DECOMPENSATED HEART FAILURE
DIURETICS
▸Diuretics are a cornerstone in the treatment of patients with AHF and signs of fluid overload and
congestion.
▸Diuretics increase renal salt and water excretion and have some vasodilatory effect.
▸In patients with AHF and signs of hypoperfusion, diuretics should be avoided before adequate perfusion
is attained.
▸The initial approach to congestion management involves i.v. diuretics with the addition of vasodilators for
dyspnoea relief if blood pressure allows.
▸Options include dual nephron blockade by loop diuretics (i.e. furosemide or torasemide) with thiazide
diuretics or natriuretic doses of MRAs
▸Administration of furosemide at 2.5 times the previous oral dose resulted in greater improvementin
dyspnoea, larger weight change and fluid loss at the cost of transient worsening in renalfunction.
▸patients with new-onset AHF or those with chronic HF without a history of renal failure and previous use
of diuretics may respond to i.v. boluses of 20–40 mg
ACUTE DECOMPENSATED HEART FAILURE
FURUSEMIDE
Felker GM , Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, LeWinter MM,
Deswal A, Rouleau JL, Ofili EO, Anstrom KJ, Hernandez AF, McNulty SE, Velazquez EJ,
Kfoury AG, Chen HH, Givertz MM, Semigran MJ, Bart BA, Mascette AM, Braunwald E,
O'Connor CM. Diuretic strategies in patients with acute decompensated heart failure. N EnglJ
Med 2011;364:797–805.
▸In Patient with Evidence of Fluid overload Diuretics to be started
early in ED stay
▸In the ‘high-dose’ arm of the DOSE study, administration of
furosemide at 2.5 times the previous oral dose resulted in
greater improvement in dyspnoea, larger weight change and
fluid loss at the cost of transient worsening in renal function
▸i.v. Furusemide should be given at least the same or larger
the daily po dose to improve outcomes.
▸starting does for Furusemide in de move patients 20-40mg iv
ACUTE DECOMPENSATED HEART FAILURE
OXYGEN
▸In AHF, oxygen should not be used routinely in non-
hypoxaemic patients, as it causes vasoconstriction and a
reduction in cardiac output.
▸In COPD, hyperoxygenation may increase ventilation–
perfusion mismatch, suppressing ventilation and leading to
hypercapnia.
▸During oxygen therapy, acid–base balance and
transcutaneous SpO2 should be monitored.
Park JH , Balmain S, Berry C, Morton JJ, McMurray JJV. Potentially detrimental
cardiovascular effects of oxygen in patients with chronic left ventricular systolic dysfunction.
Heart 2010;96:533–538.
ACUTE DECOMPENSATED HEART FAILURE
OPIATES…RATHER USE BENZO’S
▸Opiates relieve dyspnoea and anxiety.
▸In AHF, routine use of opiates is not recommended and they may
only be cautiously considered in patients with severe dyspnoea,
mostly with pulmonary oedema.
▸Dose-dependent side effects include nausea, hypotension,
bradycardia and respiratory depression (potentially increasing the
need for invasive ventilation).
▸There are controversies regarding the potentially elevated
mortality risk in patients receiving morphine
Peacock WF , Hollander JE, Diercks DB, Lopatin M, Fonarow G, Emerman CL. Morphineand
outcomes in acute decompensated heart failure: an ADHERE analysis. EmergMed
J 2008;25:205–209.
ACUTE DECOMPENSATED HEART FAILURE
LEVOSIMENDAN
▸“Calcium-sensitiser”
▸works by increasing myocardial contractility
▸by sensitising the cardiac myocytes to calcium
▸ In the REVIVE study levosimendan, when added to standard therapy,
resulted in a more rapid symptomatic improvement when compared to
placebo with standard therapy;
▸increased risk of hypotension and dysrhythmias associated with its
administration
Packer M, Colucci W, Fisher L, et al. Effect of Levosimendan on the
short term clinical course of patients with acutely decompensated heart
failure. JACC Heart Fail2013;1(2):103- 111. (Randomized controlled trial;
700 patients
ACUTE DECOMPENSATED HEART FAILURE
VENTILATORY ASSISTANCE
▸ Non-invasive ventilation (NIV) refers to CPAP; or bilevel positive airway pressure
(BiPAP) non-invasive pressure support ventilation (NIPSV), where IPAP – EPAP
(≡PEEP) reflects the amount of pressure support delivered.
▸CPAP reduces mortality (RR 0.64) and need to intubate (RR 0.44), with no effect
on incidence of new MI. BiPAP reduces need to intubate (RR 0.54), but not
mortality or new MI. Thus CPAP preferred in APO due to AMI / ischaemia.
▸Note 3CPO trial findings showed negative effect of NIV compared to standard
medical therapy alone, but may be explained by sickest patients were excluded,
low overall rates of intubation, ischaemia and mortality (i.e. their patients were
different), and considerable treatment group crossover after first 2 hours.
ACUTE DECOMPENSATED HEART FAILURE
NIV
▸Non-invasive positive pressure ventilation includes both CPAP and bi-level positive
pressure ventilation (PPV). Bi-level PPV also allows inspiratory pressure support that
improves minute ventilation and is especially useful in patients with hypercapnia, most
typically COPD patients.
▸Non-invasive positive pressure ventilation includes both CPAP and bi-level positive
pressure ventilation (PPV). Bi-level PPV also allows inspiratory pressure support that
improves minute ventilation and is especially useful in patients with hypercapnia, most
typically COPD patients.
▸Non-invasive positive pressure ventilation reduces respiratory distress and may decrease
intubation and mortality rate
▸In one study (Emerg Med J 2004; 21:155-161) survival to hospital discharge was improved
with CPAP (10 mm/Hg) over BiPap (Ipap 15 Epap 5) and conventional therapy
Vital FMR , Ladeira MT, Atallah AN. Non-invasive positive pressure ventilation (CPAP or
bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane DatabaseSyst
Rev 2013;5:CD005351.
ACUTE DECOMPENSATED HEART FAILURE
EARLY REVASCULARISATION THERAPY IN
ISCHAEMIC ECG
▸The SHOCK Trial showed a 67% relative improvement in
long-term survival, measured at 6 years, for patients
managed with rapid revascularization.
▸Role of revascularization is not clear for patients presenting
with failure without obvious acute ischemia.
Hochman JS, Sleeper LA, Webb JG, et al. Early revasculariza- tion andlong-
term survival in cardiogenic shock complicat- ing acute myocardialinfarction.
JAMA. 2006;295(21):2511- 2515. (Randomized controlled trial; 302patients)
ACUTE DECOMPENSATED HEART FAILURE
ULTRAFILTRATION
▸Ultrafiltration is similar to hemodialysis; however, it focuses on
fluid removal rather than solute exchange.
▸can be accomplished through a smaller-diameter catheter than
hemodialysis, but it generally requires a peripherally inserted
central catheter (PICC) line
▸The UNLOAD trial evaluated ultrafiltration versus IV diuretic
therapy in patients with functioning kidneys, and it demonstrated
that ultrafiltration removes a larger volume of fluid and is
associated with a greater reduction in 90-day resource utilisation
compared to diuretic therapy.
ACUTE DECOMPENSATED HEART FAILURE
MANAGEMENT OF PATIENTS WITH ACUTE
HEART FAILURE
ACUTE DECOMPENSATED HEART FAILURE
INITIAL MANAGEMENT OF A PATIENT WITH
ACUTE HEART FAILURE
Jessup, M. et al. (2016) 2016 ESC and ACC/AHA/HFSA heart failure guideline update — what is new and why is it important?
Nat. Rev. Cardiol. doi:10.1038/nrcardio.2016.134
Modified from Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart
failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of
Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC.
Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehw128 (2016), with permission from Oxford University Press and the ESC
ACUTE DECOMPENSATED HEART FAILURE
MECHANICAL RESCUE DEVICES AND
CHEATS
▸Increase cardiac output by unnatural means:
▸LVAD
▸ECMO
▸Increase the pacemaker rate (60-90 increase of CO by 30%)
▸Decrease the organism's demand for cardiac output
▸Hypothermia
▸Paralysis/sedation
ACUTE DECOMPENSATED HEART FAILURE
BRIDGING THERAPY TO HEART
TRANSPLANT ?
TEXT
OPIATES
▸Opiates relieve dyspnoea and anxiety.
▸In AHF, routine use of opiates is not recommended
▸only be cautiously considered in patients with severe dyspnoea, mostly
with pulmonary oedema.
▸Dose-dependent side effects
▸nausea, hypotension, bradycardia and respiratory depression
(potentially increasing the need for invasive ventilation).
▸There are controversies regarding the potentially elevated mortality
risk in patients receiving morphine
Iakobishvili et all, Use of intravenous morphine for acute decompensated heart failure in patients with and without acute coronary syndromes.
Acute Card Care 2011;13:76–80.
PeacockWF.ett all.Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis.Emerg Med J
2008;25:205–209.
ACUTE DECOMPENSATED HEART FAILURE
DEVICE THERAPY - RRT
▸Renal Replacement Therapy - routine use of ultrafiltration is not
recommended
▸Criteria for initiation of renal replacement therapy in patients with refractory
volume overload:
▸oliguria unresponsive to fluid resuscitation measures,
▸severe hyperkalaemia (K+ >6.5 mmol/L),
▸severe acidaemia (pH <7.2),
▸serum urea level >25 mmol/L (150 mg/dL) and
▸serum creatinine >300 µmol/L (>3.4 mg/dL)
ACUTE DECOMPENSATED HEART FAILURE
DEVICE THERAPY - MECHANICAL ASSIST
DEVICES
▸Intra-aortic balloon pump
▸in cardiac shock
▸otherwise no good evidence
▸ IABP did not improve outcomes in patients
suffering from AMI and cardiogenic shock -
(IABP-SHOCK II trial)
▸Left Ventricular assist devices (LVAD)
▸ (MCS) may be used as a ‘bridge to
decision’ or longer term in selected
patients
Thiele H. et all.Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet 2013
ACUTE DECOMPENSATED HEART FAILURE
OTHER INTERVENTIONS
▸In patients with AHF and pleural effusion, pleurocentesis
with fluid evacuation may be considered if feasible in order
to alleviate dyspnoea.
▸In ascites, ascitic paracentesis with fluid evacuation may be
considered in order to alleviate symptoms.
▸reduction in intra-abdominal pressure,
▸partially normalizes the transrenal pressure gradient, thus
improving renal filtration.
ACUTE DECOMPENSATED HEART FAILURE
DISPOSITION
▸The criteria for ICU/CCU admission include any of the following:
▸ need for intubation (or already intubated)
▸ signs/symptoms of hypoperfusion
▸ oxygen saturation (SpO2) <90% (despite supplemental
oxygen)
▸ use of accessory muscles for breathing, respiratory rate
>25/min
▸ heart rate <40 or >130 bpm, SBP <90 mmHg.
ACUTE DECOMPENSATED HEART FAILURE
CLINICAL VIGNETTE - OUTCOME OF YOUR
PATIENT
▸ The middle-aged man with hypertensive decompensated heart
failure with acute pulmonary oedema, was started immediately
on BiPAP to support his breathing, and he responded well.
Bedside pulmonary ultrasound showed B-lines, confirming the
diagnosis of pulmonary oedema. He was started on a high-dose
nitroglycerin drip, which resulted in a significant improvement in
his respiratory symptoms. He received IV diuresis and was
admitted to the ICU for further management.
TEXT
TAKE HOME MESSAGE - BE A CHAMP
USEFUL SCRIPTURE
▸EBMEDICINE Acute Decompensated Heart Failure: New Strategies
for Improving Outcomes May 2017
▸2016 ESC Guidelines for the diagnosis and treatment of acute and
chronic heart failure: The Task Force for the diagnosis and treatment
of acute and chronic heart failure of the European Society of
Cardiology (ESC)Eur Heart J (2016) 37 (27): 2129-2200

More Related Content

Similar to ahfailure-170609065615-converted.pptx

Diastolic heart failure
Diastolic heart failureDiastolic heart failure
Diastolic heart failureRajeel Imran
 
Diastolic heart failure
Diastolic heart failureDiastolic heart failure
Diastolic heart failureRajeel Imran
 
Cardiac Amyloidosis Final Presentation.pdf
Cardiac Amyloidosis Final Presentation.pdfCardiac Amyloidosis Final Presentation.pdf
Cardiac Amyloidosis Final Presentation.pdfJonathanStrandberg1
 
HTN CRISIS SEMINER.pptx
HTN CRISIS SEMINER.pptxHTN CRISIS SEMINER.pptx
HTN CRISIS SEMINER.pptxImanuIliyas
 
Hypertensive Emergencies
Hypertensive EmergenciesHypertensive Emergencies
Hypertensive EmergenciesDokka Srinivasu
 
Hypertensive emergencies
Hypertensive emergenciesHypertensive emergencies
Hypertensive emergenciesMyiesha Taylor
 
HEART TRANSPLANTATION SUGERY
HEART TRANSPLANTATION SUGERYHEART TRANSPLANTATION SUGERY
HEART TRANSPLANTATION SUGERYShibly S B L
 
6. presenting problems
6. presenting problems6. presenting problems
6. presenting problemsAhmad Hamadi
 
Heart Failure. Presented by Dr KD DELE 23102019
Heart Failure. Presented by Dr KD DELE 23102019Heart Failure. Presented by Dr KD DELE 23102019
Heart Failure. Presented by Dr KD DELE 23102019Kemi Dele-Ijagbulu
 
Congenital heart disease
Congenital heart diseaseCongenital heart disease
Congenital heart diseaseSurendra Sharma
 
Cardiogenic shock and IABP.pptx
Cardiogenic shock and IABP.pptxCardiogenic shock and IABP.pptx
Cardiogenic shock and IABP.pptxPRIYANKA BHATI
 
MD7097 Cardiovascular Disease.docx
MD7097 Cardiovascular Disease.docxMD7097 Cardiovascular Disease.docx
MD7097 Cardiovascular Disease.docxstirlingvwriters
 

Similar to ahfailure-170609065615-converted.pptx (20)

Anaesthesia and ihd
Anaesthesia and ihdAnaesthesia and ihd
Anaesthesia and ihd
 
Diastolic heart failure
Diastolic heart failureDiastolic heart failure
Diastolic heart failure
 
Diastolic heart failure
Diastolic heart failureDiastolic heart failure
Diastolic heart failure
 
Cardiac Amyloidosis Final Presentation.pdf
Cardiac Amyloidosis Final Presentation.pdfCardiac Amyloidosis Final Presentation.pdf
Cardiac Amyloidosis Final Presentation.pdf
 
HTN CRISIS SEMINER.pptx
HTN CRISIS SEMINER.pptxHTN CRISIS SEMINER.pptx
HTN CRISIS SEMINER.pptx
 
Oedema
OedemaOedema
Oedema
 
Hypertensive Emergencies
Hypertensive EmergenciesHypertensive Emergencies
Hypertensive Emergencies
 
Autopsy conference
Autopsy conferenceAutopsy conference
Autopsy conference
 
Cardiac murmers
Cardiac murmersCardiac murmers
Cardiac murmers
 
Hypertensive emergencies
Hypertensive emergenciesHypertensive emergencies
Hypertensive emergencies
 
HEART TRANSPLANTATION SUGERY
HEART TRANSPLANTATION SUGERYHEART TRANSPLANTATION SUGERY
HEART TRANSPLANTATION SUGERY
 
6. presenting problems
6. presenting problems6. presenting problems
6. presenting problems
 
Congenital heart disease
Congenital heart diseaseCongenital heart disease
Congenital heart disease
 
Heart disorders
Heart disordersHeart disorders
Heart disorders
 
Heart Failure. Presented by Dr KD DELE 23102019
Heart Failure. Presented by Dr KD DELE 23102019Heart Failure. Presented by Dr KD DELE 23102019
Heart Failure. Presented by Dr KD DELE 23102019
 
MED 4 HEART FAILURE.pdf
MED 4 HEART FAILURE.pdfMED 4 HEART FAILURE.pdf
MED 4 HEART FAILURE.pdf
 
Congenital heart disease
Congenital heart diseaseCongenital heart disease
Congenital heart disease
 
Cardiogenic shock and IABP.pptx
Cardiogenic shock and IABP.pptxCardiogenic shock and IABP.pptx
Cardiogenic shock and IABP.pptx
 
MD7097 Cardiovascular Disease.docx
MD7097 Cardiovascular Disease.docxMD7097 Cardiovascular Disease.docx
MD7097 Cardiovascular Disease.docx
 
ECG in young
ECG in youngECG in young
ECG in young
 

Recently uploaded

哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样
哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样
哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样qaffana
 
High Profile Call Girls In Andheri 7738631006 Call girls in mumbai Mumbai ...
High Profile Call Girls In Andheri 7738631006 Call girls in mumbai  Mumbai ...High Profile Call Girls In Andheri 7738631006 Call girls in mumbai  Mumbai ...
High Profile Call Girls In Andheri 7738631006 Call girls in mumbai Mumbai ...Pooja Nehwal
 
如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查
如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查
如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查awo24iot
 
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一ga6c6bdl
 
(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
定制(UI学位证)爱达荷大学毕业证成绩单原版一比一
定制(UI学位证)爱达荷大学毕业证成绩单原版一比一定制(UI学位证)爱达荷大学毕业证成绩单原版一比一
定制(UI学位证)爱达荷大学毕业证成绩单原版一比一ss ss
 
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...Call Girls in Nagpur High Profile
 
Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,
Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,
Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,Pooja Nehwal
 
定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一ss ss
 
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /WhatsappsBeautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsappssapnasaifi408
 
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...nagunakhan
 
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up NumberCall Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up NumberMs Riya
 
《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》
《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》
《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》o8wvnojp
 
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311  Call Girls in Thane , Independent Escort Service ThanePallawi 9167673311  Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service ThanePooja Nehwal
 
FULL ENJOY - 8264348440 Call Girls in Hauz Khas | Delhi
FULL ENJOY - 8264348440 Call Girls in Hauz Khas | DelhiFULL ENJOY - 8264348440 Call Girls in Hauz Khas | Delhi
FULL ENJOY - 8264348440 Call Girls in Hauz Khas | Delhisoniya singh
 
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service GayaGaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service Gayasrsj9000
 
Presentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfPresentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfchapmanellie27
 
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...anilsa9823
 
Thane Escorts, (Pooja 09892124323), Thane Call Girls
Thane Escorts, (Pooja 09892124323), Thane Call GirlsThane Escorts, (Pooja 09892124323), Thane Call Girls
Thane Escorts, (Pooja 09892124323), Thane Call GirlsPooja Nehwal
 
(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Service
(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Service(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Service
(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 

Recently uploaded (20)

哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样
哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样
哪里办理美国宾夕法尼亚州立大学毕业证(本硕)psu成绩单原版一模一样
 
High Profile Call Girls In Andheri 7738631006 Call girls in mumbai Mumbai ...
High Profile Call Girls In Andheri 7738631006 Call girls in mumbai  Mumbai ...High Profile Call Girls In Andheri 7738631006 Call girls in mumbai  Mumbai ...
High Profile Call Girls In Andheri 7738631006 Call girls in mumbai Mumbai ...
 
如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查
如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查
如何办理(Adelaide毕业证)阿德莱德大学毕业证成绩单Adelaide学历认证真实可查
 
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
 
(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(PARI) Alandi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
定制(UI学位证)爱达荷大学毕业证成绩单原版一比一
定制(UI学位证)爱达荷大学毕业证成绩单原版一比一定制(UI学位证)爱达荷大学毕业证成绩单原版一比一
定制(UI学位证)爱达荷大学毕业证成绩单原版一比一
 
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
 
Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,
Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,
Call Girls In Andheri East Call 9892124323 Book Hot And Sexy Girls,
 
定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一
 
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /WhatsappsBeautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
 
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
 
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up NumberCall Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
 
《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》
《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》
《1:1仿制麦克马斯特大学毕业证|订制麦克马斯特大学文凭》
 
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311  Call Girls in Thane , Independent Escort Service ThanePallawi 9167673311  Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service Thane
 
FULL ENJOY - 8264348440 Call Girls in Hauz Khas | Delhi
FULL ENJOY - 8264348440 Call Girls in Hauz Khas | DelhiFULL ENJOY - 8264348440 Call Girls in Hauz Khas | Delhi
FULL ENJOY - 8264348440 Call Girls in Hauz Khas | Delhi
 
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service GayaGaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
 
Presentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfPresentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvf
 
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
 
Thane Escorts, (Pooja 09892124323), Thane Call Girls
Thane Escorts, (Pooja 09892124323), Thane Call GirlsThane Escorts, (Pooja 09892124323), Thane Call Girls
Thane Escorts, (Pooja 09892124323), Thane Call Girls
 
(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Service
(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Service(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Service
(SANA) Call Girls Landewadi ( 7001035870 ) HI-Fi Pune Escorts Service
 

ahfailure-170609065615-converted.pptx

  • 1. TEXT ACUTE DECOMPENSATED HEART FAILURE ▸Ingo Moeller ▸SCGH Registrar Teaching 08/06/2017
  • 2. ACUTE DECOMPENSATED HEART FAILURE CLINICAL VIGNETTE - MY PATIENT FROM SATURDAY NIGHT Its 6:32 am and you are the Registrar in charge of the Saturday night shift at Charlie’s. You are tired after battling through Amphetamine and ETOH inebriated Patients, its quiet, ….too quiet! “Its quite quiet” the Intern says…… and 2 minutes later SJA rushes a patient into T2. The patient is an overweight middle-aged man who is also struggling to breathe. SJA report that his blood pressure was 220/130 mm Hg at the scene. Shifty immediately attaches the patient to the cardiac monitor and obtains vital signs. His blood pressure is now 240/140 mm Hg. HR is 140. You listen to his lungs and notice coarse, wet breath sounds. Your patient is tachypnoeic, sweaty, leaning forward in bed, and saturating 72% on room air. His oxygen saturation improves to 88% on a 100% nonrebreather mask. His legs are oedematous, and he has marked conversational dyspnea(single words). Respiratory arrest seems certain unless appropriate action is taken, and you wonder what to do…..
  • 3. ACUTE HEART FAILURE INTRODUCTION….. ACUTE DECOMPENSATED HEART FAILURE ▸incidence of in-hospital mortality among patients admitted to the hospital for decompensated heart failure is 6.4% ▸in individuals aged 65 to 69 years, the prevalence of heart failure is roughly 20 per 1000, ▸Among people >65 years of age presenting to primary care with breathlessness on exertion, one in six will have unrecognized HF (mainly HFpEF) ▸prevalence jumps to more than 80 per 1000 in individuals older than 85 years.
  • 4. ACUTE DECOMPENSATED HEART FAILURE ACUTE HEART FAILURE ▸Acute heart failure (AHF) is a relevant public health problem causing the majority of unplanned hospital admissions in patients aged of 65 years or more. ▸AHF was historically described as a pump failure with downstream hypoperfusion and upstream congestion. ▸AHF remain poor with 90-day rehospitalization and 1-year mortality rates reaching 30% Understanding acute heart failure: pathophysiology and diagnosis, Eur Heart J Suppl (2016)
  • 5. EPIDEMIOLOGY OF HEART MORE DEATHS FROM HEART FAILURE THAN FROM ALL FORMS OF CANCER COMBINED 550,000 NEW CASES/YEAR 4.7 MILLION SYMPTOMATIC PATIENTS; ESTIMATED 10 MILLION IN 2037 *Rich M. J Am Geriatric Soc. 1997;45:968–974. American Heart Association. 2001 Heart and Stroke Statistical Update. 2000. 3.5 4.7 10 0 2 4 6 8 10 F 12 AILURE (IN THE US) 1991 2000 2037* Heart Failure Patients in US (Millions)
  • 6. ACUTE DECOMPENSATED HEART FAILURE NOT ALL HEART FAILURE IS THE SAME. - Heart failure with preserved ejection fraction (HFpEF) - and heart failure with reduced ejection fraction (HFrEF) - may present with either hypertension or hypotension -represent distinct underlying pathophysiologies that require different approaches in treatment. -HFpEF and HFrEF are equal in terms of occurrence, morbidity, and mortality. Karrowni W, Chatterjee K. Diastolic heart failure: the current understanding and approach for management with focus on intensive care unit patients. J Intensive Care Med. 2014;29(3):119-127. (Review article)
  • 7. ACUTE DECOMPENSATED HEART FAILURE SYSTOLIC AND DIASTOLIC HEART FAILURE Heart failure occurs when the heart is either unable- -to Pump blood during systole (HFrEF) or -to Fill with blood during diastole (HFpEF) Systolic heart failure results in heart failure with reduced ejection fraction. Diastolic heart failure results in heart failure with preserved ejection fractio
  • 8. ACUTE DECOMPENSATED HEART FAILURE HEART FAILURE WITH PRESERVED E H J F p E E C Fi s Td Ie Of i n e Nda s Fh Re a Ar tf a Ci l u Tr e Iw Oi t h Ne j e c t i o nfraction that is either borderline (41%- 49%) or normal (> 50%). Diastolic dysfunction is characterised by elevated left ventricular filling pressures with impaired myocardial relaxation. responds differently to traditional heart failure therapies that were intended for the traditional treatment of HFrEF
  • 9. ACUTE DECOMPENSATED HEART FAILURE ETIOLOGY AND PATHOPHYSIOLOGY ▸Injury to Myocardium ▸secondary to a number of causes that develop slowly over time (uncontrolled hypertension, diabetes) or ▸more suddenly (eg, coronary ischaemia, STEMI) ▸Regardless of the cause, myocardial injury results in ▸structural-abnormalities of the ventricular wall that impair systolic contraction or diastolic relaxation ▸electrophysiological, ->impaired conduction,(QRS widening on ECG), which can lead to conduction blocks and re-entrant dysrhythmias and ▸biochemical remodeling -> impaired myocyte functionality and increased risk of dysrhythmia
  • 10. ACUTE DECOMPENSATED HEART FAILURE THE ISSUE IS… ▸Regardless of the underlying aetiology, patients presenting with AHF appear very similar to each other: ▸Sodium and Fluid retention, ▸excess Fluid backing up into the lungs, abdomen, and extremities. ▸The result is fatigue, peripheral oedema, and dyspnea that is often worse with exertion
  • 11. ACUTE DECOMPENSATED HEART FAILURE PATHOPHYSIOLOGY OF ACUTE HEART FAILURE ▸Acute heart failure is defined as new-onset or worsening of symptoms and signs of HF ▸AHF typically includes symptoms or signs related to congestion and volume overload rather than to hypoperfusion ▸level of congestion and the number of congested organs have prognostic relevance in HF patients Gheorghiade M. European Society of Cardiology, European Society of Intensive Care Medicine. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail 2010
  • 12. ACUTE DECOMPENSATED HEART FAILURE CIRCLING THE DRAIN
  • 13. ACUTE DECOMPENSATED HEART FAILURE PATIENT EVALUATION IN ED ▸history, ▸physical examination, ▸chest radiography, ▸12-lead ECG, ▸Troponin ▸electrolytes, and a ▸complete blood cell count ▸BNP Collins SP, . Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann Emerg Med. 2006;47:13–18.
  • 14. ACUTE DECOMPENSATED HEART FAILURE DIFFERENTIAL DIAGNOSIS ▸look for alternative diagnoses ▸do not miss reversible causes and ▸other life threatening causes
  • 15. ACUTE DECOMPENSATED HEART FAILURE CAUSES OF AHF
  • 16. ACUTE DECOMPENSATED HEART FAILURE PRECIPITANTS AND DIFFERENTIAL DIAGNOSIS ▸Differential Diagnosis for Patients Presenting With Dyspnea ▸Life-Threatening causes ▸Decompensated heart failure ▸Chronic obstructive pulmonary disease ▸Asthma ▸Pneumonia ▸Pulmonary embolism ▸Acute coronary syndromes ▸Aortic dissection ▸Pericarditis or pericardial effusion ▸Pneumothorax ▸Precipitants of Acute heart failure ▸Acute coronary ischaemia ▸Valvular dysfunction ▸Cardiac arrhythmia ▸Pulmonary embolism ▸Myocarditis ▸Hypertensive emergency ▸Pericardial tamponade ▸Severe anemia ▸Worsening renal failure ▸Sepsis ▸Drug noncompliance ▸Dietary indiscretion ▸Medication side effect / change ▸Thyroid dysfunction
  • 17. ACUTE DECOMPENSATED HEART FAILURE HISTORY TAKING PEARLS ON SEVERITY OF UNDERLYING DISEASE ▸Expect more severe disease in Patients with ▸AICD or PPM (automated implantable cardioverter defibrillator ▸Medication clues e.g. Patient on Spironolactone ▸Patients on homeopathic doses of Beta Blockers or ACE might have baseline low BP ▸whilst patients with big doses are truely Hypertensive’s at baseline ▸Weight change if known?
  • 18. ACUTE DECOMPENSATED HEART FAILURE AHF - SIGNS AND SYMPTOMS ▸Exertional dyspnea and/or dyspnea at rest ▸Orthopnea ▸Acute pulmonary oedema ▸Chest pain/pressure and palpitations ▸Tachycardia ▸Fatigue and weakness ▸Nocturia and oliguria ▸Anorexia, weight loss, nausea ▸Exophthalmos and/or visible pulsation of eyes ▸Distention of neck veins ▸Weak, rapid, and thready pulse ▸Rales, wheezing ▸S 3 gallop and/or pulsus alternans ▸Increased intensity of P 2 heart sound ▸Hepatojugular reflux ▸Ascites, hepatomegaly, and/or anasarca ▸Central or peripheral cyanosis, pallor ▸Big Ticket items: ▸Patient Position ▸Hypertensive/Hypotensive ▸Distention of neck veins - Surrogate for Right Heart pressure ▸Auscultation —>Rales, wheezing - worse rales>worse AHD ▸New Heart Murmur / Distant Heart sound ▸S3 gallop - Diagnostic for AHD ▸uni/bilateral Leg swelling
  • 19. ACUTE DECOMPENSATED HEART FAILURE ASSESSMENT OF HF PROBABILITY ▸1. Clinical history: ▸History of CAD (MI, revascularization) ▸History of arterial hypertension ▸Exposition to cardiotoxic drug/radiation ▸Use of diuretics ▸Orthopnoea / paroxysmal nocturnal dyspnoea ▸2. Physical examination: ▸Rales ▸Bilateral ankle oedema ▸Heart murmur ▸Jugular venous dilatation ▸Laterally displaced/broadened apical beat ▸3. ECG: ▸Any abnormality
  • 20. ACUTE DECOMPENSATED HEART FAILURE ASSESSMENT OF HEART FAILURE PROBABILITY ▸1. Clinical history; 2. Physical examination; 3. ECG ▸≥1 present ▸NATRIURETIC PEPTIDES ▸NT-proBNP ≥125 pg/mL ▸BNP ≥35 pg/mL ▸Consider aetiology and start appropriate treatment ▸ECHOCARDIOGRAPHY
  • 21. ACUTE DECOMPENSATED HEART FAILURE ESC HEART FAILURE GUIDELINES ▸Use transthoracic echocardiography in patients with suspected or established HF for the assessment of myocardial structure and function along with the measurement of LVEF to establish the diagnosis of ▸HF with reduced (HFrEF, LVEF<40%), ▸mid-range (HFmrEF, LVEF: 40-49%) or ▸preserved ejection fraction (HFpEF, LVEF≥50%)
  • 22. ACUTE DECOMPENSATED HEART FAILURE CLINICAL CLASSIFICATION
  • 23. ACUTE DECOMPENSATED HEART FAILURE FORRESTER HAEMODYNAMIC SUBSETS - AHF IN NUMBERS Subset Description I: Warm and dry (normal) PCWP 15–18 mmHg and CI >2.2 L/min/m2 II: Warm and wet (congestion) PCWP >18 mmHg and CI >2.2 L/min/m2 III: Cold and dry (hypoperfusion) PCWP 15–18 mmHg and CI <2.2 L/min/m2 IV: Cold and wet (congestion and PCWP >18 mmHg and CI <2.2 L/min/m2 hypoperfusion) Forrester Hemodynamic Subsets CI: cardiac index; PCWP: pulmonary capillary wedge pressure. Forrester JS, Diamond G, Chatterjee K, et al. Medical therapy of acute myocardial infarction by application of hemodynamic subsets. N Engl J Med. 1976;295:1356–1362.
  • 24. ACUTE DECOMPENSATED HEART FAILURE BEDSIDE TEST - ECG
  • 25. ACUTE DECOMPENSATED HEART FAILURE ECG - INFERIOR STEMI WITH RV INFARCTION ST elevation in V1 – the only standard ECG lead that looks directly at the right ventricle. ST elevation in lead III > lead II – because lead III is more “rightward facing” than lead II and hence more sensitive to the injury current produced by the right ventricle. Right ventricular infarction complicates up to 40% of inferior STEMIs. Patients with RV infarction are very preload sensitive (due to poor RV contractility) and can develop severe hypotension in response to nitrates or other preload-reducing agents. Hypotension in right ventricular infarction is treated with cautious fluid loading, and nitrates are contraindicated.
  • 26. ACUTE DECOMPENSATED HEART FAILURE IMAGING IN AHF ▸CXR ▸ECHOCARDIOGRAPHY ▸LUNG ULTRASOUND
  • 27. ACUTE DECOMPENSATED HEART FAILURE RADIOLOGICAL FEATURES OF ACUTE PULMONARY OEDEMA ▸There are distinct radiological phases. ▸Interstitial phase is the fluid filling up spaces between acini; ▸the alveolar phase is where that fluid floods the air spaces. ▸Interstitial pulmonary oedema may develop first. ▸Small pulmonary vessels lose their definition ▸Peribronchial cuffing occurs: ▸Kerley B lines ▸Thickening of fissures ▸Pleural effusions ▸Bat Wing" oedema ▸15% Normal CXR
  • 28. ACUTE DECOMPENSATED HEART FAILURE RADIOLOGICAL STAGES OF HEART FAILURE
  • 29. ACUTE DECOMPENSATED HEART FAILURE MILD PULMONARY CONGESTION WITH CEPHALISATION AP chest radiograph demonstrates cephalisation (upper lobe vascular redistribution) in stage I CCF where there is elevation of the left atrial pressure 10-15 mmHg. Normal left atrial pressure is 5-10 mmHg. http://www.radiologyassistant.nl/en/p4c132f36513d
  • 30. ACUTE DECOMPENSATED HEART FAILURE MORE ADVANCED CONGESTION - KERLEY B LINES Stage II - Interstitial oedema Stage II of CHF is characterised by fluid leakage into the interlobular and peribronchial interstitium as a result of the When fluid leaks into the peripheral interlobular septa it is seen as Kerley B or septal lines. Kerley-B lines are seen as peripheral short 1-2 cm horizontal lines near the costophrenic angles. These lines run perpendicular to the pleura.
  • 31. ACUTE DECOMPENSATED HEART FAILURE EVEN MORE ADVANCED CONGESTION When fluid leaks into the peribronchovascular interstitium it is seen as thickening of the bronchial walls (peribronchial cuffing) and as loss of definition of these vessels (perihilar haze). On the left a patient with heart failure. There is an increase in the caliber of the pulmonary vessels and they have lost their definition because they are
  • 32. ACUTE DECOMPENSATED HEART FAILURE ENDSTAGE - PULMONARY CONGESTION WITH CARDIOMEGALY
  • 34. ACUTE DECOMPENSATED HEART FAILURE ECHOCARDIOGRAPHY ▸Primary imaging modality to evaluate a patient’s cardiac function and evaluate for either systolic or diastolic dysfunction ▸only part of the initial ED examination where systolic and diastolic dysfunction can be distinguished ▸approximation of LVEF ▸visual assessment that looks for the general quality of the “heart’s squeeze”
  • 35. ACUTE DECOMPENSATED HEART FAILURE ECHOCARDIOGRAPHY ▸A more precise way to examine left ventricular ejection fraction is via E-point septal separation (EPSS), ▸measures the smallest distance between the tip of the mitral leaflet and the interventricular septum during diastole. ▸This distance is assessed using M-mode, with the indicator overlying the tip of the mitral lea et. ▸The larger this distance, the lower the ejection fraction. EPSS > 7 mm is indicative of poor left ventricular Secko MA, Lazar JM, Salciccioli LA, et al. Can junior emer- gency physicians use E-point septal separation to accurately estimate left ventricular function in acutely dyspneic pa- tients? Acad Emerg Med. 2011;18(11):1223-1226. (Prospective observational study; 58 patients) Normal Abnormal M-Mode
  • 36. ACUTE DECOMPENSATED HEART FAILURE PULMONARY ULTRASOUND - B LINES Multiple B-lines from a case of cardiogenic pulmonaryoedema. When a similar pattern is visualised on multiple locations in the anterior and lateral chest, it is diagnostic of the interstitial syndrome. Interstitial Pulmonary fluid is identifiable on ultrasound as vertical hyper-echoic lines that arise from, and run perpendicular to, the pleura. These lines extend into the lung parenchyma and are referred to as B-lines. The presence of 3 or more B-lines in at least 2 bilateral lung zones is indicative of pulmonary oedema. The greater the number of zones demonstrating B-lines, the higher the likelihood ofADHF Combined with BNP - High Dx accuracy! Liteplo AS, et al. Emergency thoracic ultrasound in the differentiation of the etiology of shortness of breath (ETUDES): sonographic B-lines and N-terminal pro-brain-type natriuretic peptide in diagnosing congestive heart failure. Aca
  • 37. ACUTE DECOMPENSATED HEART FAILURE INITIAL EVALUATION - LABORATORY TESTING ▸BNP ▸Troponin ▸FBC ▸U/E’s ▸Supplementary Testing
  • 38. ACUTE DECOMPENSATED HEART FAILURE BNP ▸BNP Cutoff of 100 ng/l, ▸BNP had a sensitivity 90%, specificity 76%, negative predictive 79%, and positive predictive value of 89%. ▸In this capacity, BNP is highly useful to exclude AHF ▸negative likelihood ratio of BNP at 100 pg/mL is 0.13 -LR ▸< 100 ng/l strongly suggestive against AHF ▸>400ng/l suggestive of AHF exacerbation • However may be falsely elevated in: • Renal disease, atrial fibrillation, pulmonary HTN • May be falsely low in: • Obese patients, HFPEF • High BNP increased Mortality in men 1. Maisel AS, et all . Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–167.
  • 39. ACUTE DECOMPENSATED HEART FAILURE TROPONIN ▸Useful for risk stratification ▸? underlying primary cause of AHF (cardiac strain, ischaemia, infarction) ▸elevated trop = increased in hospital mortality 8% versus 2.7 % if Neg Trop ▸increased re-hospitalisation rate ▸increased risk at death at 90 days
  • 40. ACUTE DECOMPENSATED HEART FAILURE FBC, U/E,S + SUPPLEMENTAL TESTS ▸Anaemia- HB under 8 (in IHD under 10)- improve Oxygen carrying capacity by transfusion ▸Sodium and Renal function (AKI?-end organ damage) ▸Liver function (end organ damage) ▸Thyroid function (cause of failure?) ▸Calcium - low? improves cardiac contractility ▸amyloidosis, pheochromocytoma etc as rare causes.
  • 41. ACUTE DECOMPENSATED HEART FAILURE TREATMENT AIMS ▸Decrease left ventricular diastolic pressure, by decreasing systemic vascular resistance and improving systolic and diastolic functional reserve. ▸Promote coronary blood flow. ▸Correct acute respiratory failure. ▸In-hospital mortality for APO is up to 12%, with one-year mortality up to 40% !
  • 42. ACUTE DECOMPENSATED HEART FAILURE MANAGEMENT OF PRELOAD ▸ Diuretics ▸ Fluid restriction ▸ Venodilators ▸ Aldosterone agonists ▸ Beta-blockers ▸ Maintenance of sinus rhythm and atrial systolic contribution ▸ Pacing to maintain AV synchrony
  • 43. ACUTE DECOMPENSATED HEART FAILURE MANAGEMENT OF AFTERLOAD ▸Left ventricle ▸Vasodilators ▸ACE-inhibitors ▸Beta-blockers ▸Right ventricle ▸Normoxia ▸Normocapnea ▸Avoidance of excessive postive respiratory pressures ▸Pulmonary vasodilators
  • 44. ACUTE DECOMPENSATED HEART FAILURE MANAGEMENT OF CARDIAC CONTRACTILITY ▸ Inotropes ▸Digoxin ▸Dobutamine ▸Levosimendan ▸ Cardiac resychronisation ▸ Supportive hormones and micronutrients (cortisol, insulin, calcium, glucagon, thyroxine, thiamine etc
  • 45. ACUTE DECOMPENSATED HEART FAILURE DIAGNOSIS AND INITIAL PROGNOSTIC EVALUATION - BE A CHAMP Jessup, M. et al. (2016) 2016 ESC and ACC/AHA/HFSA heart failure guideline update — what is new and why is it important? Nat. Rev. Cardiol. doi:10.1038/nrcardio.2016.134
  • 46. ACUTE DECOMPENSATED HEART FAILURE IDENTIFICATION OF PRECIPITANTS/CAUSES LEADING TO DECOMPENSATION THAT NEEDS URGENT MANAGEMENT ▸Acute coronary syndrome. ▸Coexistence of these two clinical conditions (ACS and AHF) always identifies a very-high-risk group where an immediate (i.e. <2 h from hospital admission in patients with NSTEMI, analogous to STEMI management) ▸invasive strategy with intent to perform revascularization is recommended, irrespective of ECG or biomarker findings. ▸Hypertensive emergency. ▸AHF precipitated by rapid and excessive increase in arterial blood pressure typically manifests as acute pulmonary oedema. Aggressive blood pressure reduction (in the range of 25% during the first few hours and cautiously thereafter) with i.v. vasodilators in combination with loop diuretics is recommended. ▸Rapid arrhythmias or severe bradycardia/conduction disturbance. ▸Severe rhythm disturbances in patients with AHF and unstable conditions should be corrected urgently with medical therapy, electrical cardioversion or temporary pacing ▸Electrical cardioversion is recommended if an atrial or ventricular arrhythmia is thought to be contributing to the patient's haemodynamic compromise in order to restore sinus rhythm and improve the patient's clinical condition. ▸Acute mechanical cause underlying AHF. ▸mechanical complication of ACS (free wall rupture, ventricular septal defect, acute mitral regurgitation), ▸chest trauma or cardiac intervention ▸Echocardiography is essential for diagnosis, and treatment typically requires circulatory support with surgical or percutaneous intervention. ▸ • Acute pulmonary embolism. When acute pulmonary embolism is confirmed as the cause of shock or hypotension, immediate specific treatment is recommended with primary reperfusion either with thrombolysis, catheter-based approach or surgical embolectomy.
  • 47. CUTE DECOMPENSATED HEART FAILURE INITIAL MANAGE MENT PATHWAY
  • 48. ACUTE DECOMPENSATED HEART FAILURE 5 DISTINCT TREATMENT GROUPS ▸Acute heart failure syndrome (AHFS) spectrum can be divided into 5 groups as regards therapeutic management: ▸Dyspnoea + /- congestion with elevated systolic blood pressure (SBP)>140 mmHg, usually with abrupt onset APO (most frequent type) ▸Dyspnoea + /- congestion with normal SBP 100-140 mmHg, usually with gradual onset predominant systemic oedema and milder APO ▸Dyspnoea + /- congestion with low SBP <100 mmHg, with predominant cardiogenic shock or end-stage cardiac failure (most fatal type) ▸Dyspnoea + /- congestion with signs of ACS such as chest pain ▸Isolated RV failure usually without APO Mebazza A, Gheoghiade M, Pina I et al. Practical recommendations for pre- hospital and early in-hospital management of patients presenting with acute heart failure. Crit Care Med 2008;36:S129-39.
  • 49. ACUTE DECOMPENSATED HEART FAILURE CLINICAL CLASSIFICATION Classification of patients presenting with acutely decompensated heart failu Yancy C W et al. Circulation.2013;128:e240-e327
  • 50. ACUTE DECOMPENSATED HEART FAILURE PRACTICAL RECOMMENDATION Alexandre Mebazaa, MD, PhD et all “Practical recommendations for prehospital and early inhospital management of patients presenting with acute heart failure syndromes” Crit Care Med 2008 Vol. 36, No. 1
  • 51. CUTE DECOMPENSATED HEART FAILURE INITIAL MANAGE MENT PATHWAY
  • 52. ACUTE DECOMPENSATED HEART FAILURE VASODILATORS ▸ Safety of high dose initial GTN: ▸ 800 mcg(2x0,4mg sl tab) GTN sl if BP>180mmHg ▸ 1200 mcg(3x0.4mg sl Tab) for BP>200 mmHg ▸ only 3/75 incidence of Hypotension ▸ Initial GTN dose iv 50-100mcg/min up to 400mcg/min for 2 min max with Physician in attendance ▸ Vasodilators should be used with extreme caution in patients with significant mitral or aortic stenosis. Clemency BM, Thompson JJ, Tundo GN, et al. Prehospital Disaster Medicine high-dose sublingual nitroglycerin rarely causes hypoten- sion. Prehosp Disaster Med. 2013;28(5):477-481. (Retrospective cohort study; 75 patients)
  • 53. ACUTE DECOMPENSATED HEART FAILURE VASODILATORS ‣ No robust evidence confirming their beneficial effects. ‣ They have dual benefit by ‣ decreasing venous tone (to optimize preload) ‣ decreasing arterial tone (decrease afterload). ‣ they may also increase stroke volume. ‣ Vasodilators are especially useful in patients with hypertensive AHF, whereas in SBP <90 mmHg (or with s
  • 54. ACUTE DECOMPENSATED HEART FAILURE INOTROPIC AGENTS ▸ Digoxin - no improvement over placebo in one (older) study ▸ Dopamine was compared with norepinephrine in the treatment of various shock patients. ▸ Increased Mortality ▸ A subgroup analysis suggested that norepinephrine would have fewer side effects and lower mortality ▸ Norepinephrine 1st choice but increasing Oxygen demand in Heart De Backer D , Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent J-L. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010;362:779–789.
  • 55. ACUTE DECOMPENSATED HEART FAILURE INOTROPES
  • 56. ACUTE DECOMPENSATED HEART FAILURE DIGOXIN ▸Digoxin is if at all indicated in patients with AF and rapid ventricular rate (>110 bpm) ▸boluses of 0.25–0.5 mg i.v. if not used previously
  • 57. ACUTE DECOMPENSATED HEART FAILURE MANAGEMENT OF PATIENTS WITH CARDIOGENIC SHOCK ▸Pharmacologic therapy aims to improve organ perfusion ▸by increasing cardiac output and blood pressure. ▸fluid challenge, ▸inotropic agent (Dobutamine)and a ▸vasopressor (noradrenaline) as needed. ▸immediate Coronary Angiogram recommended
  • 58. ACUTE DECOMPENSATED HEART FAILURE DIURETICS ▸Diuretics are a cornerstone in the treatment of patients with AHF and signs of fluid overload and congestion. ▸Diuretics increase renal salt and water excretion and have some vasodilatory effect. ▸In patients with AHF and signs of hypoperfusion, diuretics should be avoided before adequate perfusion is attained. ▸The initial approach to congestion management involves i.v. diuretics with the addition of vasodilators for dyspnoea relief if blood pressure allows. ▸Options include dual nephron blockade by loop diuretics (i.e. furosemide or torasemide) with thiazide diuretics or natriuretic doses of MRAs ▸Administration of furosemide at 2.5 times the previous oral dose resulted in greater improvementin dyspnoea, larger weight change and fluid loss at the cost of transient worsening in renalfunction. ▸patients with new-onset AHF or those with chronic HF without a history of renal failure and previous use of diuretics may respond to i.v. boluses of 20–40 mg
  • 59. ACUTE DECOMPENSATED HEART FAILURE FURUSEMIDE Felker GM , Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, LeWinter MM, Deswal A, Rouleau JL, Ofili EO, Anstrom KJ, Hernandez AF, McNulty SE, Velazquez EJ, Kfoury AG, Chen HH, Givertz MM, Semigran MJ, Bart BA, Mascette AM, Braunwald E, O'Connor CM. Diuretic strategies in patients with acute decompensated heart failure. N EnglJ Med 2011;364:797–805. ▸In Patient with Evidence of Fluid overload Diuretics to be started early in ED stay ▸In the ‘high-dose’ arm of the DOSE study, administration of furosemide at 2.5 times the previous oral dose resulted in greater improvement in dyspnoea, larger weight change and fluid loss at the cost of transient worsening in renal function ▸i.v. Furusemide should be given at least the same or larger the daily po dose to improve outcomes. ▸starting does for Furusemide in de move patients 20-40mg iv
  • 60. ACUTE DECOMPENSATED HEART FAILURE OXYGEN ▸In AHF, oxygen should not be used routinely in non- hypoxaemic patients, as it causes vasoconstriction and a reduction in cardiac output. ▸In COPD, hyperoxygenation may increase ventilation– perfusion mismatch, suppressing ventilation and leading to hypercapnia. ▸During oxygen therapy, acid–base balance and transcutaneous SpO2 should be monitored. Park JH , Balmain S, Berry C, Morton JJ, McMurray JJV. Potentially detrimental cardiovascular effects of oxygen in patients with chronic left ventricular systolic dysfunction. Heart 2010;96:533–538.
  • 61. ACUTE DECOMPENSATED HEART FAILURE OPIATES…RATHER USE BENZO’S ▸Opiates relieve dyspnoea and anxiety. ▸In AHF, routine use of opiates is not recommended and they may only be cautiously considered in patients with severe dyspnoea, mostly with pulmonary oedema. ▸Dose-dependent side effects include nausea, hypotension, bradycardia and respiratory depression (potentially increasing the need for invasive ventilation). ▸There are controversies regarding the potentially elevated mortality risk in patients receiving morphine Peacock WF , Hollander JE, Diercks DB, Lopatin M, Fonarow G, Emerman CL. Morphineand outcomes in acute decompensated heart failure: an ADHERE analysis. EmergMed J 2008;25:205–209.
  • 62. ACUTE DECOMPENSATED HEART FAILURE LEVOSIMENDAN ▸“Calcium-sensitiser” ▸works by increasing myocardial contractility ▸by sensitising the cardiac myocytes to calcium ▸ In the REVIVE study levosimendan, when added to standard therapy, resulted in a more rapid symptomatic improvement when compared to placebo with standard therapy; ▸increased risk of hypotension and dysrhythmias associated with its administration Packer M, Colucci W, Fisher L, et al. Effect of Levosimendan on the short term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail2013;1(2):103- 111. (Randomized controlled trial; 700 patients
  • 63. ACUTE DECOMPENSATED HEART FAILURE VENTILATORY ASSISTANCE ▸ Non-invasive ventilation (NIV) refers to CPAP; or bilevel positive airway pressure (BiPAP) non-invasive pressure support ventilation (NIPSV), where IPAP – EPAP (≡PEEP) reflects the amount of pressure support delivered. ▸CPAP reduces mortality (RR 0.64) and need to intubate (RR 0.44), with no effect on incidence of new MI. BiPAP reduces need to intubate (RR 0.54), but not mortality or new MI. Thus CPAP preferred in APO due to AMI / ischaemia. ▸Note 3CPO trial findings showed negative effect of NIV compared to standard medical therapy alone, but may be explained by sickest patients were excluded, low overall rates of intubation, ischaemia and mortality (i.e. their patients were different), and considerable treatment group crossover after first 2 hours.
  • 64. ACUTE DECOMPENSATED HEART FAILURE NIV ▸Non-invasive positive pressure ventilation includes both CPAP and bi-level positive pressure ventilation (PPV). Bi-level PPV also allows inspiratory pressure support that improves minute ventilation and is especially useful in patients with hypercapnia, most typically COPD patients. ▸Non-invasive positive pressure ventilation includes both CPAP and bi-level positive pressure ventilation (PPV). Bi-level PPV also allows inspiratory pressure support that improves minute ventilation and is especially useful in patients with hypercapnia, most typically COPD patients. ▸Non-invasive positive pressure ventilation reduces respiratory distress and may decrease intubation and mortality rate ▸In one study (Emerg Med J 2004; 21:155-161) survival to hospital discharge was improved with CPAP (10 mm/Hg) over BiPap (Ipap 15 Epap 5) and conventional therapy Vital FMR , Ladeira MT, Atallah AN. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane DatabaseSyst Rev 2013;5:CD005351.
  • 65. ACUTE DECOMPENSATED HEART FAILURE EARLY REVASCULARISATION THERAPY IN ISCHAEMIC ECG ▸The SHOCK Trial showed a 67% relative improvement in long-term survival, measured at 6 years, for patients managed with rapid revascularization. ▸Role of revascularization is not clear for patients presenting with failure without obvious acute ischemia. Hochman JS, Sleeper LA, Webb JG, et al. Early revasculariza- tion andlong- term survival in cardiogenic shock complicat- ing acute myocardialinfarction. JAMA. 2006;295(21):2511- 2515. (Randomized controlled trial; 302patients)
  • 66. ACUTE DECOMPENSATED HEART FAILURE ULTRAFILTRATION ▸Ultrafiltration is similar to hemodialysis; however, it focuses on fluid removal rather than solute exchange. ▸can be accomplished through a smaller-diameter catheter than hemodialysis, but it generally requires a peripherally inserted central catheter (PICC) line ▸The UNLOAD trial evaluated ultrafiltration versus IV diuretic therapy in patients with functioning kidneys, and it demonstrated that ultrafiltration removes a larger volume of fluid and is associated with a greater reduction in 90-day resource utilisation compared to diuretic therapy.
  • 67. ACUTE DECOMPENSATED HEART FAILURE MANAGEMENT OF PATIENTS WITH ACUTE HEART FAILURE
  • 68. ACUTE DECOMPENSATED HEART FAILURE INITIAL MANAGEMENT OF A PATIENT WITH ACUTE HEART FAILURE Jessup, M. et al. (2016) 2016 ESC and ACC/AHA/HFSA heart failure guideline update — what is new and why is it important? Nat. Rev. Cardiol. doi:10.1038/nrcardio.2016.134 Modified from Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehw128 (2016), with permission from Oxford University Press and the ESC
  • 69. ACUTE DECOMPENSATED HEART FAILURE MECHANICAL RESCUE DEVICES AND CHEATS ▸Increase cardiac output by unnatural means: ▸LVAD ▸ECMO ▸Increase the pacemaker rate (60-90 increase of CO by 30%) ▸Decrease the organism's demand for cardiac output ▸Hypothermia ▸Paralysis/sedation
  • 70. ACUTE DECOMPENSATED HEART FAILURE BRIDGING THERAPY TO HEART TRANSPLANT ?
  • 71. TEXT OPIATES ▸Opiates relieve dyspnoea and anxiety. ▸In AHF, routine use of opiates is not recommended ▸only be cautiously considered in patients with severe dyspnoea, mostly with pulmonary oedema. ▸Dose-dependent side effects ▸nausea, hypotension, bradycardia and respiratory depression (potentially increasing the need for invasive ventilation). ▸There are controversies regarding the potentially elevated mortality risk in patients receiving morphine Iakobishvili et all, Use of intravenous morphine for acute decompensated heart failure in patients with and without acute coronary syndromes. Acute Card Care 2011;13:76–80. PeacockWF.ett all.Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis.Emerg Med J 2008;25:205–209.
  • 72. ACUTE DECOMPENSATED HEART FAILURE DEVICE THERAPY - RRT ▸Renal Replacement Therapy - routine use of ultrafiltration is not recommended ▸Criteria for initiation of renal replacement therapy in patients with refractory volume overload: ▸oliguria unresponsive to fluid resuscitation measures, ▸severe hyperkalaemia (K+ >6.5 mmol/L), ▸severe acidaemia (pH <7.2), ▸serum urea level >25 mmol/L (150 mg/dL) and ▸serum creatinine >300 µmol/L (>3.4 mg/dL)
  • 73. ACUTE DECOMPENSATED HEART FAILURE DEVICE THERAPY - MECHANICAL ASSIST DEVICES ▸Intra-aortic balloon pump ▸in cardiac shock ▸otherwise no good evidence ▸ IABP did not improve outcomes in patients suffering from AMI and cardiogenic shock - (IABP-SHOCK II trial) ▸Left Ventricular assist devices (LVAD) ▸ (MCS) may be used as a ‘bridge to decision’ or longer term in selected patients Thiele H. et all.Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet 2013
  • 74. ACUTE DECOMPENSATED HEART FAILURE OTHER INTERVENTIONS ▸In patients with AHF and pleural effusion, pleurocentesis with fluid evacuation may be considered if feasible in order to alleviate dyspnoea. ▸In ascites, ascitic paracentesis with fluid evacuation may be considered in order to alleviate symptoms. ▸reduction in intra-abdominal pressure, ▸partially normalizes the transrenal pressure gradient, thus improving renal filtration.
  • 75. ACUTE DECOMPENSATED HEART FAILURE DISPOSITION ▸The criteria for ICU/CCU admission include any of the following: ▸ need for intubation (or already intubated) ▸ signs/symptoms of hypoperfusion ▸ oxygen saturation (SpO2) <90% (despite supplemental oxygen) ▸ use of accessory muscles for breathing, respiratory rate >25/min ▸ heart rate <40 or >130 bpm, SBP <90 mmHg.
  • 76. ACUTE DECOMPENSATED HEART FAILURE CLINICAL VIGNETTE - OUTCOME OF YOUR PATIENT ▸ The middle-aged man with hypertensive decompensated heart failure with acute pulmonary oedema, was started immediately on BiPAP to support his breathing, and he responded well. Bedside pulmonary ultrasound showed B-lines, confirming the diagnosis of pulmonary oedema. He was started on a high-dose nitroglycerin drip, which resulted in a significant improvement in his respiratory symptoms. He received IV diuresis and was admitted to the ICU for further management.
  • 77. TEXT TAKE HOME MESSAGE - BE A CHAMP
  • 78. USEFUL SCRIPTURE ▸EBMEDICINE Acute Decompensated Heart Failure: New Strategies for Improving Outcomes May 2017 ▸2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Eur Heart J (2016) 37 (27): 2129-2200