SlideShare a Scribd company logo
1 of 26
Elongation Factor IV
Connor Stewart & Eric Newman
Laboratory of Biochemistry, Bellingham Washington
http://myhome.sunyocc.edu/~weiskirl/parts_of_all_cells.htm
Elongation Factor IV / Lep A
•High level of conservation
-Found in all sequenced prokaryotes and nearly all eukaryotes
•Name change from Lep A to Elongation factor 4 (EF4)
-Named Leading peptidase A due to it’s location on the Lep operon
-EF4 back-translocase function during elongation found using 32P labeling
•Stored on E. coli periplasmic membrane
- 1/5 Cytoplasm/Membrane
-Unique C terminal domain (CTD)
•G protein based
-Uncoupled ribosome dependent GTPase activity
-turnover rate similar to EF-G
PECH, MARKUS. KARIM, ZHALA. ET AL. (2010). P.N.A.S. VOL. 108(8), 3199-3203.
QIN, YAN. POLACEK, NORBERT. ET (2006). CELL VOL. 127(4), 721-733.
EF4 & EF-G Homology
QIN, YAN. POLACEK, NORBERT. ET (2006). CELL VOL. 127(4), 721-733.
• Strong homology between domains I, II, and III
and V of EF-G
• Domain configuration conserved from Yeast
through Humans
• EF-G, EF-Tu, IF2 all share homology with EF-4
• EF-4 retains 55-68% amino acid identity among
bacterial orthologs
• EF-G retains 58-70% amino acid identity
Visualized in PyMOL
90o
GAGNON G., MATTHIEU. LIN, JINZHONG. ET AL. (2014) SCIENCE, VOL.345(6197), 684-687.
EF-4 Bound to Ribosome
• Competitive binding with EFG
• CTD inserts into A-site and
connects to post translational
complex
-last 44 residues not visible
Function
•Released during unfavorable conditions
-High ionic strength, low temperatures. Addition of Mg2+ changes ratio from 5/1 to 1/5
membrane/cytoplasm
-Addition of [2-5] Mg2+ reduces GFP synthesis by 40%
-Active GFP from 50% - 25%
-EF4 addition brings GFP synthesis to 120%
-Active GFP maintained at 50%
•Catalyzes the back-translocation reaction on post-translocation state ribosomes.
-Reverses EF-G catalyzed transition, giving EF-G a second chance at correct t-RNA translocation
-Re-mobilizes stuck ribosomes
GAGNON G., MATTHIEU. LIN, JINZHONG. (2014) SCIENCE, VOL.345(6197), 684-687.
PECH, MARKUS. KARIM, ZHALA. (2010). P.N.A.S. VOL. 108(8), 3199-3203.
Mechanism
•Competes with Elongation Factor G
-EF4 has no EFG domain IV backstop and reduces post – pre conformation energy
barrier.
Preferentially binds to Post-Ribosomal Complex
-Pb2+ cleavage of engineered pre and post ribosomal complexes
-17.8% of PRE complexes cleaved, 82.2% of POST cleaved
-Addition of EF4 brought POST cleavage back to PRE levels
-shifts tRNA from E&P sites to P&A
•Back ratcheting re-opens A-site giving EFG a second chance
- 32P labeling of Amino Acids, one codon length back
GAGNON G., MATTHIEU. LIN, JINZHONG. ET AL. (2014) SCIENCE, VOL.345(6197), 684-687.
Transformation Efficiency
Volume Colonies Transformation efficiency
100 µL Native E. coli 0 0 colonies/µg
50 µL 0 0 colonies/µg
100 µL 2 1000 colonies/µg
200 µL 0 0 colonies/µg
Cell Optical Density during Incubation
0 25 50 75 100
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
OpticalDensity
Time (min)
Optical Density (A.U.) of incubating cells as a
function of time (minutes).
• Incubated at 15oC overnight with IPTG for
overexpression
Chromatography Elution Curve
0 2 4 6 8 10 12 14 16 18 20
0
5
10
15
20
25
30
Absorbance(A.U.)
Protein Fraction
• Absorbance at 280 nm of affinity
chromatography elution fractions.
• Fractions 2-4 were diluted 1/100 for absorbance
readings.
• The values displayed for fractions 2-4 account
for this dilution.
Dialysis
EF-4 precipitated during dialysis
Procedure Modification:
• Centrifuged on Eppendorf minispin® at 12,000 x g
• Absorbance was measured at 280 nm and supernatant was used for future analysis.
Bradford Assay
0 2 4 6 8 10 12 14 16 18 20 22
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Absorbance(A.U.)
BSA (g)
Linear Fit Parameters:
m = 0.03701
b = 0.03395
R2
= 0.98832
• Bradford Assay standard curve. Absorbance
(A.U.) taken at 595 nm plotted as a function of
bovine serum albumin (BSA) µg with a linear
fit.
• A 40 µg point was excluded to maintain the
linear fit.
• Mass extinction coefficient of 3.56 L/(g∙cm).
• Literature Value: 0.593 L/(g∙cm)
• Protein concentration 0.57µg/µL
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
SDS-PAGE
• #1 Cell Lysate Supernatant
• #2 Crude Cell Lysate
• #3 Purified Lysate with Aggregate
• #4 Chromatography High-speed flow through
• #5 Chromatography Fraction 1
• #6 Purified Cell Lysate
• #7 Molecular Weight Ladder
• #8 Chromatography Rinse 2
• #9 Chromatography Rinse 1
• #10 Dialysis Buffer
0.0 0.2 0.4 0.6 0.8 1.0
20
40
60
80
100
MolecularWeights(kDa)
Relative Migration
Log(y) = 2.23 + (-2.77)x1
+ (3.56)x2
+ (-2.2)x3
R2
= 0.994
Relative Mobility
• Experimental M.W.: 69 kDa
• EF4 molecular weight: 67.393 kDa
Relative Migration of protein standards against log10
molecular weights.
Determination of Unknown E
Translation
Factor
Molecular
Weight (kDa)
Isoelectric
Point (pI)
Mass extinction
coefficient (L∙g-1∙cm-
1)
IF2 98.2 4.97 0.280
IF3 21.3 9.54 0.209
EF-Tu 44.1 5.6 0.465
EF-G 78.4 5.43 0.784
EF-4 67.4 5.68 0.593
RRF 21.4 7.03 0.139
RF1 41.3 5.40 0.521
RF3 60.4 5.91 0.691
• Mass extinction coefficient of
3.56 L/G∙cm.
• M.W.: 69 kDa
• Aggregation
Determination of Unknown E
•Gel electrophoresis: 69 kDa
•1.6 kDa off of the Literature value (2.4%)
• Walter D., Justin. Littlefield, Peter. Delbecq, Scott. Prody, Gerry. Spiegel P, Clint. (2010). Expression, purification, and
analysis of unknown translation factors from Escheria coli: A synthesis approach. Biochemistry and Molecular
Biology Education. Volume 38(1), 17-22
Fluorimetry
300 325 350 375 400
0
500
1000
1500
2000
2500
Intensity(A.U)
Wavelength
Fluorimetry
0 1 2 3 4 5 6
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
R2
= 0.994
58.7x + 2200
R2
= 0.953
y = -182x + 2688
R2
= -0.755
y = 22.0x + 1600
Intensity(A.U.)
Urea (M)
Fluorimetry Thermodynamics
• ΔGo' = 16 kJ/mol
•Tertiary structure
2.5 3.0 3.5 4.0 4.5 5.0
-10000
-8000
-6000
-4000
-2000
0
2000
4000
6000
GibbsFreeEnergy(J/mol)
Urea (M)
R2
= 0.824
y = -4663x + 16280
CD-Spectra
215 220 225 230 235 240
-35
-30
-25
-20
-15
-10
-5
0
Ellipticity(mdeg)
Wavelength
CD-Spectra
40 45 50 55 60
-30
-28
-26
-24
-22
-20
-18
Temperature (o
C)
R2
= 0.969
y = 1.19x - 80.9
R2
= 0.543
y = -0.134x - 12.4
R2
= -0.656
y = 0.0630x - 31.6
Ellipticity(mdeg)
CD Thermodynamics
0.00308 0.00310 0.00312 0.00314 0.00316
-4
-2
0
2
4
6
ln(Keq
)
1/T (K-1
)
R2
= 0.971
y = -103904x + 323.98
• Possible source of error: low protein
concentration
ΔH 860 kJ/mol
ΔS 2.7 kJ/mol
ΔGo’ 61 kJ/mol
Further Studies
Aggregation
• We feel the precipitation of our protein may have skewed some of our results and experiments.
• Experiments to determine more stable conditions for EF4
• More accurate information would most likely be achieved by performing experiments in a
higher ionic environment and/or a lower temperature.
Mechanism to explore
• Binding to periplasmic membrane
• Types of interactions with and conformation changes to the ribosome.
Acknowledgements
•Gerry Prody
•Clint Spiegel
•Michelle Wuerth
•Marcus Carlson
Thank You
Questions?
QIN, YAN. POLACEK, NORBERT. ET AL. (2006). CELL VOL. 127(4), 721-733.

More Related Content

What's hot

2011 Mayo Clinic Drosophila CIPN poster
2011 Mayo Clinic Drosophila CIPN poster2011 Mayo Clinic Drosophila CIPN poster
2011 Mayo Clinic Drosophila CIPN posterSteven Forsythe
 
NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics Mark Berjanskii
 
Polypyrrole/ Graphite Nanocomposite
Polypyrrole/ Graphite Nanocomposite Polypyrrole/ Graphite Nanocomposite
Polypyrrole/ Graphite Nanocomposite kavita1811
 
Literature Montpellier 16 05
Literature Montpellier 16 05Literature Montpellier 16 05
Literature Montpellier 16 05Samuele Staderini
 
Directed evolution
Directed evolutionDirected evolution
Directed evolutionIfrah Ishaq
 
Gerstner et al J Neurosci 2012
Gerstner et al J Neurosci 2012Gerstner et al J Neurosci 2012
Gerstner et al J Neurosci 2012jrgerstn
 
Impact of Bem1p Mutant Alleles on [PSI+] Prion Formation
Impact of Bem1p Mutant Alleles on [PSI+] Prion FormationImpact of Bem1p Mutant Alleles on [PSI+] Prion Formation
Impact of Bem1p Mutant Alleles on [PSI+] Prion FormationMizuki Kato
 
Nat_Chem_Biol_GPR30_2006
Nat_Chem_Biol_GPR30_2006Nat_Chem_Biol_GPR30_2006
Nat_Chem_Biol_GPR30_2006Alex Kiselyov
 
Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...
Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...
Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...Balogun Wasiu Gbolahan
 
Directed Evolution
Directed EvolutionDirected Evolution
Directed EvolutionIfrah Ishaq
 
Gfp application in bacterial dynamics and disease diagnosis
Gfp application in bacterial dynamics and disease diagnosisGfp application in bacterial dynamics and disease diagnosis
Gfp application in bacterial dynamics and disease diagnosisgarima shrinet
 
Ablooglu et al 2001 Nat Str Biol
Ablooglu et al 2001 Nat Str BiolAblooglu et al 2001 Nat Str Biol
Ablooglu et al 2001 Nat Str BiolArarat Ablooglu
 

What's hot (20)

2011 Mayo Clinic Drosophila CIPN poster
2011 Mayo Clinic Drosophila CIPN poster2011 Mayo Clinic Drosophila CIPN poster
2011 Mayo Clinic Drosophila CIPN poster
 
NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics
 
Polypyrrole/ Graphite Nanocomposite
Polypyrrole/ Graphite Nanocomposite Polypyrrole/ Graphite Nanocomposite
Polypyrrole/ Graphite Nanocomposite
 
Henslee poster
Henslee posterHenslee poster
Henslee poster
 
Neuropeptides 2014
Neuropeptides 2014 Neuropeptides 2014
Neuropeptides 2014
 
PHd defense presentation Final RIVES
PHd defense presentation Final RIVESPHd defense presentation Final RIVES
PHd defense presentation Final RIVES
 
Literature Montpellier 16 05
Literature Montpellier 16 05Literature Montpellier 16 05
Literature Montpellier 16 05
 
AGEP:SRI research project
AGEP:SRI research projectAGEP:SRI research project
AGEP:SRI research project
 
Directed evolution
Directed evolutionDirected evolution
Directed evolution
 
Gerstner et al J Neurosci 2012
Gerstner et al J Neurosci 2012Gerstner et al J Neurosci 2012
Gerstner et al J Neurosci 2012
 
Presentation
PresentationPresentation
Presentation
 
Impact of Bem1p Mutant Alleles on [PSI+] Prion Formation
Impact of Bem1p Mutant Alleles on [PSI+] Prion FormationImpact of Bem1p Mutant Alleles on [PSI+] Prion Formation
Impact of Bem1p Mutant Alleles on [PSI+] Prion Formation
 
Nat_Chem_Biol_GPR30_2006
Nat_Chem_Biol_GPR30_2006Nat_Chem_Biol_GPR30_2006
Nat_Chem_Biol_GPR30_2006
 
Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...
Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...
Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Syn...
 
Directed Evolution
Directed EvolutionDirected Evolution
Directed Evolution
 
Gfp application in bacterial dynamics and disease diagnosis
Gfp application in bacterial dynamics and disease diagnosisGfp application in bacterial dynamics and disease diagnosis
Gfp application in bacterial dynamics and disease diagnosis
 
Caryne Stacia Neuropharm
Caryne Stacia NeuropharmCaryne Stacia Neuropharm
Caryne Stacia Neuropharm
 
Chromatin structure
Chromatin structureChromatin structure
Chromatin structure
 
Ablooglu et al 2001 Nat Str Biol
Ablooglu et al 2001 Nat Str BiolAblooglu et al 2001 Nat Str Biol
Ablooglu et al 2001 Nat Str Biol
 
SciReport 2014
SciReport 2014SciReport 2014
SciReport 2014
 

Similar to FinalPresentation

2016 RBC RETREAT POSTER TEMPLATE_SMP
2016 RBC RETREAT POSTER TEMPLATE_SMP2016 RBC RETREAT POSTER TEMPLATE_SMP
2016 RBC RETREAT POSTER TEMPLATE_SMPSagar M. Patel
 
NetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan SchusterNetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan SchusterAlexander Pico
 
Molecular docking MAPK.pptx
Molecular docking MAPK.pptxMolecular docking MAPK.pptx
Molecular docking MAPK.pptxSamson Raj Y
 
JBEI Research Highlights - April 2017
JBEI Research Highlights - April 2017JBEI Research Highlights - April 2017
JBEI Research Highlights - April 2017Irina Silva
 
Identification and characterization of intact proteins in complex mixtures
Identification and characterization of intact proteins in complex mixturesIdentification and characterization of intact proteins in complex mixtures
Identification and characterization of intact proteins in complex mixturesExpedeon
 
Crimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA Structures
Crimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA StructuresCrimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA Structures
Crimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA StructuresCrimsonPublishers-SBB
 
Nannochloropsis gaditana, Master thesis
Nannochloropsis gaditana, Master thesisNannochloropsis gaditana, Master thesis
Nannochloropsis gaditana, Master thesisAmyt Sharma
 
Gordon Research Conference_Steve_Finalized
Gordon Research Conference_Steve_FinalizedGordon Research Conference_Steve_Finalized
Gordon Research Conference_Steve_FinalizedSteve Po-Yam Li
 
Online conference undip indonesia
Online conference undip indonesiaOnline conference undip indonesia
Online conference undip indonesiatbrc
 
EF cDNA Library Sequencing 2012 LSV_Edited (1)
EF cDNA Library Sequencing 2012 LSV_Edited (1)EF cDNA Library Sequencing 2012 LSV_Edited (1)
EF cDNA Library Sequencing 2012 LSV_Edited (1)Hardik Jani
 
Bacterial Cellulose A Perfect Medium
Bacterial Cellulose A Perfect MediumBacterial Cellulose A Perfect Medium
Bacterial Cellulose A Perfect MediumBaraka Gitari
 
Pjb Probes 2009
Pjb Probes 2009Pjb Probes 2009
Pjb Probes 2009toluene
 
Benzothiazines As Novel Peptide Mimetic Calpain Inhibitors
Benzothiazines As Novel Peptide Mimetic Calpain InhibitorsBenzothiazines As Novel Peptide Mimetic Calpain Inhibitors
Benzothiazines As Novel Peptide Mimetic Calpain InhibitorsGregory J. Wells
 
PNIPAM-b-PMAA Poster
PNIPAM-b-PMAA PosterPNIPAM-b-PMAA Poster
PNIPAM-b-PMAA PosterCayla Cook
 
Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...
Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...
Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...Integrated DNA Technologies
 

Similar to FinalPresentation (20)

2016 RBC RETREAT POSTER TEMPLATE_SMP
2016 RBC RETREAT POSTER TEMPLATE_SMP2016 RBC RETREAT POSTER TEMPLATE_SMP
2016 RBC RETREAT POSTER TEMPLATE_SMP
 
NetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan SchusterNetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan Schuster
 
Molecular docking MAPK.pptx
Molecular docking MAPK.pptxMolecular docking MAPK.pptx
Molecular docking MAPK.pptx
 
JBEI Research Highlights - April 2017
JBEI Research Highlights - April 2017JBEI Research Highlights - April 2017
JBEI Research Highlights - April 2017
 
Identification and characterization of intact proteins in complex mixtures
Identification and characterization of intact proteins in complex mixturesIdentification and characterization of intact proteins in complex mixtures
Identification and characterization of intact proteins in complex mixtures
 
BME 521 December 6
BME 521 December 6BME 521 December 6
BME 521 December 6
 
Crimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA Structures
Crimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA StructuresCrimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA Structures
Crimson Publishers- CPG Methylation in G-Quadruplex and IMotif DNA Structures
 
Nannochloropsis gaditana, Master thesis
Nannochloropsis gaditana, Master thesisNannochloropsis gaditana, Master thesis
Nannochloropsis gaditana, Master thesis
 
Kiranmayee_Bakshy_PhD
Kiranmayee_Bakshy_PhDKiranmayee_Bakshy_PhD
Kiranmayee_Bakshy_PhD
 
Gordon Research Conference_Steve_Finalized
Gordon Research Conference_Steve_FinalizedGordon Research Conference_Steve_Finalized
Gordon Research Conference_Steve_Finalized
 
Online conference undip indonesia
Online conference undip indonesiaOnline conference undip indonesia
Online conference undip indonesia
 
Final
FinalFinal
Final
 
EF cDNA Library Sequencing 2012 LSV_Edited (1)
EF cDNA Library Sequencing 2012 LSV_Edited (1)EF cDNA Library Sequencing 2012 LSV_Edited (1)
EF cDNA Library Sequencing 2012 LSV_Edited (1)
 
Lc,cat,gfp,gal
Lc,cat,gfp,galLc,cat,gfp,gal
Lc,cat,gfp,gal
 
Bacterial Cellulose A Perfect Medium
Bacterial Cellulose A Perfect MediumBacterial Cellulose A Perfect Medium
Bacterial Cellulose A Perfect Medium
 
Pjb Probes 2009
Pjb Probes 2009Pjb Probes 2009
Pjb Probes 2009
 
Benzothiazines As Novel Peptide Mimetic Calpain Inhibitors
Benzothiazines As Novel Peptide Mimetic Calpain InhibitorsBenzothiazines As Novel Peptide Mimetic Calpain Inhibitors
Benzothiazines As Novel Peptide Mimetic Calpain Inhibitors
 
Gene translation
Gene translationGene translation
Gene translation
 
PNIPAM-b-PMAA Poster
PNIPAM-b-PMAA PosterPNIPAM-b-PMAA Poster
PNIPAM-b-PMAA Poster
 
Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...
Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...
Ribonucleoprotein delivery of CRISPR-Cas9 reagents for increased gene editing...
 

FinalPresentation

  • 1. Elongation Factor IV Connor Stewart & Eric Newman Laboratory of Biochemistry, Bellingham Washington http://myhome.sunyocc.edu/~weiskirl/parts_of_all_cells.htm
  • 2. Elongation Factor IV / Lep A •High level of conservation -Found in all sequenced prokaryotes and nearly all eukaryotes •Name change from Lep A to Elongation factor 4 (EF4) -Named Leading peptidase A due to it’s location on the Lep operon -EF4 back-translocase function during elongation found using 32P labeling •Stored on E. coli periplasmic membrane - 1/5 Cytoplasm/Membrane -Unique C terminal domain (CTD) •G protein based -Uncoupled ribosome dependent GTPase activity -turnover rate similar to EF-G PECH, MARKUS. KARIM, ZHALA. ET AL. (2010). P.N.A.S. VOL. 108(8), 3199-3203. QIN, YAN. POLACEK, NORBERT. ET (2006). CELL VOL. 127(4), 721-733.
  • 3. EF4 & EF-G Homology QIN, YAN. POLACEK, NORBERT. ET (2006). CELL VOL. 127(4), 721-733. • Strong homology between domains I, II, and III and V of EF-G • Domain configuration conserved from Yeast through Humans • EF-G, EF-Tu, IF2 all share homology with EF-4 • EF-4 retains 55-68% amino acid identity among bacterial orthologs • EF-G retains 58-70% amino acid identity
  • 5. GAGNON G., MATTHIEU. LIN, JINZHONG. ET AL. (2014) SCIENCE, VOL.345(6197), 684-687. EF-4 Bound to Ribosome • Competitive binding with EFG • CTD inserts into A-site and connects to post translational complex -last 44 residues not visible
  • 6. Function •Released during unfavorable conditions -High ionic strength, low temperatures. Addition of Mg2+ changes ratio from 5/1 to 1/5 membrane/cytoplasm -Addition of [2-5] Mg2+ reduces GFP synthesis by 40% -Active GFP from 50% - 25% -EF4 addition brings GFP synthesis to 120% -Active GFP maintained at 50% •Catalyzes the back-translocation reaction on post-translocation state ribosomes. -Reverses EF-G catalyzed transition, giving EF-G a second chance at correct t-RNA translocation -Re-mobilizes stuck ribosomes GAGNON G., MATTHIEU. LIN, JINZHONG. (2014) SCIENCE, VOL.345(6197), 684-687. PECH, MARKUS. KARIM, ZHALA. (2010). P.N.A.S. VOL. 108(8), 3199-3203.
  • 7. Mechanism •Competes with Elongation Factor G -EF4 has no EFG domain IV backstop and reduces post – pre conformation energy barrier. Preferentially binds to Post-Ribosomal Complex -Pb2+ cleavage of engineered pre and post ribosomal complexes -17.8% of PRE complexes cleaved, 82.2% of POST cleaved -Addition of EF4 brought POST cleavage back to PRE levels -shifts tRNA from E&P sites to P&A •Back ratcheting re-opens A-site giving EFG a second chance - 32P labeling of Amino Acids, one codon length back GAGNON G., MATTHIEU. LIN, JINZHONG. ET AL. (2014) SCIENCE, VOL.345(6197), 684-687.
  • 8. Transformation Efficiency Volume Colonies Transformation efficiency 100 µL Native E. coli 0 0 colonies/µg 50 µL 0 0 colonies/µg 100 µL 2 1000 colonies/µg 200 µL 0 0 colonies/µg
  • 9. Cell Optical Density during Incubation 0 25 50 75 100 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 OpticalDensity Time (min) Optical Density (A.U.) of incubating cells as a function of time (minutes). • Incubated at 15oC overnight with IPTG for overexpression
  • 10. Chromatography Elution Curve 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 Absorbance(A.U.) Protein Fraction • Absorbance at 280 nm of affinity chromatography elution fractions. • Fractions 2-4 were diluted 1/100 for absorbance readings. • The values displayed for fractions 2-4 account for this dilution.
  • 11. Dialysis EF-4 precipitated during dialysis Procedure Modification: • Centrifuged on Eppendorf minispin® at 12,000 x g • Absorbance was measured at 280 nm and supernatant was used for future analysis.
  • 12. Bradford Assay 0 2 4 6 8 10 12 14 16 18 20 22 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Absorbance(A.U.) BSA (g) Linear Fit Parameters: m = 0.03701 b = 0.03395 R2 = 0.98832 • Bradford Assay standard curve. Absorbance (A.U.) taken at 595 nm plotted as a function of bovine serum albumin (BSA) µg with a linear fit. • A 40 µg point was excluded to maintain the linear fit. • Mass extinction coefficient of 3.56 L/(g∙cm). • Literature Value: 0.593 L/(g∙cm) • Protein concentration 0.57µg/µL
  • 13. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 SDS-PAGE • #1 Cell Lysate Supernatant • #2 Crude Cell Lysate • #3 Purified Lysate with Aggregate • #4 Chromatography High-speed flow through • #5 Chromatography Fraction 1 • #6 Purified Cell Lysate • #7 Molecular Weight Ladder • #8 Chromatography Rinse 2 • #9 Chromatography Rinse 1 • #10 Dialysis Buffer
  • 14. 0.0 0.2 0.4 0.6 0.8 1.0 20 40 60 80 100 MolecularWeights(kDa) Relative Migration Log(y) = 2.23 + (-2.77)x1 + (3.56)x2 + (-2.2)x3 R2 = 0.994 Relative Mobility • Experimental M.W.: 69 kDa • EF4 molecular weight: 67.393 kDa Relative Migration of protein standards against log10 molecular weights.
  • 15. Determination of Unknown E Translation Factor Molecular Weight (kDa) Isoelectric Point (pI) Mass extinction coefficient (L∙g-1∙cm- 1) IF2 98.2 4.97 0.280 IF3 21.3 9.54 0.209 EF-Tu 44.1 5.6 0.465 EF-G 78.4 5.43 0.784 EF-4 67.4 5.68 0.593 RRF 21.4 7.03 0.139 RF1 41.3 5.40 0.521 RF3 60.4 5.91 0.691 • Mass extinction coefficient of 3.56 L/G∙cm. • M.W.: 69 kDa • Aggregation
  • 16. Determination of Unknown E •Gel electrophoresis: 69 kDa •1.6 kDa off of the Literature value (2.4%) • Walter D., Justin. Littlefield, Peter. Delbecq, Scott. Prody, Gerry. Spiegel P, Clint. (2010). Expression, purification, and analysis of unknown translation factors from Escheria coli: A synthesis approach. Biochemistry and Molecular Biology Education. Volume 38(1), 17-22
  • 17. Fluorimetry 300 325 350 375 400 0 500 1000 1500 2000 2500 Intensity(A.U) Wavelength
  • 18. Fluorimetry 0 1 2 3 4 5 6 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 R2 = 0.994 58.7x + 2200 R2 = 0.953 y = -182x + 2688 R2 = -0.755 y = 22.0x + 1600 Intensity(A.U.) Urea (M)
  • 19. Fluorimetry Thermodynamics • ΔGo' = 16 kJ/mol •Tertiary structure 2.5 3.0 3.5 4.0 4.5 5.0 -10000 -8000 -6000 -4000 -2000 0 2000 4000 6000 GibbsFreeEnergy(J/mol) Urea (M) R2 = 0.824 y = -4663x + 16280
  • 20. CD-Spectra 215 220 225 230 235 240 -35 -30 -25 -20 -15 -10 -5 0 Ellipticity(mdeg) Wavelength
  • 21. CD-Spectra 40 45 50 55 60 -30 -28 -26 -24 -22 -20 -18 Temperature (o C) R2 = 0.969 y = 1.19x - 80.9 R2 = 0.543 y = -0.134x - 12.4 R2 = -0.656 y = 0.0630x - 31.6 Ellipticity(mdeg)
  • 22. CD Thermodynamics 0.00308 0.00310 0.00312 0.00314 0.00316 -4 -2 0 2 4 6 ln(Keq ) 1/T (K-1 ) R2 = 0.971 y = -103904x + 323.98 • Possible source of error: low protein concentration ΔH 860 kJ/mol ΔS 2.7 kJ/mol ΔGo’ 61 kJ/mol
  • 23. Further Studies Aggregation • We feel the precipitation of our protein may have skewed some of our results and experiments. • Experiments to determine more stable conditions for EF4 • More accurate information would most likely be achieved by performing experiments in a higher ionic environment and/or a lower temperature. Mechanism to explore • Binding to periplasmic membrane • Types of interactions with and conformation changes to the ribosome.
  • 26. QIN, YAN. POLACEK, NORBERT. ET AL. (2006). CELL VOL. 127(4), 721-733.