SlideShare a Scribd company logo
1 of 1
Download to read offline
Paleostress of Fracture Systems along the Niagara
Escarpment, Oakfield Ledge State Natural Area
Elizabeth	
  Borucki,	
  Michael	
  Defenbaugh,	
  William	
  Meier,	
  Jared	
  Miller	
  
Structural	
  Geology,	
  2014	
  
SeBng	
  and	
  IntroducDon	
  
Along	
  eastern	
  Wisconsin,	
  stretching	
  from	
  Door	
  County	
  to	
  Dodge	
  County,	
  there	
  
is	
  a	
  complex	
  geologic	
  feature	
  consis:ng	
  of	
  a	
  discon:nuous	
  series	
  of	
  raised	
  and	
  
exposed	
  bedrock	
  (Newport	
  1962).	
  This	
  feature	
  formed	
  due	
  to	
  the	
  strength	
  of	
  
the	
  Niagara	
  dolomite,	
  causing	
  preferen:al	
  erosion	
  of	
  the	
  underlying	
  
Manquoketa	
  shale.	
  A	
  ridge	
  of	
  bedrock	
  known	
  as	
  the	
  Niagara	
  escarpment	
  was	
  
exposed	
  (Dietrich	
  1994).	
  The	
  dolomite	
  visible	
  at	
  the	
  escarpment	
  features	
  many	
  
fractures	
  and	
  faults	
  that	
  can	
  provide	
  key	
  indicators	
  of	
  the	
  paleostresses	
  (La	
  
Pointe	
  et	
  al.	
  1985)	
  that	
  were	
  likely	
  linked	
  to	
  the	
  subsidence	
  of	
  the	
  Michigan	
  
Basin	
  and	
  the	
  upliP	
  of	
  the	
  Wisconsin	
  Arch	
  (Luczaj	
  2013).	
  
	
  
La	
  Pointe	
  et	
  al.	
  (1985)	
  claims	
  that	
  the	
  orienta:ons	
  of	
  regional	
  join:ng	
  remains	
  
fairly	
  consistent	
  throughout	
  the	
  Niagara	
  dolomite	
  in	
  Wisconsin,	
  with	
  two	
  
primary	
  sets	
  that	
  are	
  close	
  to	
  ver:cal:	
  one	
  strikes	
  approximately	
  330;	
  the	
  other	
  
strikes	
  between	
  045	
  and	
  070.	
  Our	
  study	
  measured	
  the	
  aYtudes	
  of	
  extensional	
  
fractures	
  on	
  an	
  exposed	
  por:on	
  of	
  the	
  Niagara	
  escarpment	
  at	
  Oakfield	
  Ledge	
  
State	
  Natural	
  Area	
  in	
  Fond	
  du	
  Lac	
  County,	
  Wisconsin.	
  The	
  objec:ve	
  of	
  this	
  
study	
  is	
  to	
  analyze	
  these	
  orienta:ons	
  in	
  comparison	
  to	
  those	
  predicted	
  by	
  La	
  
Pointe	
  and	
  to	
  make	
  any	
  possible	
  interpreta:ons	
  of	
  regional	
  paleostress	
  
orienta:ons.	
  
Our	
  field	
  work	
  u:lized	
  a	
  Brunton	
  Compass	
  to	
  obtain	
  strike	
  and	
  dip	
  
measurements	
  of	
  the	
  ver:cal	
  fractures.	
  	
  The	
  fractures	
  measured	
  were	
  all	
  at	
  
least	
  one	
  meter	
  in	
  length.	
  	
  Fractures	
  exhibi:ng	
  a	
  great	
  deal	
  of	
  weathering	
  
were	
  not	
  measured	
  as	
  erosion	
  and	
  frost	
  wedging	
  were	
  confounding	
  factors	
  
at	
  the	
  field	
  site.	
  	
  Another	
  qualifica:on	
  for	
  the	
  fractures	
  required	
  that	
  they	
  
existed	
  as	
  part	
  of	
  the	
  main	
  cliff	
  wall	
  of	
  the	
  escarpment	
  since	
  many	
  larger	
  
blocks	
  had	
  broken	
  off	
  from	
  the	
  main	
  ledge	
  and	
  shiPed	
  from	
  their	
  original	
  
orienta:on.	
  	
  Upon	
  comple:ng	
  our	
  field	
  work	
  we	
  then	
  u:lized	
  stereo-­‐nets	
  
to	
  interpret	
  if	
  there	
  were	
  any	
  clusters	
  of	
  measurements	
  and	
  to	
  break	
  down	
  
the	
  direc:ons	
  of	
  paleostress.	
  
Methodology	
  
Fig	
  1:	
  Topographic	
  map	
  showing	
  the	
  drama:c	
  change	
  in	
  eleva:on	
  at	
  the	
  ridge.	
  	
  From	
  Wisconsin	
  DNR.	
  
Analysis	
  and	
  Results	
  
Fig.	
  9:	
  Ver:cal	
  extension	
  joint	
  with	
  a	
  8x11.5	
  clipboard	
  for	
  scale.	
  
Fig.	
  10:	
  Ver:cal	
  extension	
  joint	
  with	
  a	
  Brunton	
  Compass	
  for	
  scale.	
  
With	
  the	
  assump:on	
  that	
  the	
  extensional	
  fractures	
  are	
  analogous	
  to	
  tension	
  
gashes,	
  σ3	
  is	
  interpreted	
  as	
  perpendicular	
  to	
  the	
  fracture	
  set	
  orienta:on.	
  The	
  
paleostresses	
  are	
  grouped	
  into	
  four	
  different	
  clusters:	
  the	
  avg.	
  σ3	
  of	
  the	
  SE	
  
cluster	
  is	
  6––>145,	
  avg.	
  σ3	
  of	
  the	
  NW	
  cluster	
  is	
  9––>335,	
  avg.	
  σ3	
  of	
  the	
  SW	
  cluster	
  
is	
  7––>227,	
  and	
  avg.	
  σ3	
  of	
  the	
  NE	
  cluster	
  is	
  6––>054.	
  This	
  represents	
  the	
  
maximum	
  extensional	
  stress	
  that	
  formed	
  these	
  fracture	
  sets.	
  The	
  orienta:ons	
  of	
  
σ1	
  and	
  σ2	
  cannot	
  be	
  determined	
  defini:vely	
  since	
  none	
  of	
  the	
  necessary	
  
kinema:c	
  indicators	
  (e.g.	
  styolites)	
  were	
  present.	
  
To	
  analyze	
  our	
  data,	
  we	
  plofed	
  the	
  twenty-­‐nine	
  measurements	
  onto	
  an	
  equal-­‐
area	
  stereo-­‐net	
  as	
  planes	
  and	
  lines.	
  	
  Once	
  the	
  data	
  had	
  been	
  plofed,	
  the	
  results	
  
showed	
  two	
  sets	
  of	
  strike	
  direc:ons.	
  	
  The	
  first	
  set	
  of	
  fractures	
  had	
  strikes	
  that	
  
ranged	
  from	
  118	
  to	
  164	
  with	
  an	
  average	
  strike	
  direc:on	
  of	
  approximately	
  140.	
  	
  
The	
  second	
  set	
  of	
  fractures	
  had	
  strikes	
  that	
  ranged	
  from	
  034	
  to	
  082	
  with	
  an	
  
average	
  strike	
  direc:on	
  of	
  approximately	
  060.	
  
References	
  
Conclusion	
  
The	
  orienta:ons	
  predicted	
  by	
  La	
  Pointe	
  et	
  al.	
  are	
  strongly	
  supported	
  by	
  our	
  
research	
  on	
  the	
  fractures	
  at	
  Oakfield	
  Ledge	
  State	
  Natural	
  Area.	
  The	
  set	
  of	
  
fractures	
  with	
  an	
  average	
  strike	
  of	
  140	
  closely	
  follows	
  La	
  Pointe’s	
  predic:on	
  
of	
  a	
  set	
  striking	
  at	
  150.	
  The	
  set	
  of	
  fractures	
  with	
  an	
  average	
  strike	
  of	
  060	
  
also	
  follows	
  La	
  Pointe’s	
  predic:on	
  of	
  a	
  set	
  striking	
  between	
  045	
  and	
  070.	
  
	
  
Two	
  main	
  paleostress	
  direc:ons	
  were	
  found	
  for	
  σ3:	
  one	
  set	
  trends	
  to	
  the	
  
NE/SW;	
  the	
  other	
  to	
  the	
  NW/SE.	
  This	
  result	
  indicates	
  that	
  there	
  has	
  been	
  
one	
  major	
  change	
  in	
  the	
  direc:on	
  of	
  regional	
  paleostress.	
  This	
  is	
  possibly	
  
caused	
  by	
  major	
  tectonic	
  events	
  in	
  Wisconsin	
  like	
  the	
  forma:on	
  of	
  the	
  
Michigan	
  Basin	
  and	
  the	
  Wisconsin	
  Arch.	
  	
  	
  
Dietrich,	
  R.	
  V.,	
  1994.	
  Rock	
  Chips:	
  What	
  is	
  the	
  Niagara	
  escarpment?	
  Rocks	
  &	
  Minerals	
  69,	
  191-­‐195.	
  	
  
	
  
La	
  Point,	
  P.R.	
  and	
  Hudson,	
  J.A.	
  1985.	
  Characteriza:on	
  and	
  interpreta:on	
  of	
  rock	
  mass	
  joint	
  paferns.	
  Geological	
  Society	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  America	
  Special	
  Paper	
  199.	
  	
  
	
  
Luczaj,	
  John	
  A.,	
  2013.	
  Geology	
  of	
  the	
  Niagara	
  escarpment	
  in	
  Wisconsin.	
  Geoscience	
  Wisconsin	
  	
  22.	
  	
  
	
  
Newport,	
  Thomas	
  G.,	
  1962.	
  Geology	
  and	
  groundwater	
  resources	
  of	
  Fond	
  du	
  Lac	
  County,	
  Wisconsin.	
  United	
  States	
  Geological	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  Survey	
  Water	
  Supply	
  Paper	
  1604.	
  
	
  
DNR.	
  Topographic	
  Map:	
  Oakfield	
  Ledge	
  State	
  Natural	
  Area.	
  	
  
	
  h:p://dnr.wi.gov/topic/lands/naturalareas/documents/topomaps/map190.pdf.	
  Web.	
  23	
  April,	
  2014.	
  
	
  
Fig.	
  2:	
  Equal-­‐area	
  stereo-­‐net	
  represen:ng	
  the	
  strikes	
  and	
  dips	
  of	
  
extensional	
  fractures	
  at	
  Oakfield	
  Ledge	
  State	
  Natural	
  Area.	
  
Fig.	
  3:	
  Rose	
  diagram	
  represen:ng	
  that	
  there	
  is	
  a	
  small	
  sta:s:cal	
  
variance	
  of	
  the	
  fracture	
  set	
  orienta:ons.	
  
Fig.	
  5:	
  Graphical	
  representa:on	
  of	
  σ3	
  trends	
  and	
  plunges	
  for	
  fractures	
  
striking	
  NE.	
  
Fig.	
  7:	
  Graphical	
  representa:on	
  of	
  σ3	
  trends	
  and	
  plunges	
  for	
  fractures	
  striking	
  
SE.	
  
Fig.	
  4:	
  An	
  equal-­‐angle	
  stereo-­‐net	
  representa:on	
  of	
  fractures	
  striking	
  NE-­‐SW.	
  
Fig.	
  6:	
  An	
  equal-­‐angle	
  stereo-­‐net	
  representa:on	
  of	
  fractures	
  striking	
  NE-­‐SW.	
  
Fig.	
  8:	
  View	
  of	
  the	
  outcrop	
  showing	
  extensive	
  fracturing.	
  
Fig.	
  11:	
  View	
  of	
  the	
  outcrop	
  showing	
  disconnected	
  dolomite	
  block	
  from	
  main	
  ledge.	
  

More Related Content

What's hot

Thesis Proposal Simon Fraser University
Thesis Proposal Simon Fraser UniversityThesis Proposal Simon Fraser University
Thesis Proposal Simon Fraser UniversityDanilo Moretti
 
Arrowhead craters and tomahawk basins signatures of oblique impacts at large...
Arrowhead craters and tomahawk basins  signatures of oblique impacts at large...Arrowhead craters and tomahawk basins  signatures of oblique impacts at large...
Arrowhead craters and tomahawk basins signatures of oblique impacts at large...Sérgio Sacani
 
The San Gabriel Fault
The San Gabriel FaultThe San Gabriel Fault
The San Gabriel FaultEldon Gath
 
Introduction to Structural Geology-Patrice intro to_sg
Introduction to Structural Geology-Patrice intro to_sgIntroduction to Structural Geology-Patrice intro to_sg
Introduction to Structural Geology-Patrice intro to_sgRoland Guillen
 
jennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_posterjennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_posterJennifer DiGiulio
 
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic AttenuationM6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic AttenuationAli Osman Öncel
 
I0366059067
I0366059067I0366059067
I0366059067theijes
 
2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...
2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...
2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...Symposium
 
Fault'classification of fault and mechanism of faulting
Fault'classification of fault  and mechanism of faultingFault'classification of fault  and mechanism of faulting
Fault'classification of fault and mechanism of faultingShivam Jain
 
Interpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic dataInterpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic dataDiego Timoteo
 
Delaware Basin Structural Relationships_Manos
Delaware Basin Structural Relationships_ManosDelaware Basin Structural Relationships_Manos
Delaware Basin Structural Relationships_ManosTelemachos Manos
 
Structural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering GeologyStructural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering GeologyKamal Abdurahman
 

What's hot (20)

Thesis Proposal Simon Fraser University
Thesis Proposal Simon Fraser UniversityThesis Proposal Simon Fraser University
Thesis Proposal Simon Fraser University
 
Arrowhead craters and tomahawk basins signatures of oblique impacts at large...
Arrowhead craters and tomahawk basins  signatures of oblique impacts at large...Arrowhead craters and tomahawk basins  signatures of oblique impacts at large...
Arrowhead craters and tomahawk basins signatures of oblique impacts at large...
 
Seismic Design Basics - Superstructure
Seismic Design Basics - SuperstructureSeismic Design Basics - Superstructure
Seismic Design Basics - Superstructure
 
The San Gabriel Fault
The San Gabriel FaultThe San Gabriel Fault
The San Gabriel Fault
 
Integrated Seismic Hazard
Integrated Seismic HazardIntegrated Seismic Hazard
Integrated Seismic Hazard
 
Introduction to Structural Geology-Patrice intro to_sg
Introduction to Structural Geology-Patrice intro to_sgIntroduction to Structural Geology-Patrice intro to_sg
Introduction to Structural Geology-Patrice intro to_sg
 
ONCEL AKADEMİ: PROJE
ONCEL AKADEMİ: PROJEONCEL AKADEMİ: PROJE
ONCEL AKADEMİ: PROJE
 
jennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_posterjennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_poster
 
Faults
FaultsFaults
Faults
 
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic AttenuationM6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
 
I0366059067
I0366059067I0366059067
I0366059067
 
2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...
2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...
2015 Broken Hill Resources Investment Symposium - University of Sydney - Pete...
 
Faults
FaultsFaults
Faults
 
Fault'classification of fault and mechanism of faulting
Fault'classification of fault  and mechanism of faultingFault'classification of fault  and mechanism of faulting
Fault'classification of fault and mechanism of faulting
 
Interpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic dataInterpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic data
 
Delaware Basin Structural Relationships_Manos
Delaware Basin Structural Relationships_ManosDelaware Basin Structural Relationships_Manos
Delaware Basin Structural Relationships_Manos
 
Structural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering GeologyStructural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering Geology
 
Joints (Geology)
Joints (Geology)Joints (Geology)
Joints (Geology)
 
Seismic Design - Introduction
Seismic Design - IntroductionSeismic Design - Introduction
Seismic Design - Introduction
 
Joints
JointsJoints
Joints
 

Similar to FINAL POSTER reduced

San Andreas Fault: Fractal of Seismicity
San Andreas Fault: Fractal of SeismicitySan Andreas Fault: Fractal of Seismicity
San Andreas Fault: Fractal of SeismicityAli Osman Öncel
 
LPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunkLPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunkNicholas Kelly
 
The Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and FaultingThe Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and FaultingAli Osman Öncel
 
Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...
Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...
Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...Caitlin Hartig
 
Boon et al 2015 Geomorphology 248 pp296-310
Boon et al 2015 Geomorphology 248 pp296-310Boon et al 2015 Geomorphology 248 pp296-310
Boon et al 2015 Geomorphology 248 pp296-310David Boon
 
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docxStudent Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docxdeanmtaylor1545
 
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docxStudent Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docxcpatriciarpatricia
 
Regional AAG - 2008
Regional AAG - 2008Regional AAG - 2008
Regional AAG - 2008djm242s
 
Ch 04 Field Relationships.ppt
Ch 04 Field Relationships.pptCh 04 Field Relationships.ppt
Ch 04 Field Relationships.pptbharatsingh300
 
Undergraduate Research Journal
Undergraduate Research JournalUndergraduate Research Journal
Undergraduate Research JournalBrooke Schlemeyer
 
Geophys. J. Int.-2016-Bodin-605-29
Geophys. J. Int.-2016-Bodin-605-29Geophys. J. Int.-2016-Bodin-605-29
Geophys. J. Int.-2016-Bodin-605-29Julie Leiva
 
Evaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal OmarEvaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal OmarIJERD Editor
 
Senior Project LandslideFinal
Senior Project LandslideFinalSenior Project LandslideFinal
Senior Project LandslideFinalSara Ramos
 
Geological interpretation of a low-backscatter anomaly found on the New Jerse...
Geological interpretation of a low-backscatter anomaly found on the New Jerse...Geological interpretation of a low-backscatter anomaly found on the New Jerse...
Geological interpretation of a low-backscatter anomaly found on the New Jerse...Larry Mayer
 
manuscrptFinalRevised
manuscrptFinalRevisedmanuscrptFinalRevised
manuscrptFinalRevisedSean Lamarre
 
Larsen ice shelf has progressively thinned
Larsen ice shelf has progressively thinnedLarsen ice shelf has progressively thinned
Larsen ice shelf has progressively thinnedSimoneBoccuccia
 
Comprehensive Seismic Hazard Review
Comprehensive Seismic Hazard ReviewComprehensive Seismic Hazard Review
Comprehensive Seismic Hazard ReviewJohanna Vaughan
 
The Scaling of Geological Faults
The Scaling of Geological FaultsThe Scaling of Geological Faults
The Scaling of Geological FaultsAli Osman Öncel
 

Similar to FINAL POSTER reduced (20)

San Andreas Fault: Fractal of Seismicity
San Andreas Fault: Fractal of SeismicitySan Andreas Fault: Fractal of Seismicity
San Andreas Fault: Fractal of Seismicity
 
LPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunkLPSC Venus Poster Final3-shrunk
LPSC Venus Poster Final3-shrunk
 
The Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and FaultingThe Fractal Geometry of Faults and Faulting
The Fractal Geometry of Faults and Faulting
 
Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...
Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...
Discrete Fracture Network Simulation for Sedimentary Enhanced Geothermal Syst...
 
Mapping Earthquake Hazard
Mapping Earthquake HazardMapping Earthquake Hazard
Mapping Earthquake Hazard
 
Boon et al 2015 Geomorphology 248 pp296-310
Boon et al 2015 Geomorphology 248 pp296-310Boon et al 2015 Geomorphology 248 pp296-310
Boon et al 2015 Geomorphology 248 pp296-310
 
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docxStudent Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
 
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docxStudent Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
Student Name Bud BennemanGeology 105 Spring 2020Paper Outline.docx
 
Regional AAG - 2008
Regional AAG - 2008Regional AAG - 2008
Regional AAG - 2008
 
Ch 04 Field Relationships.ppt
Ch 04 Field Relationships.pptCh 04 Field Relationships.ppt
Ch 04 Field Relationships.ppt
 
Undergraduate Research Journal
Undergraduate Research JournalUndergraduate Research Journal
Undergraduate Research Journal
 
Geophys. J. Int.-2016-Bodin-605-29
Geophys. J. Int.-2016-Bodin-605-29Geophys. J. Int.-2016-Bodin-605-29
Geophys. J. Int.-2016-Bodin-605-29
 
Evaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal OmarEvaluation of Structural Geology of Jabal Omar
Evaluation of Structural Geology of Jabal Omar
 
Senior Project LandslideFinal
Senior Project LandslideFinalSenior Project LandslideFinal
Senior Project LandslideFinal
 
Geological interpretation of a low-backscatter anomaly found on the New Jerse...
Geological interpretation of a low-backscatter anomaly found on the New Jerse...Geological interpretation of a low-backscatter anomaly found on the New Jerse...
Geological interpretation of a low-backscatter anomaly found on the New Jerse...
 
ENV 101 Ch05 lecture ppt_a
ENV 101 Ch05 lecture ppt_aENV 101 Ch05 lecture ppt_a
ENV 101 Ch05 lecture ppt_a
 
manuscrptFinalRevised
manuscrptFinalRevisedmanuscrptFinalRevised
manuscrptFinalRevised
 
Larsen ice shelf has progressively thinned
Larsen ice shelf has progressively thinnedLarsen ice shelf has progressively thinned
Larsen ice shelf has progressively thinned
 
Comprehensive Seismic Hazard Review
Comprehensive Seismic Hazard ReviewComprehensive Seismic Hazard Review
Comprehensive Seismic Hazard Review
 
The Scaling of Geological Faults
The Scaling of Geological FaultsThe Scaling of Geological Faults
The Scaling of Geological Faults
 

FINAL POSTER reduced

  • 1. Paleostress of Fracture Systems along the Niagara Escarpment, Oakfield Ledge State Natural Area Elizabeth  Borucki,  Michael  Defenbaugh,  William  Meier,  Jared  Miller   Structural  Geology,  2014   SeBng  and  IntroducDon   Along  eastern  Wisconsin,  stretching  from  Door  County  to  Dodge  County,  there   is  a  complex  geologic  feature  consis:ng  of  a  discon:nuous  series  of  raised  and   exposed  bedrock  (Newport  1962).  This  feature  formed  due  to  the  strength  of   the  Niagara  dolomite,  causing  preferen:al  erosion  of  the  underlying   Manquoketa  shale.  A  ridge  of  bedrock  known  as  the  Niagara  escarpment  was   exposed  (Dietrich  1994).  The  dolomite  visible  at  the  escarpment  features  many   fractures  and  faults  that  can  provide  key  indicators  of  the  paleostresses  (La   Pointe  et  al.  1985)  that  were  likely  linked  to  the  subsidence  of  the  Michigan   Basin  and  the  upliP  of  the  Wisconsin  Arch  (Luczaj  2013).     La  Pointe  et  al.  (1985)  claims  that  the  orienta:ons  of  regional  join:ng  remains   fairly  consistent  throughout  the  Niagara  dolomite  in  Wisconsin,  with  two   primary  sets  that  are  close  to  ver:cal:  one  strikes  approximately  330;  the  other   strikes  between  045  and  070.  Our  study  measured  the  aYtudes  of  extensional   fractures  on  an  exposed  por:on  of  the  Niagara  escarpment  at  Oakfield  Ledge   State  Natural  Area  in  Fond  du  Lac  County,  Wisconsin.  The  objec:ve  of  this   study  is  to  analyze  these  orienta:ons  in  comparison  to  those  predicted  by  La   Pointe  and  to  make  any  possible  interpreta:ons  of  regional  paleostress   orienta:ons.   Our  field  work  u:lized  a  Brunton  Compass  to  obtain  strike  and  dip   measurements  of  the  ver:cal  fractures.    The  fractures  measured  were  all  at   least  one  meter  in  length.    Fractures  exhibi:ng  a  great  deal  of  weathering   were  not  measured  as  erosion  and  frost  wedging  were  confounding  factors   at  the  field  site.    Another  qualifica:on  for  the  fractures  required  that  they   existed  as  part  of  the  main  cliff  wall  of  the  escarpment  since  many  larger   blocks  had  broken  off  from  the  main  ledge  and  shiPed  from  their  original   orienta:on.    Upon  comple:ng  our  field  work  we  then  u:lized  stereo-­‐nets   to  interpret  if  there  were  any  clusters  of  measurements  and  to  break  down   the  direc:ons  of  paleostress.   Methodology   Fig  1:  Topographic  map  showing  the  drama:c  change  in  eleva:on  at  the  ridge.    From  Wisconsin  DNR.   Analysis  and  Results   Fig.  9:  Ver:cal  extension  joint  with  a  8x11.5  clipboard  for  scale.   Fig.  10:  Ver:cal  extension  joint  with  a  Brunton  Compass  for  scale.   With  the  assump:on  that  the  extensional  fractures  are  analogous  to  tension   gashes,  σ3  is  interpreted  as  perpendicular  to  the  fracture  set  orienta:on.  The   paleostresses  are  grouped  into  four  different  clusters:  the  avg.  σ3  of  the  SE   cluster  is  6––>145,  avg.  σ3  of  the  NW  cluster  is  9––>335,  avg.  σ3  of  the  SW  cluster   is  7––>227,  and  avg.  σ3  of  the  NE  cluster  is  6––>054.  This  represents  the   maximum  extensional  stress  that  formed  these  fracture  sets.  The  orienta:ons  of   σ1  and  σ2  cannot  be  determined  defini:vely  since  none  of  the  necessary   kinema:c  indicators  (e.g.  styolites)  were  present.   To  analyze  our  data,  we  plofed  the  twenty-­‐nine  measurements  onto  an  equal-­‐ area  stereo-­‐net  as  planes  and  lines.    Once  the  data  had  been  plofed,  the  results   showed  two  sets  of  strike  direc:ons.    The  first  set  of  fractures  had  strikes  that   ranged  from  118  to  164  with  an  average  strike  direc:on  of  approximately  140.     The  second  set  of  fractures  had  strikes  that  ranged  from  034  to  082  with  an   average  strike  direc:on  of  approximately  060.   References   Conclusion   The  orienta:ons  predicted  by  La  Pointe  et  al.  are  strongly  supported  by  our   research  on  the  fractures  at  Oakfield  Ledge  State  Natural  Area.  The  set  of   fractures  with  an  average  strike  of  140  closely  follows  La  Pointe’s  predic:on   of  a  set  striking  at  150.  The  set  of  fractures  with  an  average  strike  of  060   also  follows  La  Pointe’s  predic:on  of  a  set  striking  between  045  and  070.     Two  main  paleostress  direc:ons  were  found  for  σ3:  one  set  trends  to  the   NE/SW;  the  other  to  the  NW/SE.  This  result  indicates  that  there  has  been   one  major  change  in  the  direc:on  of  regional  paleostress.  This  is  possibly   caused  by  major  tectonic  events  in  Wisconsin  like  the  forma:on  of  the   Michigan  Basin  and  the  Wisconsin  Arch.       Dietrich,  R.  V.,  1994.  Rock  Chips:  What  is  the  Niagara  escarpment?  Rocks  &  Minerals  69,  191-­‐195.       La  Point,  P.R.  and  Hudson,  J.A.  1985.  Characteriza:on  and  interpreta:on  of  rock  mass  joint  paferns.  Geological  Society                      of  America  Special  Paper  199.       Luczaj,  John  A.,  2013.  Geology  of  the  Niagara  escarpment  in  Wisconsin.  Geoscience  Wisconsin    22.       Newport,  Thomas  G.,  1962.  Geology  and  groundwater  resources  of  Fond  du  Lac  County,  Wisconsin.  United  States  Geological                    Survey  Water  Supply  Paper  1604.     DNR.  Topographic  Map:  Oakfield  Ledge  State  Natural  Area.      h:p://dnr.wi.gov/topic/lands/naturalareas/documents/topomaps/map190.pdf.  Web.  23  April,  2014.     Fig.  2:  Equal-­‐area  stereo-­‐net  represen:ng  the  strikes  and  dips  of   extensional  fractures  at  Oakfield  Ledge  State  Natural  Area.   Fig.  3:  Rose  diagram  represen:ng  that  there  is  a  small  sta:s:cal   variance  of  the  fracture  set  orienta:ons.   Fig.  5:  Graphical  representa:on  of  σ3  trends  and  plunges  for  fractures   striking  NE.   Fig.  7:  Graphical  representa:on  of  σ3  trends  and  plunges  for  fractures  striking   SE.   Fig.  4:  An  equal-­‐angle  stereo-­‐net  representa:on  of  fractures  striking  NE-­‐SW.   Fig.  6:  An  equal-­‐angle  stereo-­‐net  representa:on  of  fractures  striking  NE-­‐SW.   Fig.  8:  View  of  the  outcrop  showing  extensive  fracturing.   Fig.  11:  View  of  the  outcrop  showing  disconnected  dolomite  block  from  main  ledge.