Thesis Proposal Simon Fraser University

2,281 views

Published on

Published in: Career, Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,281
On SlideShare
0
From Embeds
0
Number of Embeds
24
Actions
Shares
0
Downloads
45
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Cartageologica e modellodigitale del terreno
  • Al contattotra Basement e Terrane
  • LinearfeturescorrispondonoallefaglieestensionalilungoMonashee Complex1 fasecompressione, Monashee Complex compressed and pushed upwards (A,B)1 fasedilatazione, Monashee Complex in extension and creation of semivertical faults that can be seen as linear fetures along the valley
  • Debutressing = rilasciotensionale ongoing=in atto Little age age 1600 a.d.The glacial history can be summerized in
  • 2° cross section not in great detail
  • Palm PC
  • To chose if to use a continuum or a discontinuum model
  • Thesis Proposal Simon Fraser University

    1. 1. A Deep-seatedGravitationalSlopeDeformation in the northernMonasheeComplex, Monashee Mountains, British Columbia, Canada<br />Danilo Moretti<br />Earth Science Department<br />Universityof Bologna<br />VisitingStudent<br />
    2. 2. Presentation Outline<br />Introduction:<br />What is a deep-seated gravitational slope deformation?<br />Methods of studying DsGSD<br />Different approaches to and representations of DsGSD<br />Objectives for this study<br />Field site description<br />Methodology<br />Timeline<br />
    3. 3. What is a deep-seated gravitational slope deformation?<br />DsGSD: hugegravitationalphenomenaaffecting mountain slopes<br />Severalphenomenaindicatedbyliteraturewithdifferentnames:<br /><ul><li>Area extent</li></ul> “Largelandslides”: Stini, 1952<br /><ul><li>Thicknessof the involvedslopeportion</li></ul> “Deepseatedgravitationaldeformations”: Jahn, 1964<br /> “Deep-reachinggravitationaldeformations”: Neemcock, 1972<br /><ul><li>Time-intervalofactivity</li></ul> “Long termgravitationaldeformations”: Ghigira, 1992<br /><ul><li>The allegedcauses</li></ul> “Gravitytectonicphenomena”: Engelen, 1963<br /> “Glacialvalleystressrelease”: Ferguson, 1967<br /><ul><li>Deformational styles</li></ul> “Sackung”: Zishinsky, 1969;<br /> “Deepcreep”: Ter-Stepanian , 1966;<br /> “Lateralspreading”: Nemcock and Rybar, 1968; <br />“Large block sliding”: Zaruba and Mecl, 1969,<br /> “Gravitationalspreadingofridges”, Varneset al., 1989<br />After Agliardi et al. (2001)<br />
    4. 4. Twomainrepresentations<br />Sackung<br />Lateral Spreading<br />open fractures<br />scarps<br />toe bulging<br />of brittle formations on ductile units<br />homogeneous rocks<br />Bisci et al. (1996)<br />Varnes (1978)<br />
    5. 5. Landslide vsDsGSD<br /><ul><li> Single phenomenon << involved slope
    6. 6. High variable ratio run-out/volume
    7. 7. Deformations “need” a failure/sliding </li></ul> surface<br />“Landslide”<br /><ul><li>Phenomenondimension = </li></ul>involvedslope<br /><ul><li>Low ratiorun-out/volume
    8. 8. A slidingsurfaceisnotanessential</li></ul>feature (the deformational<br />mechanismiscomplex)<br />“Deep-seatedGravitationalSlopeDeformation” <br />
    9. 9. Traditionalapproachesto the studyofDsGSD<br />The geomorphological method:<br />Double ridges<br />Trenches<br />Elongated depressions<br />Sliding steps<br />Isolated rock walls<br />Up hill facing scarps<br />Slope bulgings<br />Talus sheets<br />The structural method:<br />Shear zones<br />Fault scarps<br />Collapse zones<br />Horst and Graben<br />Gravitational Thrusts<br />
    10. 10. “Regional Geological Approach” (RGA), Giardino et al. 2009<br />RGA analyses:<br /><ul><li>large scale, long-term features
    11. 11. geomorphological, lithological and structural features </li></ul> as general factors of instabilities in the mountain <br /> relief<br />RGA allows interpretation of:<br /><ul><li>evolutionary stages of the mountain relief
    12. 12. regional variables, offering a “static”</li></ul> conditioning to the system (e.g. lithology as an<br /> “internal” cause of DsGSD controlling shear strenght)<br />Mathews and Monger, 2005<br />© Google 2009<br />
    13. 13. “Local Morphodinamic Approach” (LMA), Giardino et al. 2009<br />LMA analyses the characteristic landforms and processes of natural instability, relevant to understand mechanism of one specific DsGSD<br />LMA allows:<br /><ul><li>the control on dynamic factors of natural </li></ul> instabilities (e.g. the increase of slope gradient <br /> as an “external” cause of DsGSD, <br /> increasing shear stress )<br /><ul><li>Process modelling and hazards assessment </li></ul>http://gsc.nrcan.gc.ca/landslides/photo_library_e.php<br />© Google 2009<br />
    14. 14. Methods of study<br />- Formation of DsGSD may be influenced by many factors<br /><ul><li> Shape/height of slope, lithology, structure, tectonics, groundwater conditions, </li></ul> glacial history<br />- Necessary to integrate different techniques for a detailed characterization<br /><ul><li> Aerial Photos
    15. 15. Field mapping
    16. 16. GIS
    17. 17. Numerical modeling</li></li></ul><li>Objectives of my Thesis<br />Establish a conceptual framework for a database of deep-seated gravitational slope deformations in British Columbia and apply it to my case study in the North of the MonasheeComplex, in the Seymour Valley (SE British Columbia) (Clague, Giardino, Stead).<br />Develop and integrate the database with the main case studies <br /> already described in Europe (in Italy especially) (Giardino, Ghirotti).<br />Perform a field investigation to evaluate the history of slope deformation close to Blais Creek with respect to the tectonic and glacial history of the Seymour Valley (Clague, Giardino, Gibson).<br />Record geotechnical properties of the deforming rock mass for use in numerical models (Stead, Ghirotti).<br />5. Investigate the failure mechanism at Blais Creek through finite and/or discrete element modeling (Stead, Ghirotti).<br />
    18. 18. Site Description<br />© Google 2009<br />
    19. 19. The Blais Creek Area<br /><ul><li> Site suggested by Derek Kinakin
    20. 20. No previous works on DSGsD in this area
    21. 21. Area inside the Northern Frenchman</li></ul> Cap Dome, Omineca Belt, Canadian Cordillera,<br /> SE British Columbia<br /><ul><li> Area between the Aphebian Basement </li></ul>Terrane (gneiss, paragneiss, amphibolite) and <br /> the Mantling Metasedimentary Cover <br /> (quartzite, marble)<br /><ul><li> Area within the</li></ul>MonasheeDecollment (MD and CRF)<br /><ul><li> Area between the Okanagan- </li></ul> Eagle River Fault Zone and the <br /> Columbia River Fault Zone, <br /> both in extension<br /><ul><li> Area on the Kymberville Anticline</li></ul>J. Murray Journeay, 1986<br />
    22. 22. The Geology of Blais Creek<br />5 km<br />J. Murray Journeay, 1986<br />
    23. 23. Main lithostructural characteristics of instability <br /> in the Blais Creek Area<br /><ul><li> Structural weakness (low angle “Decollment”)
    24. 24. Contact between the Aphebian Basement Terrane and </li></ul> the Mantling Metasedimentary Cover <br /> (contrast of competence)<br /><ul><li>Regional schistosity parallel to the slope </li></ul> (Basement Terrane over the Metasedimentary Cover)<br /><ul><li> Brittle structures in the Basement Terrane (related </li></ul> probably to the extensional tectonic)<br /><ul><li>Possible presence of Paleoregolith between the</li></ul>Metasedimentary Cover and the Basement Terrane<br /> (fractured, altered and weak material)<br /><ul><li>Similarity of regional variables conditioning</li></ul> the slope instability of the Downie Slide: lithology and<br /> structural setting<br />
    25. 25. “Heritage” of the <br />Evolution of the continental crust in the Monashee Complex<br />R. L. Brown and J. M. Journeay, 1987<br />
    26. 26. Glacial history in the Seymour Valley<br /><ul><li> Last major glaciation ended </li></ul> 11,500 years ago <br /> (ice free from main valleys) <br /><ul><li> Slope debuttressing after deglaciation</li></ul> cited as important cause of DsGSD and <br />landsliding<br /><ul><li> Ongoing glacier loss in the upper slopes </li></ul> after end of Little Ice Age caused active <br /> slope instabilities.<br />© Google 2009<br />
    27. 27.
    28. 28. Linear features in the Blais Creek Area <br />“Passive” origin:<br />Old tectonic <br />linear features<br />“Active” Origin:<br />Release of energy<br />after deglaciation<br />or neotectonic or<br />both<br />
    29. 29. L<br />Cross Sections<br />J. Murray Journeay, 1986<br />E’<br />E<br />K<br />Legend<br />Da = marble<br />Db = quartize<br />Geological Survey<br />Of Canada, 1964<br />
    30. 30. Methods summary<br />Field methods:<br />Mapping of surface features<br />Geotechnical investigation<br />Trench ?<br />Laboratory techniques<br />Yield strength of samples collected in the field<br />Remote sensing and software-aided data analysis<br />Photogrammetry<br />GIS database<br />Geotechnical analysis for numerical modeling<br />
    31. 31. Field methods 1: Surface features<br />Map geomorphological features:<br />Double ridges<br />Trenches<br />Elongated depressions<br />Sliding steps<br />Isolated rock walls<br />Antislope scarps<br />Slope bulging <br />Talus sheets<br />Flow of water into and out of slope<br />Glacial features and interaction with DsGSD features<br />Data entered into handheld GPS unit <br />SRG2 toolbar for ArcPad (modified for this project)<br />
    32. 32. SRG2 toolbar<br />
    33. 33. Field methods 2: Geotechnical<br />Detailed geotechnical characterization of the rock mass:<br />Intact rock strength (Schmidt hammer)<br />Rock mass quality (GSI)<br />Weathering grade and<br />Discontinuities (ISRM)<br />Spot measurements, scanlines in select locations<br />Stereo-couple photographs for later photogrammetry<br />www.abbeyspares.co.uk<br />
    34. 34. Field methods 3: trenching ?<br /><ul><li>Trench excavated perpendicularly to feature but </li></ul> the antislope scarps are rocky, not the best <br /> material for trenching.<br /><ul><li>Examine stratigraphy of sediment infills if </li></ul> possible<br />
    35. 35. Laboratory methods<br /><ul><li> Point load testing of intact </li></ul> rock samples<br /><ul><li> Strength parameters </li></ul> derived using RocLab<br /> software<br />http://www.enkaymachine.com<br />
    36. 36. Remote sensing<br /><ul><li> Surface feature mapping on aerial </li></ul> photographs<br />GIS<br />Help with field planning<br /><ul><li>Photogrammetry</li></ul>Joint mapping at 2-3 outcrops<br /> Software: ENVI and 3DM CalibCam and 3DM Analyst (ADAM Technology)<br />
    37. 37. DsGSD database<br />In concert with Gabriel Hensold<br />Format based on Giardino et al. (2004)<br />First phase: Inventory of data from past published studies in B.C. <br />Naming and localization of sites<br />Geospatial and geotechnical data<br />Interpretations<br />Second phase: add the main data from the European (especially Italian) past published studies<br />Third phase: application of database format to detailed new studies<br />Blais Creek (me)<br />Handcar Peak (Gabriel Hensold)<br />
    38. 38. Outline of data entry format<br />General inventory metadata (ID, data source, date, reporter)<br />Geographical position of feature<br />Geomorphology of DsGSD<br />DsGSD geometry<br />Slope morphology<br />Surface deformation features<br />Other landforms<br />Hydrology<br />Structural geomorphology of Valley slopes<br />Slope and bedding/schistosity relationship<br />Orientations of structural discontinuities (foliation, joints, faults)<br />Geology<br />Structural units<br />Lithological units<br />Geotechnical properties<br />Intact rock<br />Rock mass<br />Discontinuities<br />
    39. 39. Numerical modelling?<br /><ul><li> Evaluate failure mechanism at Blais</li></ul> Creek<br /><ul><li> Possible kinematic analysis using DIPS
    40. 40. Possible RocPlane prelim analysis
    41. 41. Possible Phase2 analysis
    42. 42. Explicit model (FLAC or UDEC)</li></ul>Continuum or discontinuum? <br />Depends on stress conditions and <br />the rock mass.<br />Agliardi et al. (2001)<br />
    43. 43. Timeline: Summer 2009<br />Course:<br />Photogrammetry short course with MatthieuSturzenegger<br />Office work:<br />Complete inventory of previous DsGSD studies in B.C. <br />Obtain GIS shape files and Digital Elevation Models from Turin<br />Map surface features at Blais Creek through GIS and Google Earth using digitized aerial photos<br />Plan logistics for field work in Blais Creek and Handcar Peak<br />Field work:<br />Field research at Blais Creek (3-4 weeks)<br />Field research in Handcar Peak (3-4 weeks)<br />
    44. 44. Timeline: Fall/Winter 2009<br /><ul><li>Office work:
    45. 45. Compilation, organization and analysis of spatial and geotechnical data gathered in the field in a GIS database
    46. 46. Point load strength testing on rock samples from Blais Creek
    47. 47. Creation of initial numerical models
    48. 48. Departure for Italy (around 20th of September 2009)
    49. 49. Course:
    50. 50. Final course – Matlab Class at the University of Bologna
    51. 51. Office work:
    52. 52. Creation of initial numerical models
    53. 53. Begin writing Thesis</li></li></ul><li>Timeline: Spring 2010<br />Spring Semester 2010<br />Office work:<br />Finish numerical modelling analysis of Blais Creek<br />Finish writing thesis<br /> Thesis Defence (hopefully....)<br />
    54. 54. References<br />Agliardi F, Crosta G, Zanchi A. 2001. Structural constraints on deep-seated slope deformation kinematics. Engineering Geology 59(1-2):83-102. <br />Bovis MJ. 1982. Uphill-facing (antislope) scarps in the Coast Mountains, Southwest British Columbia. Geological Society of America Bulletin 93(8):804-812.<br />Bovis MJ, Evans SG. 1996. Extensive deformations of rock slopes in the southern Coast Mountains, southwest British Columbia, Canada. Engineering Geology 44(1-4):163-182.<br />Giardino M, Giordan D, Ambrogio S. 2004. G.I.S. technologies for data collection, management and visualization of large slope instabilities: Two applications in the Western Italian Alps. Natural Hazards and Earth System Science4(2):197-211.<br />Holm K, Bovis M, Jakob M. 2004. The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57(3-4):201-216.<br />Jahn A. 1964 Slopes morphological features resulting from gravitation. Annals of Geomorphology 1964:59. <br />Kinakin D. 2004. Occurrence and Genesis of Alpine Linears Due to Gravitational Deformation in South Western, British Columbia. MSc thesis, Simon Fraser University, Burnaby, BC. <br />Monger JWH, Journeay JM. 1994. Geology of the Southern Coast and Intermontane Belt. Geological Survey of Canada, Open File 2490, map, scale 1:500,000<br />Nichol SL, Hungr O, Evans SG. 2002. Large-scale brittle and ductile toppling of rock slopes. Canadian Geotechnical Journal 39:773-788. <br />Savage WZ, Varnes, DJ. 1987. Mechanics of gravitational spreading of steep-sided ridges. Bulletin of the International Association of Engineering Geology 35(1):31-36. <br />Stepanek M. 1992. Gravitational deformations of mountain ridges in the Rocky Mountain foothills. Proceedings of the International Symposium on Landslides 6:231-236.<br />
    55. 55. Thankyou!<br />John Clague<br />Doug Stead <br />Marco Giardino<br />Dan Gibson<br />And toeveryone in the EarthSciencesDepartmentofSFU….<br />

    ×