SlideShare a Scribd company logo
1 of 41
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
1
BIOL387 Project
Interplant signalling and the effectiveness
of volatiles produced by Jasmonic acid seed
treatment
Student: Dylan Penlington
Student ID: 33299633
Supervisor: Dr. Jane Taylor
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
2
Glossaryof abbreviations
13-HPOT= 13-hydroperoxyoctadecatrieneoicacid
13-LPX = 13-lipoxy-genase
AC = AlisaCraig
ADJ = Adjacent
AOC= allene oxidecyclase
CON = control
GD = Gardner’sDelight
GPA = Greenpeach potatoaphid
JAZ= jasmonate zim-domainproteins
MeJA = Methyl jasmonate
NINJA = novel interactorof JAZproteins
OPDA=cis-(+)-12-oxophytodienoicacid
OPR3 = 12-Oxophytodienoate reductase3
JA = JasmonicAcid
TF= transcriptionfactors
TPL = toplessproteins
TSL = Two spottedladybirds
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
3
Table of contents
1. Abstract
2. Literature review
i) What is the problem?
ii) VOCs (Volatileorganic carbons) Directand indirectdefence
a) Introduction
b) Direct defence
c) Indirectdefence
iii) Jasmonic acid (JA) structure, synthesis and cellularpathway.
a) JA structure
b) JA synthesis
c) Possible useful artificial modificationstostructure andartificial synthesisof JA
d) JA signallingcellular pathway and resultantresponses
iv) The costs and risks of jasmonic acid againstthe risks and costs of pesticides.
v) Model organisms, Tomato, green peach potato Aphids and Two spotted ladybirds
a) Tomato
b) Green Peach potato aphid (GPA)
c) Two spotted Ladybird (TSL)
vi) Aims and objectives
3. Materials and methods
4. Results
i) Primary data and leaves surfacearea and number
ii) GD (Gardeners Delight)
iii) AC (Alisa Craig)
iv) Summary
5. Discussion
i) Gardner’s Delight green peach potato aphid
ii) Gardner’s Delight two spotted ladybirds
iii) Alisa Craiggreen peach potato aphids
iv) Alisa Craigtwo spotted ladybirds
v) Decision vs No decision
vi) Leaf surfacearea and average leaf surfacearea
vii) Results compared to other literature
viii) Conclusion
6. Bibliography
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
4
1. Abstract
Jasmonicacid(JA) isa signallingmolecule whichactsasa part the defence response inplants
duringinfestation. Itinducesthe indirectresponseof attractingnatural enemiesof
herbivorousinsects suchasthe two spottedLadybird(TSL) andpredatorymites.Whatisnot
yetknowniswhetherornot JA can induce pantstoproducesVOCscapable of interplant
signalling.Inthisstudy seedsof twotomatovarieties,Gardner’sDelight(GD) andAlisaCraig
(AC), where pre-treatedwithJA orethanol. Ethanol treatedplantswhere grown eitherclose
to the JA treatedplants asadjacentplants or where placedalongdistance away for controls.
Once grown theywere placedinaY-tube olfactoryassayto determine the response of
differentinsectspecies foreachplantvarietyandtreatmentpairs.Inseparate groupsthe
GreenPeachpotato aphids (GPA) andTSL were placedinthe apparatus for a choice test
betweentwoplantsof the same variety anddifferenttreatments. The resultsshowsa
minorityof insectsmade adecision.ForTSL forboth varietiesJA treatedplantsandthose
adjacentshowna significantly higherpreference comparedtothe control. ForGPA forGD JA
treatedplantsandthose adjacentshowna significantly higherpreference comparedtothe
control. For AC withGPA shownno significantdifference betweenthe control-JA and
adjacent-control pairings. There wasnosignificantdifference inchoice foranyof the JA
treatedandadjacentpairings. The conclusionof thisstudyisthat plantsare capable of
interplantsignallingandthere isadifference betweeneffectsof the plantssignalledto
betweenvarietiesandthose thathave beenJA treatedhasoninsectbehaviour.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
5
2. Literature review
i) What isthe problem?
Since 2009 there hasbeena directive fromthe EU to reduce overall use of pesticides, toidentify
pesticide alternatives.There isaparticularinteresttoprotect environmentallysensitive areas from
pesticides andthere is anever-growingconcernonthe effectsof pesticideson pollinatorssuchas
bees.(EU2009) There are risksinvolvedwiththe use of pesticides.For examplethere isan
evolutionaryrelationshipthatincreasedpesticide usage increasesthe chancesof pesticide
resistance ininsectpopulations,(Strantonovitchetal.2014) thiscausescrop managementissues.
(Leibee etal.1995) Alternatives topesticidesforpestcontrol hastobe considered,suchas
Jasmonicacid(JA) (Smartetal. 2013; Wakeil etal.2010.) JA isthe mainfocusof this review.The
aimsof thisreviewistodefine whatJA is,how itisproducedandto determine the potential usesit
will have inthe future incrop managementandhow interplantcommunication mightbe exploited
to reduce the economiccostsof usingJA.
ii) VOCs(Volatile organiccompounds) directandindirectdefence
a) Introduction
Volatile organiccompounds (VOCs) actsas airborne signalswhichinfluences the behaviourof
herbivoresnatural enemiesandneighbouringplants.JA actsas a switchthat up-regulates, the
synthesisof VOCsafterbioticstresses.The exogenousapplicationof JA caninduce production of
VOCsinplants. (Arimuraetal.2009.) The abilitytosynthesize VOCscanbe reducedorremoveddue
to mutation, forexample tomatomutantsthatlackthe JA biosyntheticpathway doesnotproduce
plantVOCsthat are induciblebyJA. (VanSchie etal.2007; Degenhardtetal. 2010.) VOCsproduced
duringinfestationcanconsistof terpenoids,fattyacidderivativesandaromaticcompounds.(Table
1) Thiscan produce a cocktail of VOCs that are emitted,whichare dependent onthe kindof damage
done and the locationof itwhichcan be causedby egg depositionordirectconsumption (Mithofer
and Boland2012.)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
6
b) Direct defence
Directdefence responsescausedbyJA are inducible.(Baldwin etal. 2002.) Crosstalk between
Jasmonicacidcross talksand ethylene,anothersignallinghormone,leadstothe build-upof direct
defence metaboliteswithinNicotianaattenuata.These metabolitesinclude trypsinproteinase
inhibitors,thisreducesthe nutritional value that herbivores gainleadingdue tointefreingwithits
digestive processleading tostarvation. Italsoleadsto Nicotianaattenuataproducingthe toxin
Nicotine whichlarge dosage killsattackingherbivores. The costof thisdefence onthe plantisthatit
leadstoa reducedgrowthrate (Figure 1) (Onkokesungetal.2010.)
Table 1 showsthe varioustypesof VOCsproducedbyplants.
(MithoferandBoland2012)
Figure 1: Schematicrepresentationof JA andethylenecross
talkand how theywork inconjunctionwhenwoundedand
havingdetectedherbivore elicitorcompoundstoproduce
directdefence metabolitesof trypsinproteinase inhibitors
and the toxinnicotine toactas defence againstherbivores
howeveralsoshowsthatthere isa cost inreducedgrowthto
defendagainstherbivores (Onkokesungetal. 2010.)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
7
c) Indirectdefence
InterplantsignallingviaVOCs, hasbeen shownin 30 species, (HeilandKarban2010.) Methyl
jasmonate(MeJA) helpsregulate plant’sdefence responses. MeJA hasbeenshowntobe takenin
plantsand metabolizedintoJA,jasmonoyl-isoleucine andjasmonoyl-leucine.These metabolic
conversions activatesVOCemissionswhich actas an indirectdefenceresponse.Inadditionto
signallingmolecule uptakeof MeJA some plantsalso take upothervolatile compoundswhich could
be re-emittedortransformedintootherby-products(Tamogamietal.2008.)
Interplantsignallinghasbeen demonstratedtobe inducedbybothinfectionandherbivory (Kostand
Heil 2006; Castelynetal.2015) VOCsproducedbyJA are capable of longdistance signallingbetween
differenttomatoplants (Fanetal.2015; Li etal. 2002.) By encouragingthe emissionof volatilesin
advance shouldbe plausibletoinitiatethe defence response in neighbouringplants. There are some
criticismsof doingexperiments aboutInterplantsignallingundertypical laborgreenhouse
conditions.Investigationsof volatilesusingthese conditionscanbe flawedif conditionsina
greenhouse are leftnotventilated.Thismay leadVOCsthe opportunitytobuildupwhichleadsto
the potential of increased interplantsignallingthanwhat wouldbe observedin anoutdoor
agriculture setting(Pascholdetal. 2006.) Such investigationsneedtouse greenhouses with
continuousairflow inmindinordertobettermodle volatilesignallingaswouldtake place outdoors
(Pettersonetal.1999; Pascholdetal. 2006.) Heil andton 2008 foundevidenceagainstinterplant
signallingbeingcausedbyvolatiles.The studyshownevidence thatsignallingforsome speciestakes
place only betweendistal partsof the plantwhere releasedvolatilesare the signals utilizedonlyby
the plantthat producesthem.Suggesting thatinterplantsignallingviavolatilesisnotalwaysclear
cut.
Whenattacked,plantsrelease volatilestoattractnatural enemiessuchas ladybirds (Thaler2002.)
Duringco-infestationthe effectivenessof plantsignalling isquestionable asinfestationcandisrupt
the volatile signalling bythe infesters,preventingeffective emissionof volatilesproducedthus
preventingthe herbivore’spredatorsbeing attractedtothe plant. (Miles,1999; Will etal. 2007; Will
et al.2009.) There are possible genderdifferencesthatcanoccur duringplantsignallingforexample
female waspsare more attractedthan malestothe volatile signalsof theirspecifictargetsfromdue
to theirneed tolayeggs withinthe insects. (Zhangetal.2013)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
8
iii) JA (Jasmonicacid) structure,synthesisandcellularpathway.
a) Jasmonicacidstructure
JA has the chemical structure asdepictedin (figure2a) (Donaryketal. 1995,) It’s3D intermolecular
structure can be manipulated,this influencesthe functionalityof JA whichcanbe influencedby
small changesindensitydue toitaffectingLogP whichaffectsitsabilitytoproperlybindtowhere
it’sneeded (Figure2b) (Li etal.2009.) JA’sfunctionalityisalsoaffectedwhenit becomesgaseous.It
signalstonatural predatorstowardsplantsherbivoreslike the plant ArabidopsisthalianausesJA
alongwithothervolatilestoattract the enemiesof attacking herbivores(Zhangetal.2013.)
#
Figure 2a) showsthe chemical structure of jasmonic acid(Donaryk etal.1995.) b)
showsthe 3D structure of Jasmonicacidmoleculesboundtogetherthe redareasare
the most susceptible tochangesinshape tothe overall Jasmonicacidstructure. (Liet al
2009)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
9
b) Jasmonicacidsynthesis
JA synthesisbeginsinthe chloroplastwhen leafsare wounded.Alphalinoleicacid isreleasedfrom
the chloroplastmembrane.Itundergoes aseriesof reactionswiththe supportof 13-lipoxy-genase
(13 –LOX) whichcatalysesoxygeninsertionatcarbon13 as the backbone thisleads tothe formation
of 13-hydroperoxyoctadecatrieneoicacid(13-HPOT.) The 13-LOXis convertedbyallene oxide
synthase (AOS) tocreate an unstable productwhichis quickly converted usingaseriesof allene
oxide cyclases(AOC) intocis-(+)-12-oxophytodienoicacid(OPDA) (figure 3) AOCisimportantsince it
formsthe final structure of JA. Since 2000 there are 58 knownAOCsequencesthatleadtodifferent
waysthat JA biosynthesisisregulated (Delkeretal. 2006.)
The second phase of JA biosynthesishappens usingperoxisomes. 12-Oxophytodienoatereductase3
(OPR3),thiscarriesa peroxisomal targetsequenceandactswithOPR3 to carry a peroxisomaltarget
sequence andacts only inthe cis-(+) form. Inthe final step the carboxylicacidside chainisshortened
inthree roundsof betaoxidation.Of whichonlyevennumberedOPC derivatives were convertedto
JA;which leadingtogene expression (Delkeretal.2006.)
Figure 3 Schematicof the JA biosynthesispathway.(Delkeret
al.2006)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
10
c) Possible usefulartificial modificationstostructure andartificial synthesisof JA
Syntheticanalogsof JA made artificiallyhave beenshowntoincrease the productionof nicotine in
tobacco. It may be possible tomodifythe overall structure of JA tomodifyitsfunctionality to
promote the productionof othersecondarymetabolites topromotesandimprove plantdefence.
Artificial methods toproduce JA hasbeendevelopedwhichinvolvesaseven stepprocesswhich
yields33%JA. (GullermoHet al 2015.) Thismethodinthe future hasthe potential tosignificantly
reduce the costs of JA leadingtopossiblyfuture agricultural industrywide adoptionof usingJA asan
alternative topesticides.
d) Jasmonicacidsignallingpathway andresultantresponses
JA is hormone that becomes convertedtoJA-lle inordertoactivate the pathwaythatproduces
Jasmonates.Inthe absence of JA, jasmonate zim-domainproteins(JAZ) are bound tonovel
interactorof JAZ proteins (NINJA), toplessproteins (TPL) andtranscriptionfactors(TF). These block
the JA respnse genesare switchedoff.Inthe presence of Jasmonicacid,causesthe activationof JAZ
proteinsandthe F-box protein SCFC011
thisfacilitatesthe recognitionof the E3ubiquitinligasewhich
causesthe degradationof the JAZproteins of the 26S proteosome.Thisreleases TFfromit causing
the Jasmonate response genestoturnon (figure 4.) Thiscausesthe productionof jasmonatesor
directdefence response dependingwhere the TFislocated,the responsesare highlightedinthe
defence section, Once JA isabsentJAZproteins are producedonce more andbindto the TF
therefore deactivatingthe JA response gene again (Wageretal.2012.)
Figure four:Inthe absence of JA and JA-lle jasmonate zim-domain(JAZ) proteinsbindstoTFand is
boundto co-repressorslikenovelinteractorof JAZproteins (NINJA) andtopless(TPL) proteinssupresses
gene transcription.WhenJA-lleispresentitcausesthe interactionbetweenJAZproteinsandthe F-box
proteinSCFCOI1 .Thiscausesit to be recognized.Causingthe 26Sproteasomestodegrade releasingTF
frominhibitionthuscausingthe activationof the JA responsivegene readyfortranscription.(Wageretal
2012)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
11
There are alsovarious downstreamevents thatcantake place fromthis initial signallingevent
dependingononwhichTFthe differentJAZproteinsbindto. (Figueroaetal 2012) For example
MYC2, a helix-loop-helixtranscriptionfactorthatacts as an acivator andrepressorof specificJA
responisve geneexpression events.ForexampleArabidopsis,where MYC2 possitivelyexpresses
oxidative strestolerance,flavenoidbiosynthesisandinsecthervivore resistancewhilstnegatively
regulatingtryptophanmetabolism (Dombrechtetal.2007; Lorenzoet al. 2004.)
iv) The costs and risksof jasmonicacid comparedto the risksand costs of pesticides.
SprayingJA ontoplantscosts a lot to treat because large quantitiesof JA hastobe used. (Wakeil et
al.2010.) Inorder to increase the commercial viability of JA treatment, pre-treatingthe seeds has
beenproposed.This significantlyreducesthe amountof JA beingused, thusdecreasingthe
economiccostof JA (Smart etal.2013.) The reason whyJA treatmentis a viable optionis thatJA
activatedplants hasdefence mechanismstohelpthe fightoff herbivoressuchasthe peach potato
aphidthroughinducingamixture of directandindirectdefence responses. (Onkokesungetal.2010;
Fan etal. 2015; Li etal. 2002.) Thisresultsinthe reduced use of pesticides(Smartetal.2013; Wakeil
et al. 2010.) It is knownthatplantsare capable of communicatingsignalsbynearbyplants (Paschold
et al.2006.) Thiscreatesanotheravenue of study to testif a JA pre-treatedseedwillbe capable of
causinginterplantsignallingwithitsproductionof Jasmonates,topotentiallyfurtherreduce the
overall costof JA treatmentof plants.
Throughthe use of bioassaysthere have beenargumentsthatpre-treatedseedsdoesnotalterthe
behaviourof predatoryinsectsbutinsteadreducethe effectivenessthatinsectscanconsume the
plantlike the Leaf Minorusingorganic tomatocultivars (Strapassonetal.2014.) Howeverasshown
inY tube experimentspredatorymitesare showntobe attractedto the volatile chemicalsproduced
by the JA treatedseeds.(Smartetal 2013) The reasonfor thisclashof evidence couldbe due tothe
differencesbetweenthe predatoryspeciesthatthese insectstargetsandtheirevolvedmechanisms
of searchingfortheirprey (Strapassonetal.2014; Smartet al.2013.) Meaningthatthismethodof
treatmentmayneedtohave a cost-benefitassessmentappliedtoeachspecieswhere the seedsand
local pestsare treatedbefore beingconsideredasamethodof treatmentdue tothe variousranges
of responsesobservedbydifferentpests.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
12
v) Model organisms, Tomatoplants,PeachpotatoAphidsandTwospottedladybirds
a) Tomato
Solanumlycopersicumoriginatedinthe Andes isseenthroughthe world andisaneconomically
importantcrop (Paduchuri etal.2010.) It giveshumans vital nutrients suchasvitaminCand has
beenknown foranti-oxidative effects(Raiolaetal.2014.) It isan importantmodel organismtotest
withbecause it’sgenome hasbeensequenced. Whichisadvantageousbecause itisnow possible to
lookat the gene interactionsthattake place withinthe plant foritsresponses. Furthermore it
makesfora goodmodel because ithasthe possibilityof growingunderdifferentcultivation
conditions. Ithasa short life cycle andlarge seedproduction.Meaningthatgenerationalstudiescan
be quickly assessed. Ithas a small genome,(950Mb) lack of gene duplication,highself-fertilityand
homozygosistsy.Meaningthatgene interactionscanquicklybe identifiedandthatall plantscan be
made to have similarDNA sequencescreatingmore reliabledatasets.Furtheradvantagesinclude
easyway of controllingpollinationandhybridization,asexual propagationbygraftingandpossibility
of regeneratingwholeplantsfromdifferentexplants. Meaningthatthe experimental batchworked
on will be easytomanagedandnot be taintedbyother tomatoesdue tothe additional meansof
controllingitspopulation (Bai andLindhout2007; The TomatoGenome Consortium2012.)
Tomato hassome unique featurescomparedtoothermodel organismssuchasArabidopsisorrice.
For example ithassympodial shootsandisthe onlymodel plantwithcompoundleafsalongwitha
large pool of tomato mutantswhichwere eitherspontaneousorinducedbychemicalsorirradiation.
(Lozanoetal. 2009) Literature onstudiesinvolvinghave alreadybeenproducedlikethe studyof JA-
deficientspr2mutantsof tomatoes. Itshowsa reducedresistance againstaphidscomparedto
control.Thisindicates thatJA does playa role in defence fortomatoes. (Avilaetal 2012)
b) GreenPeachAphids (GPA)
GPA otherwise knownasMyzuspersicae targets400 plantspeciesbelongingto50 plantfamilies
includingimportantcropslike potatoandtomatoplants(BlackmanandEastop. 2007.) Due to the
wide range of targetsand itsrapid abilitytoincrease inpopulationsize andresistance to large
numbersof pesticideshascausedthemtobecome a top agricultural pestinthe USA.( Georghiou
and Lagunes-Tejada,1991; Vasquez,1995; Silvaetal.,2012a,b; KleinandWaterhouse,2000)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
13
GPA are capable of reducingthe woundingresponse of plantsbysealingthe woundby usingit’s
saliva. Thisissecreted whenthe insectisfeeding,thusallowingthe aphidstofeedcontinuously
avoidingthe plant’simmuneresponse (Miles,1999; will etal.2007, Will etal. 2009.) The saliva
containseffectorsthatmanipulatehostphysiologytomake furthercolonizationeasierforother
aphids(RodriguezandBos 2013.) Furtherevidencesuggests whenthe genesof the protein
responsible forenhancingcolonizationMpC002of the GPA issilenced overall GPA colonizationwas
reduced (Pitinoetal.2011; PitenoandHogenhout2013.) Since these happenedpostinfestation the
ideaof pre-treatingthe seedswith JA inadvance beforeinfestation happenscanpotentiallygivethe
planta fasterimmune response againstGPA.
GPA iscapable of sexual andasexual (Pathenocarpic) reproduction.The GPAslife cycle utilizes
primaryand secondaryhosts.The sexual cycle iscompletedonstone fruitsuchaspeachesand
Canadianplums,the primaryhost.Secondaryhosts consistsof plantssuchas tomatoand potatoes.
(BlackmanandEastop 2007) GPA geneticsequencingisnear completion (Ramseyetal. 2007)
combinedwiththe developmentof plant-deliveredRNA-interference technologyforgene silencing
has ledtothe understandingof the geneticworkingsof GPA particularlyinplant-aphidinteractions.
(Pitinoetal.2011; PitinoandHogenhout 2013)
c) Two spottedladybird. (TSL)
Adaliabipunctata(TSL) isendemictoEurope,Asiaand Central America(Majerus1994.) TSL is a tree-
dwellingspecies. TSLfeedsdifferentinsectpreyincludingaphids (Hemptinne andDesprets 1986.)
TSL attaches to smoothservicesthrough by glandularswellingattheirposterior.The zygopodiumof
larvae prevents dislodgementfromplants. (Dixon2000) The larvae are attractedtowardsblue-green
light480-522nm wavelength thisimproves theirabilityof findinginfestedhostplants (Dimetryand
Mansour 1976.)
TSL are attracted to volatiles producedbyplants likethe sweetpepper.Thisattractioncanbe further
enhancedbysimultaneousinfestationof two species of the same genus infestingone plant (Oliveria
and Pareja2014.) It isnot yetknownthe impactof infestationof twodifferentgenus.The effectof
such infestationsmaydependuponthe ladybird’sdiet. Thislackof knowledge isfurthersupported
of the potential mixesof differentgenuscanbe demonstratedbycertaininsectssuchascaterpillars
whichare capable of inhibitingthe productionof VOCsbyplants. Whichmayalterthe cocktail of
VOCsproducedor inhibitthe productiontosuchanextentthatTSL are lesslikelytolocate infested
plants(Schwartzbergetal.2011.)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
14
There has beendebate amongstscientists whetherornotplantVOCs that act as an attractant to
herbivore predatorsbutinsectpheromones actas the attractant instead (Francisetal. 2004.) Some
evidence indicatesthatthisisnot the case is that the aphidpheromonessuchas C-beta-Farnsense is
whatattracts TSL towardsinfestedplants (Joachimetal. 2015.)
vi) Aimsandobjectives
The aim of thisprojectis to investigatethe effect thatJA pre-treatedseeds hasonattractingor
repellingGPA orTSL andwhetherornot JA treatedplantsare capable of interplantsignalling. The
firstobjective is tofigure outthe effectsof JA acidtreatedseedsondifferentvarietiesof tomato
plant,AlisiaCraigandGardendelightusingaY tube experiment tosee whetherornot GPA and TSL
are repelledorattractedtowards differentJA treatedplants;alsoobservehow GPA andTSL behaves
to each plantvariety.The secondobjective istoworkoutwhetherornot interplantsignalling
betweenJA treatedplantsandadjacentplantstake place andthenworkoutwhat thispotentially
meansina wideragricultural andevolutionary context.The thirdobjectiveistoworkout future
directionsof research couldgoand to planoutexperimentswhichcanbettermodel thisconcept.
The final objective istoassesswhichvarietyof seedwouldbe bettertogrow inan agricultural
environmentandassessthe reasonswhythiswouldbe the case. The hypothesis isthatboththe
Ladybirdsandgreenpeachaphidswill show greaterpreference overthe JA treatedandAdjacent
overthe control and no preference betweenthe adjacent-JA paringsof plants. The second
hypothesisisthatthere will be adifference inthe way bothinsectspeciesreacttothe different
tomatovarieties toJasmonicacidseedtreatment.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
15
3. Materialsandmethods
Seedpreparation
Two varieties of Solanumlycperisucm(Tomato) AlisiaCraig(AC) andGardenersDelight(GD) where
used.The seedswhere preparedbyimmersingtheninside 10ml of water30ul of ethanol or30ul of
1M JA wasadded.For eachvarietyandgroup (Adjacent(ADJ),control (CON) andJA treated(JA)) six
seedswhere preparedandfurthersampleswere preparedinsubsequentweeksforreservesamples
and to ensure all samplestestedwhereof the same age. Each sample where storedinafridge
overnightbefore plantation.Ondayof plantationthe seedswhere washedin500ml of water and
stirredfortenminutestoensure minimal JA orethanol influencesthe seedsdirectlyduringgrowth.
Growth conditions and plantation
Seedswere plantedinindividualpotsandeachpot was3cm apart from eachother,to prevent
interplantsignallingfromthe JA plantsthe controls where 6mawayfrom eachgroup (figure 5.) The
greenhouse grownin hadanaverage of 22 degreesCelsiusdaytime and18 degreesCelsiusnight
time witha photoperiodfor14 hours.Theywere leftfora weektogrow before beingusedinthe Y-
tube Setup (figure 6.)
Figure 5. Showsa diagramof the formationplantswhere setupinthe greenhouse.JA are
the JA treatedplants,ADJare the adjacent to JA treatedplantand CON standsfor the
controls.Whichwere placeddistancesfromeachotherasshownby the arrows.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
16
Y Tube set up and preparation steps.
For all plantsused,the numberof leafswhere countedandthe average surface areawasestimated
by measuringthe lengthandwidthof 10% of leafs.The average wasthentakenbetweenthose. The
Y tube experimentwasset upin accordance to figure 6. The Jars where sealed leftwiththe pump
on for1 hour before use.Thenalarge simple randomsample of TSLand GPA where collected.In
separate rounds6 insectsof eitherGPA or TSL are placedintothe Y tube of firstthe ladybirdsand
thenthe GPA. Every 6 minutes the decisionswhere recordedthiswasrepeatedforeachpairing until
60 data setswhere collected foreachcombinationof plants. The groupswhere setupas JA-ADJ,
ADJ- CON JA-CON thiswasrepeatedforeachgroup 3 timesusingthree differentsetsof plantsfor
each variety of plant. Leadingtoeachsetof data havingtested180 insectdecisions forboth GPA
and TSL for eachsample set.
Figure 6 showsthe Y tube setup.The tubingwasplastictubingwithoutholesandthe containerswhere made
out of glass. (Notmade to scale)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
17
4. Results
i) Primarydata and leaves data
60 decisionswere made fromeachof the three setsof plants,of which3 repeatswhere done usinga
separate setof three plantsfromtwo differentvarietiesof tomatoplant. Towork out the P values
the two tail T-testwasperformed.
On average lessdecisionswere made comparedtonodecisions forboth varieties of plantsandboth
speciesof insects. Forthe GPA for all pairsof GD the P value revealsthatthere isa significant
difference betweennodecisionsagainstdecision.(P<0.05) ForAC for GPA there was nosignificant
difference betweendecision (P>0.05) andnodecisionforthe CON-JA treatedand CON-ADJpairs
there wasa significantdifference betweenthe JA treated-ADJpairinfavourof nodecisions.
(P<0.05) For TSL there wasa significantdifference betweennodecisionsanddecisionsforboth
varietiesof plants(P<0.05.)
For leaf measurementsforACthere wasa significance difference forthe average surface areaforall
ADJ-JA,CON-JA andADJ-CON pairs.(P<0.05) For AC the average quantity of leavesthere wasa
significantdifferencebetweenthe ADJ-CON pair(P<0.05) andno significantdifference betweenthe
ADJ-JA andJA-control pairs.(P>0.05) For leaf measurements forGDplantsthere wasno significant
difference betweenADJ-JA,CON-JA andADJ-CON (P>0.05.) For GD for average quantity of leafs
there wasa significantdifference betweenADJ-control andJA control (P<0.05) For the ADJ-JA pair
there wasno significantdifferencebetweenleaf size.(P>0.05) (Table 2)
AC Average Leaf quantity Average surface area(cm^2)
ADJ/CON 18/22 8/5.5
ADJ/JA 14/15 7.9/7.6
CON/JA 18/16 5.7/6.9
GD
ADJ/CON 19/15 8.7/6.5
ADJ/JA 14/16 8/6.5
CON/JA 16/18 6.8/8.2
Table 2: The average leaf numberandaverage surface areaforboth
varietiesof plantsusedinthe Ytube experimentfromthe three pairsof
plantsusedforeach setup.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
18
ii) GD (Gardner’sdelight)
On average forthe GD plants there isa greaterpreference forthe JA treatedandADJ plantsoverthe
control for bothinsectspeciesandverylittle difference inpreference betweenthe JA treated-ADJ
pairs. For GD withGPA there wasno significantdifferencebetweenthe JA treated-CON andJA
treated-ADJ (P>0.05) forADJ-CON there wasa significance difference shown.(P<0.05) ForGD with
TSL there was nosignificantdifference between ADJ-JA pair, (P>0.05) there wasa significant
difference between JA treated-CON andADJ-CON (P<0.05.)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
19
Figure 7 mean number decisions oftwo spottedladybirds and greenpeachpotatoaphids betweenthree sets ofplants of GDJA andCON
(A) adjacent andCON (B), ADJ andJA (C) Made bythe average of 180 total decisions per plant turningto 60 total onaverage per repeat in
the Y tube set up(Figure 5) . The average leaf number andsurface area of each leaf is shown ontable 2.
0 10 20 30 40 50
Control
JA
Treated
No
decision
Aphid GD CON-JA
Average number of decisions
01020304050
Control
JA treated
No decision
Ladybird GD CON-JA
Average number of decisions
0 10 20 30 40
Control
JA
Treated
No
decision
Aphid GD CON-ADJ
Average number of decisions
0510152025303540
Control
Adjacent
No decision
Ladybird GD CON-ADJ
Average number of decisions
0 10 20 30 40 50
Control
JA
Treated
No
decision
Aphid GD ADJ-JA
Average number of decisions
01020304050
Adjacent
JA treated
No decision
Ladybird GD ADJ-JA
Average number of decisions
A
B
C
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
20
iii) AC (AlisaCraig)
On average there isa preference frombothinsectsthe ACJA treatedandadjacentplantsoverthe
control whilstthere is nosignificantdifference betweenthe preferencebetweenthe JA-ADJsamples
for the AC plants. ForGPA there wasno significantdifference betweenCON-JA treated,CON-ADJ
and JA-ADJ.(P>0.05) For TSL there wasno significantdifferencebetweenJA-CONandADJ-JA
samples(P>0.05.) there wasa significantdifference betweenADJ-CON (P<0.05)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
21
Figure 8 mean number decisions oftwo spottedladybird andgreen peach potatoaphids betweenthree sets of plants ofAC
adjacent andCON (A), ADJ andJA (B) andJA and CON (C) Made bythe average of180 total decisions per plant turning to 60 to tal
on average per repeat inthe Y tube set up (Fig.5 ). The average leafnumber andsurface area ofeachleaf is shownon Table 2.
0 10 20 30 40
Control
JA
Treated
No
decision
Aphid AC CON-JA
Average number of decisions
01020304050
Control
JA treated
No decision
Ladybird AC CON-JA
Average number of decisions
0 10 20 30 40
Control
JA
Treated
No
decision
Aphid AC CON-ADJ
Average number of decisions
010203040
Control
JA treated
No decision
Ladybird AC CON-ADJ
Average number of decisions
0 10 20 30 40 50 60
Control
JA
Treated
No
decision
Aphid AC ADJ-JA
Average number of decisions
0102030405060
Control
JA treated
No decision
Ladybird AC ADJ-JA
Average number of decisions
A
B
C
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
22
iv) Summary
For TSL for AC comparedwithGD forADJ-CON, ACmade more decisionscomparedwith GD,but
withGD TSL greaterpreferredADJ overthe control.Betweenthe ADJ-JA between TSLthere wasa
greaterpreference of choice forthe GD overthe JA.For the TSL there islittle difference inthe
numberof insectsthatchose the JA overthe CON butthere isa greaternumberof TSL chose the
control in the ACplantsthan the GD plants.
For GPA forAC and GD there islittle difference inpreferencebetweenthe twovarietiesof plants.
There isalso forGPA a strongerpreference forJA treatedplants of GD overthe AC butlittle
difference inthe preference inthe adjacentplantsbothvarieties. Forthe GPA a greaternumberof
insectschose the JA treatedof the AC overthe GD howevertheirwhere farlessthatchose the
control plantsof the GD overthe ACplants.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
23
5. Discussion
i) Gardner’sDelight Peachpotatoaphid
For Gardner’sDelightwith greenpeachpotato aphids there is apreference betweenthe ADJ-CON
and no preferencebetweenJA treated-CON. (Figure 7A-C.) Thiscouldbe since the plantsAdjacent
to it have beenaffectedbyaunique volatilethatactedlike anaphid pheromone suchasC-beta-
farnsense makingADJplants more attractive to invasivespecies(Joachimetal.2015.) Insteadof
benefitingthe adjacentplant.The volatileemissions of ADJ effectively become ahoneytrap, for
attractinggreenpeachpotato aphids.Thisbenefitsthe JA treatedplantbecause itreducesthe aphid
populationinfestingit.Anothermechanismthatmayhave formedtopreventfurtherinvasion by
makingtheirscentsharderto distinguish betweenJA treatedplantsformed amechanismtomake
theirscentharderto smell like CON plants bynotproducingthese aphidattractingvolatiles.
HoweverwhentryingtodistinguishbetweenADJ-JA treated there wasnosignificantdifference. This
difficultytodistinguishbetweenthe twocouldarise since greenpeachpotato aphidsare generalists,
meaningtheirolfactorysystemsmaynothave evolvedanefficientmechanismtocompare similar
scentslike atomato specialistmayhave evolved. Itispossible thatspecialistaphidscandistinguish
betweenthe ADJ-JAtreatedpairthiswarrantsfurtherinvestigation. Other literatureseemsto
suggestthatgeneralistaphids dopreferthe scentof volatileemittingplantscomparedto none
volatile emittingonesbutonlytovolatilesemittedwheninfestedbyanotherspeciesof insect.
Furthermore noreferencesof thisproposed honeytrapmechanism seemtoexistincurrant
literature makingitanovel areaof research (Girlingetal.2006.) Most literature doesnotsuggest
aphidsare beingattractedto volatile emittingplants andsome suggeststhe opposite effectof them
beingrepelled.(Smartetal.2013; OliveriaandPareja2014; Schwartzbergetal.2011)
There wasno significantdifference betweenADJ-JA itcouldbe possible thatsince the scents
betweenthe twocouldbe due tothe experimentsetupthatthe scents are similarenoughtocreate
a maskingeffectdue tothe narrownessof the tubes. (Figure 7A-C.) Forfurtherinvestigation usinga
well ventilated greenhousetodetectpreference of insectinfestation betweenADJ,JA treatedand
CON plants overa longperiodof time andcountingthe numberof insectsinvesting the plants,could
see if there isa preference betweenthe twoVOCemittingplants.Thisisbecause comparedtothe Y
tube experiment wherethe volatilesare concentratedtoa place where the volatilesdispersed
meaningtheymaybe easiertodiscernandthe aphids will be inalessstressful environmentmaking
it more likely observe theirnormal behaviour andsee there populationdistribution. (Lopez-Sepulcre
and Kokko2005.)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
24
Anotherpossibleexperiment todowould be to workout whatunique volatile organiccompoundsof
ADJ plantsproduce whichleadstothe masking and/orhoneytrapeffectswiththe use of gas
chromatographyandmass spectrometry.Thiswill make itpossibletocompare andcontrast the
volatilesproducedbyJA treatedplants.Whichwill grantthe abilitytofindanyunique volatilesnot
emittedbyJA andemittedbythe ADJplantsand vice versa. Thenuse Y tube experiment withthe
unique volatiles extractedfromgaschromatography andnoscentto findwhichscentcausesthe
honeytrap effect.Similarexperimentshave beenperformedtofigure outthe functionsof such
volatilesinthe past sothe methoddescribedshouldwork (Boldizsaretal.2011; Schaueret al.2006.)
ii) Gardner’sDelightTwospottedladybird
For Gardner’sdelight withthe twospottedladybird the paringsacceptedthe null hypothesisof ADJ-
JA whichwas expectedandthe null hypothesiswasrejectedforthe ADJ-CandC-JA pairingswhich
was expected.(Figure7A-C) The reasoningbehind astowhy greenpeachpotatoaphids shown
differentresultscouldbe because the scentreceptorsof greenpeachpotatoaphids are differentto
twospottedladybirdsolfactory receptors, thatare capable of detectingdifferentcompoundsto
greenpeachpotatoaphids.(Figure 7A-C) The reasonwhyJA treatedandADJ plants emitvolatiles
couldbe that theyevolvedthismechanismtocreate a largerfieldof effectforvolatileemission for
the two spottedladybirds andotherherbivore enemies todetect.A largersignal thatthisplantis
infectedhere inalarge openenvironmentispreferabletoa small signal whichatgreaterdistancesis
harderto detect. (Figure 9) Althoughthere appearstobe no suchliterature Thatshowsthiseffectit
may be possible toinvestigateitthroughthe use of Laser-basedinfraredspectroscopyandproton
transferreactionmassspectrometry due totheirhighsensitivitytolocate the difference between
concentrationsof VOCsinlarge groupsof plantscomparedto VOCemissionof anindividual interms
of range by testthemVOCemissionsatdifferentrangestoobserve whichVOCemissionrange isthe
widest(HarrenandCristescu2013.)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
25
Figure 9: (Notto scale.) Showsthe possible areaof effectof the tomatoplantsif emittingvolatilesaloneorin
groups.A) Showsthe effectof an individual VOCemittingplantwhichshowsasmallerVOCareaof effect
where TSL wouldbe attractedto.B) Showsa group of VOCemittingplantsthathave communicatedwitheach
otherto produce a much widerare of effectcomparedwithA.Demonstratingthe advantage of interplant
communicationwhendealingwithapestissue.The widerarealeadstomore TSL potentiallybeingattractedto
the plants.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
26
If this endsupbeingthe case the widerarea of signallinghasthe keyadvantage of attractingmore
twospottedladybirds todeal with infestation.Whichwouldshow that the keyadvantage of
interplantsignallinginthat the infested plantwouldbe capable of activatingthe nearbyplants
defence response. Similareventsof interplantsignallinghasbeendescribedbypastinvestigations
(Castelynetal.2015 ;Heil andKarban 2010; Kostand Heil 2006.) Thiscouldbe why ADJ plantsthat
produce VOCsthat are attractive to TSL because theyproduce the same kindof volatilesthatare
attract them.(Figure 7 A-C) Thishasthe addedbenefittothe adjacentplantstohelpthemprevent
infestationevenwiththe possible increasedrate of infestationcausedbythe honeytrapeffect. To
testwhetherornot thisisthe case a possible future experimenttodoisto compare and contrast
the effectivenessof asignal of a JA treatedwithadjacentplantsinattractingpredatorscomparedto
a JA treatedplantonits own ina greenhouseandobserve theirpopulationdistribution(Lopez-
Sepulcre andKokko2005.)
A group of volatile organiccompound emittingplants mayalsohave the advantage of havinghigher
concentrations of volatileorganiccompounds thanasingle plant. Whichmaycause the two spotted
ladybirds toperceive thatmore foodislocatedinlocationwiththe bigger volatileconcentration
than the locationwithalowervolatile concentration. Whichhassimilarlybeenseenin
bioengineeredArabidopsisthalianabutonan individual levelviabioengineeringwhere increased
concentrationsof volatileemissionof nerolidol,aplantvolatile organiccompounds ledtohigher
numbersof carnivoreslandingonthe plant(Houshyani etal.2013.) Thisindicates apossible
evolutionarymechanismastowhy signal amplificationtotwospottedladybirds wouldhave
originallybroughtaboutsuchbehaviour more foodina largerarea meanshigherchance tobread
leadingtoa higherpreference of highconcentrationvolatile areas,itpotentiallyindicatesahigher
qualityterritorytohabitatleadingtoa potentiallyhigherpopulationdistribution.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
27
Since the plantsare releasingvolatilesnotbecause of infestationbutbecause of beingJA treatedor
adjacentto themthere islesschance of themhavinglongtermresidence due tothe absence of
food.But itincreasestheirchancesof goingtowardsthe tomatoplantand there isthe potential of
twospottedladybirds topotentiallypopulate the plantsthatare already infesteddue tothe food
presentthere.Howeverthe chance remains thatthisvolatileorganiccompound signallingisthatit
may cause the dispersal of the twospottedladybirdswhich will reduce the benefitsof the infested
plantdue to lesspatrollingTSL(Smartetal. 2013; Lopez-Sepulcre andKokko2005.) Therefore itmay
be possible thatthere isa pointof whichwhere the Adjacent-JA signallingstopstopreventdispersal.
A future experimenttodo wouldbe to testto see if populationdispersals of twospottedladybirds
on a largergroup of volatile organiccompound emittingplantsthatare notinfestedorcanbe done
througha Y tube experimentwhereagroupof plantsemittingvolatilescanbe testedagainstasingle
plantemittingvolatiles. (Lopez-Sepulcre andKokko2005)
iii) Greenpeachpotato aphids AlisaCraig.
For greenpeachpotatoaphids,the AlisaCraigplantsall three pairingsof plantsacceptedthe null
hypothesisthiswasunexpectedforthe C-JA andC-ADJpairingsandexpectedof the JA-ADJpairings.
(Figure 8 A-C) The resultsindicatesthatthe volatilesproducedbyACfor GPA donot produce a scent
that istheycan detect. Comparedwiththe Gardner’sDelight variety(Figure7A-C) indicatesthatthe
differentvarietiesof plantshave differenttraitswhichdealswithinfestationusingdifferent
strategies.
By producingnovolatilesattractive to greenpeachpotatoaphidsimplies thatgreenpeachpotato
aphidswill be lesslikelytolocate AlisaCraig comparedtoGardner’sDelight.Inan agricultural
settingthiswouldbe advantageousforusingAlisaCraigvarietycrops overGardner’sDelight because
there will be noincrease inthe numberof aphidsgoingtothe plantsbecause of the volatiles
produced.Whilstwith Gardner’sDelight there wouldbe the disadvantageof adjacentplantsbeing
attractedto the volatilesof ADJplants.Indicatingthat AlisaCraigwouldthe superiorcroptopre-
treat the seedsof jasmonicacid anduse commerciallyforJA treatment. These resultsindicatethat
AlisaCraigmay have evolvedamore mutualisticrelationshipbetweenitsneighbourswhen
comparedwiththe Gardner’sDelight where the honeytrapeffecttakesplace.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
28
Howeverthe disadvantage of lackingof the honeytraptraitinthe AC varietycouldmeanthatonce a
plantisinfestedthe populationof Aphidsare lesslikelytodisperse due tochemical cues. Whichmay
come at a disadvantage because the plantsare more likelytodie due toinfestationbeing
concentrated.Whichcouldmeanthatonce the plantisdeadthe aphidswouldmove ontoother
plantsand will be able tokill inthe cropmore efficientlydue tothe lowerpopulationdistribution
than whatcouldbe observedwithGDplants. Therefore itwouldbe importanttocarry out a
possible experimenttotest tosee if the benefitoutweighsthe costhighlighted.Thiscanbe tested
betweenthe twopre-treatedseed varietiestocompare the effectivenessof aninfestationbetween
these twovarietiesinseparate greenhouseswithsimilarpopulationsof aphids tosee which
populationof aphidscausesthe mostdamage andcompare bothwitha control sample.
What thisexperimentfailedtodoisto testwhetherornot JA treatedplantsstill producesdirect
defence metabolitessuchastrypsinproteininhibitorsandsee if crosstalkcan be achievedbyalso
pre-treatingseedswithethylene tosee if youcaninduce multipledirectdefenceresponses.Thenby
testingthe physiological effectthishasoninsectsinfestingdifferentspeciesof plants.Thiscould
helpreduce the needforpesticidesbyallowingplantstodefendagainstattacksthemselves(EU
directive 2009; Onkokesungetal.2010.)
iv) AlisaCraigTwo spottedladybirds
For AlisaCraigwithtwospottedladybirds there wasnosignificantdifferencebetween ADJ-JA
treatedwhichwasexpectedandJA treated-controlwhichwasunexpected.The ADJ-control pair
showna significantdifferencewhichwasexpected. (Figure 8A-C) The reasoningbehindwhyJA
treated-control plantshadnosignificantdifference isthat JA treatedplantsmayhave undergone an
epigeneticchange frombeingpre-treatedwhichisonlypossibleforthisvarietydue toitsunique
geneticmakeup(Tomatogenome consortium2012; Heimesetal.2015.) Thischange may have
causedsome of its volatile emittingpropertiesandisanevolvedmechanismtosave energy.Butit
still emitscertain volatileswhichtransmitssignalstoother adjacentplantswhichproducesthe
volatilesitneedstoattract twospottedladybirds toitsgeneral vicinity.(Figure 9) Therefore even
thoughit isnot directlyemittingvolatilesitselfitstill gainsthe benefitsof the protectionvolatile
emissionsof otherplants byutilizingits’evolvedmechanism.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
29
In an agricultural contextpre-treatingthe seedswithJA mayhave the riskof havingTSL beingless
likelytodetectthe infestedtomatoplant due the adjacentplantsproducingthe attractive scent.
Thismay create an lessevenpopulationdistributionacrossthe AlisaCraigcropsinorderto locate
foodfocusedonthe ADJ plants as whatcomparedto whatcould potentiallybe observedwith
Gardener’sDelight.Howeverthe reverse mayalsobe true itmay be by the JA treatedplantnot
producingvolatilesattractive itmaybe that itbecomeseasiertodiscernbetweenthe infestedplant
and non-infestedplantsinthisvariety.Thusmakingita more populousareawhich twospotted
ladybirdsfirstinvestigatesforaphidinfestation.Thisseems feasible because greenpeachpotato
aphidsduringinfestationproducesawoundsealingpropertiesintheirsalviamakingthe plantmore
noticeable becauseof its lackof attractive volatiles inareawhere astrongvolatile scentis the norm.
(Miles1999; will etal.2007, Will etal.2009.) Essentiallythismayleadtothe twospottedladybirds
to firsthone inthe volatile scentsandthentheymaythenhave evolvedthe behaviouratthe highest
concentrationsof volatilestobe able tolocate an area inthat area where lessscentisproducedin
an infestedorpre-treatedseedwhichmimicsthiseffectinordertofindtheirprey. Howeverinthis
situationcouldhave anagricultural disadvantageinthe contextof pre-treatingthe seeds because it
couldmeanan unevenpopulationdistributionof twospottedladybirds beingfocusedonthe JA
treatedplantscouldleadtothe othernearbyplantsbeing more prone toinitial infestationmeaning
the ADJ plantswouldneedtobe firstinfested inordertoattract two spottedladybirds tothe plants
emittingstrongerscents.Inordertoinvestigate whichone isthe case itwouldmeantaking two
spottedladybirds intoagreenhousesettingorganise the plantslike figure 5insee measure
populationdistributionof TSLfor AC(Lopez-Sepulcre andKokko2005.)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
30
v) Decisionvsnodecision
Withinbothvarietiesof plantsandbothspecies of insects there wasasignificantdifference between
makinga decisionagainstnodecisionof whichmostinsectsmade nodecision. The possiblereason
for thispreference tomake nodecisionis thatthey were placedoutside of theirnormal habitat
leadingtoabnormal behaviour. Furthermore someof the twospottedladybirds aswell hadtobe
shippedinanduseddue to time constraintsleadingtofurtherconfuse theirnormal behaviour. It
alsocan be due to the lack of otherstimuli suchas seeingthe tomatoplantswhichaffectedtheir
decisionprocessesbecause itmaybe thatmore stimuli increasesthe chancesof makingthe decision
to pursue the scent.A secondcause forindecision fromvolatile organiccompounds producedbythe
plantsmixedtogetherleadingtosome possibleconfusioninthe insectsolfactorysystemwhich
wouldparticularprevalentinthe ADJ-JA pairsforGD plants.(Figure 7C) To testto see if itis due to
the lack of otherstimuli one cantry to add stimuli inanew tube setup to incorporate the visual
stimulusof the plantwiththe volatilesandanotherwithoutvolatilesandjustthe visual stimulusof
the plantand a third groupwithjustvolatiles andacontrol withno stimuli tosuggestnearbyplants
to observe whetherornot addingextrastimuli doeseffectthe decisiveness of the insects.
Indecisioncouldhave also occurred due tothe diversityinboth insectspecies genepools. Thismay
have ledto varyinglevelsof sensitivityintheirolfactorysystemsthatare usedtodetectthe
difference of the twogroupsof volatile organiccompounds.Itmaybe possible thatsome may have
recently fedtherefore where nothungryenough toleadthemtospendenergylookingfora new
foodsource. It mayalso be possible thatforsome insectgenotypes are notbornwiththe capability
of detectingvolatileorganiccompounds andfavourothermethodsof detection. Itwouldbe
possible totesttosee suchvariabilitydoesexistinsome of the methodsdescribedbyGetahunetal.
2013, whichusedextracellularsingle sensillumrecordingtomeasure thissensitivity.Thenfrom
those methodsfilteroutthe differentgroupsof insectsinaccordance totheirsensitivityof each
insectspeciesandtestthe numberof decisionstheymake againstthe numberof nodecisionsusing
the same methodsinthe materialsandmethodssectionof thisinvestigation.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
31
There isa greaterlevel of significance displayedbyJA treated-ADJpairof insectsmakingnodecision
as seenin Figures7C and8C. Thiscouldbe due to theirscentsbeingsimilarthatitcausedgreater
confusionamongstthose insectsunlesstheyare variantsbornwiththe correctgenescapable of
producingan olfactorysystem detectingthe difference betweenJA treated-ADJ. thereforecausing
higherratesof indecision.Howeverinthe case of AlisaCraigthe ADJ-JA treatedpairisless
pronounced thisindicatesthatforthe twospottedladybirdsare more decisive inchoosing Alisa
Craig comparedwithGardner’sDelight since the difference betweenthe decisionsvsthe no
decisionsismore pronounced.Whichindicatesthatfor AlisaCraigplantsandladybirdsthatthey
have a higherchance of attractingladybirdsincomparisontothe Gardner’sdelight whichinstead
appearsto utilize the ADJplants withthe honeytrapeffectdescribedbefore toprotectthemagainst
infestation.
For AlisaCraigwithpeachpotatoaphids the JA treated-CON andADJ-CONare exceptionstothis
trendsince there wasno significantdifference betweenthe decisionsandnodecisions.Thiscouldbe
due to the JA treatedandADJ plantsproducedamuch more differentiated andstrongerscentin
comparison tothe control plants. Thisshowsthatfor aphidsandAlisaCraigplantsthat JA treated
and the ADJ plants volatiles appeartobe more randomcomparedto Gardner’sdelight.Thisis
supported bythere beingnosignificantdifference betweenthe choicesmade betweenthe JA
treated-CON andADJ-CON. Howeveritisstill arguable that since the null isacceptedthatthey
appearto move more comparedto than when toGardner’sDelightpairs whichindicatesthatthe
volatilesproducedmay have aninfluence intheirbehaviour. A potentialexplanationtothiscould
be that AC may have a unique mutualisticrelationshipwithone ormore bacterial speciesunique to
the plant,similartohowrhizobacteriainterfereswiththe attractionof parasitoids thankstoplant-
bacteriainteractionsthankstoJA signalling(Pinedaetal.2013)
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
32
To investigate if thispossibleplant-bacteriainteractionhasanimpacton aphidbehaviour,wouldbe
to testa JA treatedplantthat hasbeentreatedwithantibacterialagentsonthe surface of the plant.
Thenusingsimilarmethodsof the Ytube set upin thisinvestigation(Figure 5) see whetherornot
thishas an effectoninsectbehaviourcomparedwithacontrol and a plantnot treatedwith
antimicrobial agents, tosee if thishasanimpacton aphidbehaviour.If itisthe case that there isan
effectthe nextstepwouldbe toisolate the microbiome andfindthe bacterial speciesthatproduces
thiseffect.Fromthere furtherresearchcouldbe done tosee if thisbacteriacan have potential
future agricultural applicationstopossiblytryandreduce the ratesof infestationonplants orisolate
the specificcompoundsproducedbythe bacteriaandproduce itforfarmers.Thiscouldhelpreduce
the rates of infestation of aphidsandmayhelpinthe EU directivesaimtoreduce pesticide byuse of
sustainable alternatives (EU2009.)
vi) Leafsquantity andAverage surface area
The average quantity of leafsforAlisaCraigandGardner’sDelightmostof the resultsrejectedthe
null hypothesis. Thismayinfluence the behaviourof the insectsdue to volatile organiccompounds
productionbeingaffectedsince leavesproduce jasmonatevolatileorganiccompounds. Thisis
shownbyEffmertetal 2008 whichdemonstratesthatareductioninleaf numberreducedoverall
volatile emission. Thiscouldreduce the accuracyof the resultssince the large difference inleaf
numbercouldaffectthe resultsbecause one plantinanyexperimental paircouldhave produced
significantlymore volatilesthananother.Therefore if thisexperimentwhereperformedagain
statistical testsshouldbe done inadvance betweenselectedplantstoensure thatthe error due to
biasdoesnot appear.Eveninthe case of the control planetsthathave notbeentreatedstill emits
othervolatile organiccompounds.
For leaf surface areafor the AlisaCraigand Gardner’sDelight there are resultsthatrejectthe null
hypothesiswhichnegativelyeffectsthe accuracyof the results.Thisisbecause surface areais
anothertraitwhichinfluences the releaseof volatiles,since the largerthe surfacesareathe greater
the release of volatiles(Constable etal.1999.) Whencombinedwiththe measurementsseenwith
the average quantity of leavesthiscanpotentiallyleadinto agreaterinaccuracyinthe resultsdue to
the impact ithas on the difference of volatilesemittedbetweentwoplants.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
33
vii) Discussionof resultscomparedtootherstudies
In Zhanget al 2013 showsthatJA signallingforthe attraction of enemiesof herbivores hasbeen
demonstratedinotherspeciesof plantsuchas Arabidopsisthaliana.Where the female, Diadegma
semiclasumconfirmshowstheyhave agreaterpreference overJA treatedplantsover acontrol.
Similartohowthe two spottedladybirdsshow a greaterpreference overthe JA treatedovera
control for bothvarietiesof plants.(Figure 7and 8) The groups inZhang etal 2013 where separated
ingreenhouses anddidnotuse a Y tube set up(Figure 5) makingthe resultsmore reliable.Butthis
studyhas no reference towhetherornotplantscommunicate toeach otherso cannotbe usedto
predictthe behaviourof the behaviourof Diadegmasemiclasumtoadjacentplantsorhow
Arabidopsisthalianainfluencesotherinsectsbehaviour.
Zhang etal. 2013 putsintoquestionthe efficacyof whetherornotthiswouldbe feasible by
observingthatthose plantsthatwhere infestedwiththe white-fliesappearedtosupressthe ability
of the crop abilitytoattract these wasps. Similartohow GPA suppressesthe plantsabilityto
produce VOCs.(Miles,1999; will etal. 2007; Will etal.2009.) Howeverthe potential advantageof
pre-treatingtheseplantscouldoutweighthe costthisisbecause byhavingJA treatedplantsout
there inadvance before infestation willmeanapopulationof predatorsof interestwill be more
likelytobe aroundthese plantstodeal withearlyinfestation. Aninvestigationonthe effectsof pre-
treatingseedsof otherspeciescanbe performedtosee if similareffectscanbe inducedinother
crops. Whichwill be goodforthe agricultural industrybecause itwill reduce theiroverall needtouse
pesticidesforothercropsinaccordance to the EU directive (EU2009.)
In Paschold etal 2006 showsthatplantsare capable of communicating witheachotherbyplacing
themwithinanair conditionedchamber whenwounded.These experiments show it’spossible for
wounded plantstoemitvolatilestothe unwoundedplants,andinduce aresponse inthem.Thisis
similartothe effectsobservedinthisinvestigation of the JA treatedplantssignallingtothe adjacent
plants. Since woundingresponsecausesthe transmissionof Jasmonatesaswell gaschromatography
resultsof the receivershownthatthe receiverplantsdidreleasevolatiles.Whichfurthersupports
the resultswhichsuggeststhatADJplants can influenceinsectdecision byproducingvolatiles
emittedbyJA treatedplants.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
34
Smart etal 2013, shows an experimentsimilartothisexperimentthroughthe use of aY tube setup
and pre-treatingseedswithJA.(Figure 5) Theyusedadifferentvariety of tomato,the moneymaker,
it wasshownin these resultsthatusingpredatorymites there isaclearpreference inthe predators
for targetingthe JA treatedplants overthe control samples due toVOCsproduced.Whencomparing
these resultswithTSL,withGD andAC withresultsinCON-JA (Figure7and 8) alsoshowna
significantdifferencebetweenthe pairwithgreaterpreference towards JA treatedplants.This
showsthat thisattractionfor tomatoplants VOCsisnot relatedtojust to TSL but to otherspeciesof
predatoryinsects.
Vii) Conclusion
The research showsthe firsthypothesiswasincorrectforshownchoice preference thataphidsand
ladybirdschose between plantpairs. The secondhypothesishasshowntobe correct since JA treated
plantsare capable of interplantsignalling thisisbecause ADJplants wherecapable of signallingto
ladybirdsandaphids. Thisinvestigationhasadded towhatisknownto the subject,itshowsthat JA
treatedseedsare capable of producingvolatiles capable of signallingtoplants. Italsoshowsthat
differentvarietiesof tomatoplant signal toeachotherindifferentways,like withGardner’sDelight
havingthe honey trapeffectandAlisaCraighavingitsownabilitytodirectlyattractladybirds
silencedbutisstill emitsvolatilesthatcommunicate withadjacentplantsto attract ladybirds.The
shortcomingsof the investigationwasthatthere was a significantdifference foraverage leaf surface
area and average leaf quantity forthe majorityof plants whichmayhave ledtoan unbalanced
emissionof volatiles.The researchhasleftseveral unansweredquestions,suchashow doesJA seed
treatmentaffectdirectdefence responsesof plants,whatspecificvolatile orgroupof volatilesin
Gardner’sDelightvarietyproducesthe honeytrapeffectandhow wouldthe insectsreacttoJA
treatedplantsina more realisticsettinglikeagreenhouseintermsof populationdistribution.A few
more questionswhichhave beenleftunansweredare whichvarietyof plantbestworkswithJA
treatmentandwhetherornot bacteria-plantinteractionshave beenaffectedbyJA treatment.The
resultsshowthatJA treatmentpotentiallyhasause in agriculture asa possible alternativefor
pesticideshoweverfurthertrialsonhow thistreatmentwouldinfluence insectbehaviourinthe real
worldneedstobe done.
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
35
6. Bibliography
Ament K, KantM R, Maurice W. Sabelis, Michel A. Haring, andRobert C. Schuurink (2015)Jasmonic
Acid MediatesTomato’sResponsetoRootKnotNematodes JournalPlantGrowth Regulation 34:196–
205
Arimura G, MatsuiK, and TakabayashiJ. (2009)Chemical andmolecular ecology of herbivore-induced
plant volatiles:proximate factors andtheir ultimatefunctions. Plant Cell Physiology 50:911–923
Avila C A, Are´valo-Soliz, L M, Jia, L., NavarreD A, Chen, Z, Howe, G.A. et al. (2012)Lossof functionof
FATTY ACID DESATURASE7 in tomatoenhancesbasal aphidresistance in a salicylate-dependent
manner. PlantPhysiology 158:2028–2041.
Bai Y, LindhoutP (2007)Domesticationandbreeding of tomatoes:what havewe gained andwhat can
we gain in the future? Annualof Botany 100:1085–1094.
Baldwin IT, Kessler A. (2002)Plantresponsestoinsect herbivory theemerging molecular analysis.
Annual review of plantbiology 53:299-328
Blackman, R L, andEastop, V F (2007). Aphidsonthe World's HerbaceousPlantsand Shrubs. Vol. 1:
Host Listsand Keys; Vol. 2: The Aphids. EntomologiaExperimentalis et Applicata 125:3 325-325
BoldizsarI, Fuzfai Z and Molnar-PerlI (2011)Characteristic fragmentation patterns of
trimethylsilylandtrimethylsilyl-oximederivatives ofplant disaccharidesas obtained by gas
chromatography coupled toion-trap mass spectrometry Journalof Chormatography 1218:7864-
7868.
Castelyn H D, Appelgryn J J, Mafa M S, Pretorius Z A, Visser B. (2015) Volatiles emitted by leaf rust
infected wheat induce a defence responsein exposed uninfected wheat seedlings. Australasian Plant
Pathology. 44:245-254
ConstableJ.V.H, Guenther A.B, Schimel D.S, MonsonR.K. (1999)Modellingchangesin VOC emission
in responseto climate change in the continentalUnitedState. Global ChangeBiology 5:791-806
DegenhardtD C, Refi-Hind S, Stratmann, J W andLincoln D E (2010)Systeminandjasmonicacid
regulate constitutiveand herbivoreinduced systemicvolatile emissionsin tomato, Solanum
lycopersicum. Phytochemistry 71:2024–2037
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
36
Delker C , StenzelI, Hause B, MierschO, FeussnerI, Wasternack C (2006)
JasmonateBiosynthesis inArabidopsis thaliana‐ Enzymes, Products, Regulation. PlantBiology 8:297-
306
Dimetry N Z, MansourM H. (1976)The choice of ovipositionsitesby the ladybirdbeetle Adalia
bipunctata(L.). Experientia 3, 181–182
Dixon, Hance andThrierry (2006)InsectPredator–Prey Dynamics. LadybirdBeetles & Biological
Control. Journalf insect conservation10:4 375-376
DombrechtB, XueG.P, SpragueS.J, KirkegaardJ. A., RossJ.J, Reid, J B (2007)MYC2 differentially
modulatesdiverse jasmonate-dependentfunctioninArabidopsis. Plantcell 19:2225-2245
Effmert U, Dinse C, Piechulla B (2008)Influence of Green Leaf Herbivory by Manducasexta onFloral
Volatile Emissionby Nicotiana suavolens
EU Directive 2009/128/ECofthe Europeanparliament andof the council. (2009)Establishinga
framework for community actionto achieve the sustainableuse of pesticides.
Fan J. W, Hu C. L. , Zhang, L. N, Li Z. L, Zhao F. K, WangS. H. (2015)JasmonicAcid MediatesTomato’s
Responseto RootKnotNematodesJ PlantGrowth Regul 34:196–205
Figueroa P, Browse J. (2012)The ArabidopsisJAZ2 promotercontainsa G-Box and thymidine-rich
modulethat are Necessary andsufficient for jasmonatedependantactivationby MYCTranscription
factors and repressionby Jaz proteins. Plantand cell physiology 53:2 330-343
Francis F, Lognay G, HaubrugeE (2004)Olfactory responsesto aphid andhostplant volatile releases:
(E)-b-farnesene an effective kairomonefor the predatorAdalia bipunctata. Journalchemical ecology
30:4 741–755
Georghiou, G. P andLagunes-Tejada, A. (1991).TheOccurrence of Resistanceto Pesticides in
Arthropods. AnIndex of Cases ReportedThrough1989. Rome:FAO (Book)
Getahun M.N, OlssonS.B, Lavista-LlanosS, HassonB.S, Wicher D. (2013)InsectOdorantResponse
Sensitivity IsTuned By Metabotropically Autoregulated Olfactory Receptors. PLOSONE 8:3 e58889
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
37
Girling R.D, Hassall, Tumer J.Gand Poppy G.M. (2006) Behaviouralresponsesofthe aphidparasitoid
Diaeretiella rapae to volatiles from Arabidopsis thalianainduced by Myzuspersicae. Entomologia
Experimentalis et Applicata 120: 1–9
Gullermo H. Jimenez –Aleman, Ricardo A. R. Machado, HelmarGortis, IanT. Baldwin and Wilhelm
Boland. (2015)Synthesis, structuralcharacterizationadbiological activity of two diastereomeric JA lle
macrolactones. Org. Biomolecular chemistry 13:5885-5893
Harren J.M and CristescuS.M. (2013.)Onlinereal-time detection of volatile emissionsfrom plant
tissue. AoB Plants5 doi:10.1093/aobpla/plt003
Heil, M. & Karban, R. (2010)Explaining evolutionof plant communicationby
airborne signals. Trends in Ecology & Evolution, 25, 137–144.
Hemptinne, J.-L.;Desprets, A, 1986:Pollenas a springfood for Adalia bipunctata. In:Ecology of
Aphidophaga. Ed. by Hodek, I. Dordrecht: Dr W. Junk;Prague:Academia; 29–35
Heil, M. & Karban, R. (2010)Explaining evolutionof plant communicationby airbornesignals. Trends
in Ecology & Evolution, 25, 137–144.
Heil M, Ton J (2008)Long-distancesignallingin plant defence. Trends PlantSci 13(6):264–272
Heimes C, Thiele J, MolkenTV, Hauser T.P (2015)Interactive impactsof a herbivoreand a pathogen
on two resistance typesof Barbarea vulgaris(Brassicaceae) Oecologia 177:441-452
Joachim C, Vosteen I, Weisser W W (2015)The aphidalarm pheromone(E)-b-farnesenedoes notact
as a cue for predatorssearching ona plant. Chemoecology 25:105–113
Klein C, andWaterhouseD F (2000). DistributionandImportanceofArthropodsAssociated with
Agriculture andForestry in Chile. Canberra: ACIAR MonographN 68
KostC and Heil M. (2006)Herbivore-inducedplantvolatiles induce an indirect defence in
neighbouringplants. Journalof Ecology 2006. 94:619-628
Li L, Li C, Lee GI, Howe GA (2002)distinct roles for jasmonatesynthesisandaction in the systemic
woundresponseof tomato. ProcNationalAcademy of Science 99:6416–6421JournalofIntegrative
PlantBiology 51 6:581–592
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
38
Leibee G andCapinera L. (1995)Pesticide resistance in Florida insects limits managementoptions.
Florida Entomologist 78:3 386-399
Lopez-SepulcreA andKokkoH. (2005)Territorial Defense, Territory Size and PopulationRegulation.
The American Naturalist166:3 317-329
LorenzoO, Chico J.M, Sanchez-SerranoJ.J andSolano. R(2004)Jasmonate-insenstive1 encodesaMYC
transcriptionfactor essential to discriminate between different jasmonateregulated defence
responsesin ArabidopsisPlantcell 16 1938-1950.
LozanoR, Gimenez E, Cara B, Capel J, AngostoT (2009)Genetic analysisof reproductivedevelopment
in tomato. InternationalJournalof DevelopmentalBiology 53:1635–1648
Majerus, M. E. N., 1994a:Ladybirds. London:HarperCollins, 367
MansourN Z. (1976)The choice of ovipositionsitesby the ladybirdbeetle Adalia bipunctata(L.).
Experientia 3, 181–182
Miles, P. W. (1999). Aphidsaliva. Biol. Rev. 74, 41–85. doi:10.1017/S0006323198005271
Mithofer A and BolandWihelm. (2012)Plantdefence againstherbivores:Chemical aspectsannual
reviews plant biology 63 431-450
Oliveira M S andPareja M (2014)Attraction of a ladybirdto sweet pepper damagedby two aphid
species simultaneously orsequentially Arthropod-PlantInteractions8:547–555
OnkokesungN , Baldiwn I and Galis I (2010)The role of Jasmonicacid andethylene crosstalk in direct
defense of Nicotianaattenuateplants againstchewing herbivores. Journalof Plantsignalling and
behaviour5:10 1305-1307
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
39
OsbournA. (1996)Saponinsandplantdefence: a soapstory. Trendsin PlantScience 1 4-9
PaduchuriP, GohokarS, ThamkeB, SubhasM (2010)Transgenic
tomatoes. InternationalJournalAdvances in Biotechnology Res2:69–72.
PascholdA, Halitschke R and Baldwin IT (2006)Using‘mute’ plantsto translate volatile signals. The
PlantJournal45:275–291
PettersonJ, NikovicV, Ahmed E (1999)Volatiles from different barley cultivarsaffect aphid
acceptance of neighbouringplants. Acta Agric 49:152–157
Pitino, M., Coleman, A. D., Maffei, M.E., Ridout, C. J., and Hogenhout, S.A. (2011). Silencingof aphid
genes by RNA feeding from plants. PLoSONEdoi: 10.1371/journal.pone.0025709
Pitino, M., andHogenhout, S. A. (2013). Aphidprotein effectors promoteaphidcolonizationin a plant
species-specific manner. Molecular PlantMicrobe Interactions26:1 130–139
Raiola A, Rigano MM, Calafiore R, FruscianteL andBarone A (2014). Enhancingthehuman-promoting
effects of tomatofruit for bio fortified food. Hindawi PublishingCorporation vol. 2014, ArticleID
139873, 16 pages, 2014. doi:10.1155/2014/139873
Robert Donaryk andTeruhikoYoshihara(1995)Structure-Activity relationshipsofcyclopentane
analogsof jasmonicacid for inducedresponsesof Canolaseedlings Brassica napus.. Journalof
chemical ecology 21:1735-1734
Rodriguez, P. A., andBos, J. I. B. (2013). Toward understandingtherole of aphid effectors in plant
infestation. Mol. Plant-MicrobeInteract. 26, 25–30.
SchwartzbergEG, Boroczky K, TumlinsonJH(2011)Pea aphids, Acyrthosiphonpisum, suppress
induced plantvolatiles in broadbean, Vicia faba. JournalChemical Ecology 37:1055–1062.
Schauer N and Fernie A.R (2006)Plantmetabolomics:towards biological functionand mechanism.
Tends in plantscience 11:10 508-516
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
40
Silva, A. X., Bacigalupe, L. D., Luna-Rudloff,M.,and Figueroa,C.C. (2012a). Insecticideresistance
mechanismsin the green peach aphid Myzuspersicae(Hemiptera:Aphididae) II:Costsandbenefits.
PLoSONE 7:6 e36366
Silva, A. X., Jander, G., Samaniego,H.,Ramsey,J.S.,andFigueroa,C.
C. (2012b). Insecticideresistance mechanismsin the green peach aphid Myzuspersicae
(Hemiptera:Aphididae) I: a transcriptomicsurvey. PLoSONE7:6 e36366
SmartL E, MartinJ L, Limpalaer M, Bruce T J, Pickett J A (2013)Responseof herbivore andpredatory
mites to tomatoplantsexposedto jasmonic acid seed treatment Journalof Chemical Ecology 39
1297-1300
StrantonovitchP , Elias J, DenholmI, Slater R. (2014)An individual-basedmodelof the evolutionof
pesticide based resistance in heterogenousenvironments:controlof Meligethesaenus populationin
oilseed rape crops. PloSONE9:12 e115631
StrappsonP, Delia M, Pinto-Zevallos, Sulav P, Edwin GR, FelonG W, PauloH, Zarbin. (2014)Enhancing
plant resistance at the seed stage, low concentrationsof methyljasmonatereduce the performance
of the leaf miner Tuta absoluta butdonotlater the behaviourof its predator Chrysoperla externa.
Journalchemical ecology. 40:1090-1098
TamogamiS., Ralkwal R. & Agrawal G.K. (2008)Interplantcommunication:airbornemethyljasmonate
is essentially convertedinto JA and JA-lle activatingjasmonate signallingpathway and VOCsemission.
Biochemical and BiophysicalResearch Communications376, 723–727.
The TomatoGenome Consortium(2012)Thetomatogenome sequence providesinsightsintofleshy
fruit evolution. Nature485:635–641.
Thaler J.S (2002)Effect of Jasmonate-inducedplantresponsesontheNatural Enemies of Herbiovres.
Journalof Animal Ecology 71:1 141-150
Van Schie, C.C.N., Haring, M.A. andSchuurink, R.C. (2007)Tomatolinaloolsynthaseis inducedin
trichomesby jasmonic acid. Plant Mol. Biol. 64:251–263
DylanPenlington Biol387
Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment
41
Vasquez, B. L. (1995). “Resistanttomostinsecticides, Chapter 15,”in Book of InsectsRecords,
eds T. J. Walker (Gainesville, FL: University of Florida), 34–36.
Wager A, Browse J. (2012)Social network:JAZ protein interactionsexpand our knowledgeof
jasmonatesignalling. Frontiersin plant science. 3:31 1-11
Wakeil N E, Volkmar C, SallamA A. (2010)Jasmonicacid induces resistance to economically
importantinsect pestsin winter wheat. Pestmanagementscience 66:549-554
Will T, Kornemann, S R, Furch A C U, Tjallingii, W.F andVan Bel A J E (2009). Aphidwatery saliva
counteractssieve-tubeocclusion: a universalphenomenon. JournalOfExperimental Biology 212,
3305–3312.
Will T, Tjallingii, W. F., Thonnessen, A., andvan Bel, A. J. E. (2007). Molecularsabotageof plant
defense by aphidsaliva. Proc. nationalAcademy of science U.S.A. 104, 10536–10541
Zu-GuangLi , Ke-XianChen, Hai-Ying Xie andJian-RongGao(2009)QuantitativeStructure-property
RelationshipStudieson Amino Acid Conjugatesof JasmonicAcid as Defense SignallingMolecules.
Journalof integrative plant biology 51:6 581-592
ZhangPJ, BroekgaardenC, ZhengSJ,
Tjeerd A. L,. JoopSnorean, vanJ A, Gols LR andDicke M. (2013)
Jasmonateandethylene signalling mediate whitefly-inducedinterference with indirect plantdefense
in Arabidopsisthaliana New Phytologist197:1291-1299

More Related Content

What's hot

International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)inventionjournals
 
Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...
Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...
Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...AnissaBoyers
 
ROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISM
ROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISMROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISM
ROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISMBHU,Varanasi, INDIA
 
International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)inventionjournals
 
Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...
Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...
Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...Biswapriya Misra
 
Fipronil insecticide
Fipronil insecticideFipronil insecticide
Fipronil insecticidelark13
 
Plant neurobiology by uup
Plant neurobiology by uupPlant neurobiology by uup
Plant neurobiology by uupUdachappa Pujar
 
Evaluation of the coexpressed gene network of dreb2 a
Evaluation of the coexpressed gene network of dreb2 aEvaluation of the coexpressed gene network of dreb2 a
Evaluation of the coexpressed gene network of dreb2 aAlexander Decker
 
11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...
11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...
11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...Alexander Decker
 
6-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-194
6-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-1946-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-194
6-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-194Ravindragouda Patil
 
Loknath MuNAC4
Loknath MuNAC4 Loknath MuNAC4
Loknath MuNAC4 lokanadha
 
An in vivo examination of the stability of venom from the australian box jell...
An in vivo examination of the stability of venom from the australian box jell...An in vivo examination of the stability of venom from the australian box jell...
An in vivo examination of the stability of venom from the australian box jell...ijoding
 
Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...Carlos Santos Perez
 
Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...valrivera
 

What's hot (20)

International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)
 
Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...
Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...
Detection of tetB Gene in Environmental Escherichia coli Strains Using Colony...
 
ROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISM
ROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISMROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISM
ROLE OF JASMONIC ACID IN PLANT DEVELOPMENT &DEFENCE MECHANISM
 
C046015020
C046015020C046015020
C046015020
 
International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)
 
Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...
Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...
Metabolic Pathways & Phyto-patho Interactions: Clues to Targets for Metabolic...
 
Fipronil insecticide
Fipronil insecticideFipronil insecticide
Fipronil insecticide
 
1334003 brabala mishra
1334003 brabala  mishra1334003 brabala  mishra
1334003 brabala mishra
 
Plant neurobiology by uup
Plant neurobiology by uupPlant neurobiology by uup
Plant neurobiology by uup
 
Evaluation of the coexpressed gene network of dreb2 a
Evaluation of the coexpressed gene network of dreb2 aEvaluation of the coexpressed gene network of dreb2 a
Evaluation of the coexpressed gene network of dreb2 a
 
11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...
11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...
11.evaluation of the coexpressed gene network of dreb0002www.iiste.org call f...
 
6-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-194
6-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-1946-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-194
6-IJABR-Ant Actino soil smpls satara agnst human patho-IJABR_V6(2)188-194
 
2007 sdarticlenon-biotin
2007 sdarticlenon-biotin2007 sdarticlenon-biotin
2007 sdarticlenon-biotin
 
Loknath MuNAC4
Loknath MuNAC4 Loknath MuNAC4
Loknath MuNAC4
 
EFFECT OF DIFFERENT CONCENTRATIONS OF AUXINS AND COMBINATION WITH KINETIN ON ...
EFFECT OF DIFFERENT CONCENTRATIONS OF AUXINS AND COMBINATION WITH KINETIN ON ...EFFECT OF DIFFERENT CONCENTRATIONS OF AUXINS AND COMBINATION WITH KINETIN ON ...
EFFECT OF DIFFERENT CONCENTRATIONS OF AUXINS AND COMBINATION WITH KINETIN ON ...
 
An in vivo examination of the stability of venom from the australian box jell...
An in vivo examination of the stability of venom from the australian box jell...An in vivo examination of the stability of venom from the australian box jell...
An in vivo examination of the stability of venom from the australian box jell...
 
Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...
 
Cytotoxicity Screening Simarouba Tulae
Cytotoxicity Screening Simarouba TulaeCytotoxicity Screening Simarouba Tulae
Cytotoxicity Screening Simarouba Tulae
 
Varney_2015
Varney_2015Varney_2015
Varney_2015
 
Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...Presence of genetically modified organism genes in carica papaya, glycine max...
Presence of genetically modified organism genes in carica papaya, glycine max...
 

Viewers also liked

Identification and validation of heat stress responsive genes in chickpea (Ci...
Identification and validation of heat stress responsive genes in chickpea (Ci...Identification and validation of heat stress responsive genes in chickpea (Ci...
Identification and validation of heat stress responsive genes in chickpea (Ci...ICRISAT
 
Next generation plant growth regulators in horticulture production
Next generation plant growth regulators in horticulture productionNext generation plant growth regulators in horticulture production
Next generation plant growth regulators in horticulture productionMohamed Farag
 
Lecture 5 plant hormones 2014
Lecture 5  plant hormones 2014Lecture 5  plant hormones 2014
Lecture 5 plant hormones 2014Prachee Rajput
 
Jasmonates and Biotic Stress
Jasmonates and Biotic StressJasmonates and Biotic Stress
Jasmonates and Biotic StressDipesh Dhakal
 
Action and biosynthesis of jasmonic acid
Action and biosynthesis of jasmonic acidAction and biosynthesis of jasmonic acid
Action and biosynthesis of jasmonic acidDr. Rabiya Basri
 
Plant response to stress
Plant response to stressPlant response to stress
Plant response to stressfloradelaterra
 

Viewers also liked (6)

Identification and validation of heat stress responsive genes in chickpea (Ci...
Identification and validation of heat stress responsive genes in chickpea (Ci...Identification and validation of heat stress responsive genes in chickpea (Ci...
Identification and validation of heat stress responsive genes in chickpea (Ci...
 
Next generation plant growth regulators in horticulture production
Next generation plant growth regulators in horticulture productionNext generation plant growth regulators in horticulture production
Next generation plant growth regulators in horticulture production
 
Lecture 5 plant hormones 2014
Lecture 5  plant hormones 2014Lecture 5  plant hormones 2014
Lecture 5 plant hormones 2014
 
Jasmonates and Biotic Stress
Jasmonates and Biotic StressJasmonates and Biotic Stress
Jasmonates and Biotic Stress
 
Action and biosynthesis of jasmonic acid
Action and biosynthesis of jasmonic acidAction and biosynthesis of jasmonic acid
Action and biosynthesis of jasmonic acid
 
Plant response to stress
Plant response to stressPlant response to stress
Plant response to stress
 

Similar to Dissertation final

Plegable karen cano calle
Plegable karen cano calle Plegable karen cano calle
Plegable karen cano calle Karencanocalle
 
Improving microalgae for biotechnology - from genetics to synthetic biology
Improving  microalgae  for biotechnology  - from genetics to synthetic biologyImproving  microalgae  for biotechnology  - from genetics to synthetic biology
Improving microalgae for biotechnology - from genetics to synthetic biologynirvarna gr
 
Antisense rna
Antisense rnaAntisense rna
Antisense rnaBABU P
 
Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...
Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...
Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...Kristy Nguyen
 
micro organism and associated plants
micro organism and associated plants micro organism and associated plants
micro organism and associated plants MD ROBEL AHMED
 
Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...
Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...
Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...IJEABJ
 
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic StressMitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic StressSryahwa Publications
 
Tyler impact next gen fri 0900
Tyler impact next gen fri 0900Tyler impact next gen fri 0900
Tyler impact next gen fri 0900Sucheta Tripathy
 
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...john henrry
 
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...Abby Keif
 
Proteomic analysis of the interaction between the plant growth promoting fhiz...
Proteomic analysis of the interaction between the plant growth promoting fhiz...Proteomic analysis of the interaction between the plant growth promoting fhiz...
Proteomic analysis of the interaction between the plant growth promoting fhiz...kys9723331
 
Epigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plantsEpigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plantsSachin Ekatpure
 
NON HOST RESISTANCE IN PLANTS
NON HOST RESISTANCE IN PLANTSNON HOST RESISTANCE IN PLANTS
NON HOST RESISTANCE IN PLANTSJayappa Singanodi
 
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...dr.Ihsan alsaimary
 
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptxIMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptxshakilahmedovi2
 
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptxIMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptxshakilahmedovi2
 

Similar to Dissertation final (20)

Plegable karen cano calle
Plegable karen cano calle Plegable karen cano calle
Plegable karen cano calle
 
Induction of Systemic acquired resistance in Mungbean against Mungbean Yellow...
Induction of Systemic acquired resistance in Mungbean against Mungbean Yellow...Induction of Systemic acquired resistance in Mungbean against Mungbean Yellow...
Induction of Systemic acquired resistance in Mungbean against Mungbean Yellow...
 
Improving microalgae for biotechnology - from genetics to synthetic biology
Improving  microalgae  for biotechnology  - from genetics to synthetic biologyImproving  microalgae  for biotechnology  - from genetics to synthetic biology
Improving microalgae for biotechnology - from genetics to synthetic biology
 
Antisense rna
Antisense rnaAntisense rna
Antisense rna
 
Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...
Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...
Nguyen, K. Beckles, DM. (2013) The Effect of Varying Nitrogen on TF1 Gene Exp...
 
Dissertation thesis
Dissertation thesisDissertation thesis
Dissertation thesis
 
Space Agriculture
Space AgricultureSpace Agriculture
Space Agriculture
 
micro organism and associated plants
micro organism and associated plants micro organism and associated plants
micro organism and associated plants
 
Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...
Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...
Antioxidant activity, photosynthetic rate, and Spectral mass in bean Plants (...
 
DRUG DEVELOPMENT OF DENGUE
DRUG DEVELOPMENT OF DENGUEDRUG DEVELOPMENT OF DENGUE
DRUG DEVELOPMENT OF DENGUE
 
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic StressMitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic Stress
 
Tyler impact next gen fri 0900
Tyler impact next gen fri 0900Tyler impact next gen fri 0900
Tyler impact next gen fri 0900
 
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
 
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
Research on Trivedi Effect -Impact of Biofield Treatment on Growth and Yield ...
 
Proteomic analysis of the interaction between the plant growth promoting fhiz...
Proteomic analysis of the interaction between the plant growth promoting fhiz...Proteomic analysis of the interaction between the plant growth promoting fhiz...
Proteomic analysis of the interaction between the plant growth promoting fhiz...
 
Epigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plantsEpigenetics mediated gene regulation in plants
Epigenetics mediated gene regulation in plants
 
NON HOST RESISTANCE IN PLANTS
NON HOST RESISTANCE IN PLANTSNON HOST RESISTANCE IN PLANTS
NON HOST RESISTANCE IN PLANTS
 
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
 
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptxIMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
 
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptxIMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
IMPACT-OF-GENOMICS-ON-AGRICULTUR.pptx
 

Dissertation final

  • 1. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 1 BIOL387 Project Interplant signalling and the effectiveness of volatiles produced by Jasmonic acid seed treatment Student: Dylan Penlington Student ID: 33299633 Supervisor: Dr. Jane Taylor
  • 2. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 2 Glossaryof abbreviations 13-HPOT= 13-hydroperoxyoctadecatrieneoicacid 13-LPX = 13-lipoxy-genase AC = AlisaCraig ADJ = Adjacent AOC= allene oxidecyclase CON = control GD = Gardner’sDelight GPA = Greenpeach potatoaphid JAZ= jasmonate zim-domainproteins MeJA = Methyl jasmonate NINJA = novel interactorof JAZproteins OPDA=cis-(+)-12-oxophytodienoicacid OPR3 = 12-Oxophytodienoate reductase3 JA = JasmonicAcid TF= transcriptionfactors TPL = toplessproteins TSL = Two spottedladybirds
  • 3. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 3 Table of contents 1. Abstract 2. Literature review i) What is the problem? ii) VOCs (Volatileorganic carbons) Directand indirectdefence a) Introduction b) Direct defence c) Indirectdefence iii) Jasmonic acid (JA) structure, synthesis and cellularpathway. a) JA structure b) JA synthesis c) Possible useful artificial modificationstostructure andartificial synthesisof JA d) JA signallingcellular pathway and resultantresponses iv) The costs and risks of jasmonic acid againstthe risks and costs of pesticides. v) Model organisms, Tomato, green peach potato Aphids and Two spotted ladybirds a) Tomato b) Green Peach potato aphid (GPA) c) Two spotted Ladybird (TSL) vi) Aims and objectives 3. Materials and methods 4. Results i) Primary data and leaves surfacearea and number ii) GD (Gardeners Delight) iii) AC (Alisa Craig) iv) Summary 5. Discussion i) Gardner’s Delight green peach potato aphid ii) Gardner’s Delight two spotted ladybirds iii) Alisa Craiggreen peach potato aphids iv) Alisa Craigtwo spotted ladybirds v) Decision vs No decision vi) Leaf surfacearea and average leaf surfacearea vii) Results compared to other literature viii) Conclusion 6. Bibliography
  • 4. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 4 1. Abstract Jasmonicacid(JA) isa signallingmolecule whichactsasa part the defence response inplants duringinfestation. Itinducesthe indirectresponseof attractingnatural enemiesof herbivorousinsects suchasthe two spottedLadybird(TSL) andpredatorymites.Whatisnot yetknowniswhetherornot JA can induce pantstoproducesVOCscapable of interplant signalling.Inthisstudy seedsof twotomatovarieties,Gardner’sDelight(GD) andAlisaCraig (AC), where pre-treatedwithJA orethanol. Ethanol treatedplantswhere grown eitherclose to the JA treatedplants asadjacentplants or where placedalongdistance away for controls. Once grown theywere placedinaY-tube olfactoryassayto determine the response of differentinsectspecies foreachplantvarietyandtreatmentpairs.Inseparate groupsthe GreenPeachpotato aphids (GPA) andTSL were placedinthe apparatus for a choice test betweentwoplantsof the same variety anddifferenttreatments. The resultsshowsa minorityof insectsmade adecision.ForTSL forboth varietiesJA treatedplantsandthose adjacentshowna significantly higherpreference comparedtothe control. ForGPA forGD JA treatedplantsandthose adjacentshowna significantly higherpreference comparedtothe control. For AC withGPA shownno significantdifference betweenthe control-JA and adjacent-control pairings. There wasnosignificantdifference inchoice foranyof the JA treatedandadjacentpairings. The conclusionof thisstudyisthat plantsare capable of interplantsignallingandthere isadifference betweeneffectsof the plantssignalledto betweenvarietiesandthose thathave beenJA treatedhasoninsectbehaviour.
  • 5. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 5 2. Literature review i) What isthe problem? Since 2009 there hasbeena directive fromthe EU to reduce overall use of pesticides, toidentify pesticide alternatives.There isaparticularinteresttoprotect environmentallysensitive areas from pesticides andthere is anever-growingconcernonthe effectsof pesticideson pollinatorssuchas bees.(EU2009) There are risksinvolvedwiththe use of pesticides.For examplethere isan evolutionaryrelationshipthatincreasedpesticide usage increasesthe chancesof pesticide resistance ininsectpopulations,(Strantonovitchetal.2014) thiscausescrop managementissues. (Leibee etal.1995) Alternatives topesticidesforpestcontrol hastobe considered,suchas Jasmonicacid(JA) (Smartetal. 2013; Wakeil etal.2010.) JA isthe mainfocusof this review.The aimsof thisreviewistodefine whatJA is,how itisproducedandto determine the potential usesit will have inthe future incrop managementandhow interplantcommunication mightbe exploited to reduce the economiccostsof usingJA. ii) VOCs(Volatile organiccompounds) directandindirectdefence a) Introduction Volatile organiccompounds (VOCs) actsas airborne signalswhichinfluences the behaviourof herbivoresnatural enemiesandneighbouringplants.JA actsas a switchthat up-regulates, the synthesisof VOCsafterbioticstresses.The exogenousapplicationof JA caninduce production of VOCsinplants. (Arimuraetal.2009.) The abilitytosynthesize VOCscanbe reducedorremoveddue to mutation, forexample tomatomutantsthatlackthe JA biosyntheticpathway doesnotproduce plantVOCsthat are induciblebyJA. (VanSchie etal.2007; Degenhardtetal. 2010.) VOCsproduced duringinfestationcanconsistof terpenoids,fattyacidderivativesandaromaticcompounds.(Table 1) Thiscan produce a cocktail of VOCs that are emitted,whichare dependent onthe kindof damage done and the locationof itwhichcan be causedby egg depositionordirectconsumption (Mithofer and Boland2012.)
  • 6. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 6 b) Direct defence Directdefence responsescausedbyJA are inducible.(Baldwin etal. 2002.) Crosstalk between Jasmonicacidcross talksand ethylene,anothersignallinghormone,leadstothe build-upof direct defence metaboliteswithinNicotianaattenuata.These metabolitesinclude trypsinproteinase inhibitors,thisreducesthe nutritional value that herbivores gainleadingdue tointefreingwithits digestive processleading tostarvation. Italsoleadsto Nicotianaattenuataproducingthe toxin Nicotine whichlarge dosage killsattackingherbivores. The costof thisdefence onthe plantisthatit leadstoa reducedgrowthrate (Figure 1) (Onkokesungetal.2010.) Table 1 showsthe varioustypesof VOCsproducedbyplants. (MithoferandBoland2012) Figure 1: Schematicrepresentationof JA andethylenecross talkand how theywork inconjunctionwhenwoundedand havingdetectedherbivore elicitorcompoundstoproduce directdefence metabolitesof trypsinproteinase inhibitors and the toxinnicotine toactas defence againstherbivores howeveralsoshowsthatthere isa cost inreducedgrowthto defendagainstherbivores (Onkokesungetal. 2010.)
  • 7. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 7 c) Indirectdefence InterplantsignallingviaVOCs, hasbeen shownin 30 species, (HeilandKarban2010.) Methyl jasmonate(MeJA) helpsregulate plant’sdefence responses. MeJA hasbeenshowntobe takenin plantsand metabolizedintoJA,jasmonoyl-isoleucine andjasmonoyl-leucine.These metabolic conversions activatesVOCemissionswhich actas an indirectdefenceresponse.Inadditionto signallingmolecule uptakeof MeJA some plantsalso take upothervolatile compoundswhich could be re-emittedortransformedintootherby-products(Tamogamietal.2008.) Interplantsignallinghasbeen demonstratedtobe inducedbybothinfectionandherbivory (Kostand Heil 2006; Castelynetal.2015) VOCsproducedbyJA are capable of longdistance signallingbetween differenttomatoplants (Fanetal.2015; Li etal. 2002.) By encouragingthe emissionof volatilesin advance shouldbe plausibletoinitiatethe defence response in neighbouringplants. There are some criticismsof doingexperiments aboutInterplantsignallingundertypical laborgreenhouse conditions.Investigationsof volatilesusingthese conditionscanbe flawedif conditionsina greenhouse are leftnotventilated.Thismay leadVOCsthe opportunitytobuildupwhichleadsto the potential of increased interplantsignallingthanwhat wouldbe observedin anoutdoor agriculture setting(Pascholdetal. 2006.) Such investigationsneedtouse greenhouses with continuousairflow inmindinordertobettermodle volatilesignallingaswouldtake place outdoors (Pettersonetal.1999; Pascholdetal. 2006.) Heil andton 2008 foundevidenceagainstinterplant signallingbeingcausedbyvolatiles.The studyshownevidence thatsignallingforsome speciestakes place only betweendistal partsof the plantwhere releasedvolatilesare the signals utilizedonlyby the plantthat producesthem.Suggesting thatinterplantsignallingviavolatilesisnotalwaysclear cut. Whenattacked,plantsrelease volatilestoattractnatural enemiessuchas ladybirds (Thaler2002.) Duringco-infestationthe effectivenessof plantsignalling isquestionable asinfestationcandisrupt the volatile signalling bythe infesters,preventingeffective emissionof volatilesproducedthus preventingthe herbivore’spredatorsbeing attractedtothe plant. (Miles,1999; Will etal. 2007; Will et al.2009.) There are possible genderdifferencesthatcanoccur duringplantsignallingforexample female waspsare more attractedthan malestothe volatile signalsof theirspecifictargetsfromdue to theirneed tolayeggs withinthe insects. (Zhangetal.2013)
  • 8. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 8 iii) JA (Jasmonicacid) structure,synthesisandcellularpathway. a) Jasmonicacidstructure JA has the chemical structure asdepictedin (figure2a) (Donaryketal. 1995,) It’s3D intermolecular structure can be manipulated,this influencesthe functionalityof JA whichcanbe influencedby small changesindensitydue toitaffectingLogP whichaffectsitsabilitytoproperlybindtowhere it’sneeded (Figure2b) (Li etal.2009.) JA’sfunctionalityisalsoaffectedwhenit becomesgaseous.It signalstonatural predatorstowardsplantsherbivoreslike the plant ArabidopsisthalianausesJA alongwithothervolatilestoattract the enemiesof attacking herbivores(Zhangetal.2013.) # Figure 2a) showsthe chemical structure of jasmonic acid(Donaryk etal.1995.) b) showsthe 3D structure of Jasmonicacidmoleculesboundtogetherthe redareasare the most susceptible tochangesinshape tothe overall Jasmonicacidstructure. (Liet al 2009)
  • 9. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 9 b) Jasmonicacidsynthesis JA synthesisbeginsinthe chloroplastwhen leafsare wounded.Alphalinoleicacid isreleasedfrom the chloroplastmembrane.Itundergoes aseriesof reactionswiththe supportof 13-lipoxy-genase (13 –LOX) whichcatalysesoxygeninsertionatcarbon13 as the backbone thisleads tothe formation of 13-hydroperoxyoctadecatrieneoicacid(13-HPOT.) The 13-LOXis convertedbyallene oxide synthase (AOS) tocreate an unstable productwhichis quickly converted usingaseriesof allene oxide cyclases(AOC) intocis-(+)-12-oxophytodienoicacid(OPDA) (figure 3) AOCisimportantsince it formsthe final structure of JA. Since 2000 there are 58 knownAOCsequencesthatleadtodifferent waysthat JA biosynthesisisregulated (Delkeretal. 2006.) The second phase of JA biosynthesishappens usingperoxisomes. 12-Oxophytodienoatereductase3 (OPR3),thiscarriesa peroxisomal targetsequenceandactswithOPR3 to carry a peroxisomaltarget sequence andacts only inthe cis-(+) form. Inthe final step the carboxylicacidside chainisshortened inthree roundsof betaoxidation.Of whichonlyevennumberedOPC derivatives were convertedto JA;which leadingtogene expression (Delkeretal.2006.) Figure 3 Schematicof the JA biosynthesispathway.(Delkeret al.2006)
  • 10. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 10 c) Possible usefulartificial modificationstostructure andartificial synthesisof JA Syntheticanalogsof JA made artificiallyhave beenshowntoincrease the productionof nicotine in tobacco. It may be possible tomodifythe overall structure of JA tomodifyitsfunctionality to promote the productionof othersecondarymetabolites topromotesandimprove plantdefence. Artificial methods toproduce JA hasbeendevelopedwhichinvolvesaseven stepprocesswhich yields33%JA. (GullermoHet al 2015.) Thismethodinthe future hasthe potential tosignificantly reduce the costs of JA leadingtopossiblyfuture agricultural industrywide adoptionof usingJA asan alternative topesticides. d) Jasmonicacidsignallingpathway andresultantresponses JA is hormone that becomes convertedtoJA-lle inordertoactivate the pathwaythatproduces Jasmonates.Inthe absence of JA, jasmonate zim-domainproteins(JAZ) are bound tonovel interactorof JAZ proteins (NINJA), toplessproteins (TPL) andtranscriptionfactors(TF). These block the JA respnse genesare switchedoff.Inthe presence of Jasmonicacid,causesthe activationof JAZ proteinsandthe F-box protein SCFC011 thisfacilitatesthe recognitionof the E3ubiquitinligasewhich causesthe degradationof the JAZproteins of the 26S proteosome.Thisreleases TFfromit causing the Jasmonate response genestoturnon (figure 4.) Thiscausesthe productionof jasmonatesor directdefence response dependingwhere the TFislocated,the responsesare highlightedinthe defence section, Once JA isabsentJAZproteins are producedonce more andbindto the TF therefore deactivatingthe JA response gene again (Wageretal.2012.) Figure four:Inthe absence of JA and JA-lle jasmonate zim-domain(JAZ) proteinsbindstoTFand is boundto co-repressorslikenovelinteractorof JAZproteins (NINJA) andtopless(TPL) proteinssupresses gene transcription.WhenJA-lleispresentitcausesthe interactionbetweenJAZproteinsandthe F-box proteinSCFCOI1 .Thiscausesit to be recognized.Causingthe 26Sproteasomestodegrade releasingTF frominhibitionthuscausingthe activationof the JA responsivegene readyfortranscription.(Wageretal 2012)
  • 11. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 11 There are alsovarious downstreamevents thatcantake place fromthis initial signallingevent dependingononwhichTFthe differentJAZproteinsbindto. (Figueroaetal 2012) For example MYC2, a helix-loop-helixtranscriptionfactorthatacts as an acivator andrepressorof specificJA responisve geneexpression events.ForexampleArabidopsis,where MYC2 possitivelyexpresses oxidative strestolerance,flavenoidbiosynthesisandinsecthervivore resistancewhilstnegatively regulatingtryptophanmetabolism (Dombrechtetal.2007; Lorenzoet al. 2004.) iv) The costs and risksof jasmonicacid comparedto the risksand costs of pesticides. SprayingJA ontoplantscosts a lot to treat because large quantitiesof JA hastobe used. (Wakeil et al.2010.) Inorder to increase the commercial viability of JA treatment, pre-treatingthe seeds has beenproposed.This significantlyreducesthe amountof JA beingused, thusdecreasingthe economiccostof JA (Smart etal.2013.) The reason whyJA treatmentis a viable optionis thatJA activatedplants hasdefence mechanismstohelpthe fightoff herbivoressuchasthe peach potato aphidthroughinducingamixture of directandindirectdefence responses. (Onkokesungetal.2010; Fan etal. 2015; Li etal. 2002.) Thisresultsinthe reduced use of pesticides(Smartetal.2013; Wakeil et al. 2010.) It is knownthatplantsare capable of communicatingsignalsbynearbyplants (Paschold et al.2006.) Thiscreatesanotheravenue of study to testif a JA pre-treatedseedwillbe capable of causinginterplantsignallingwithitsproductionof Jasmonates,topotentiallyfurtherreduce the overall costof JA treatmentof plants. Throughthe use of bioassaysthere have beenargumentsthatpre-treatedseedsdoesnotalterthe behaviourof predatoryinsectsbutinsteadreducethe effectivenessthatinsectscanconsume the plantlike the Leaf Minorusingorganic tomatocultivars (Strapassonetal.2014.) Howeverasshown inY tube experimentspredatorymitesare showntobe attractedto the volatile chemicalsproduced by the JA treatedseeds.(Smartetal 2013) The reasonfor thisclashof evidence couldbe due tothe differencesbetweenthe predatoryspeciesthatthese insectstargetsandtheirevolvedmechanisms of searchingfortheirprey (Strapassonetal.2014; Smartet al.2013.) Meaningthatthismethodof treatmentmayneedtohave a cost-benefitassessmentappliedtoeachspecieswhere the seedsand local pestsare treatedbefore beingconsideredasamethodof treatmentdue tothe variousranges of responsesobservedbydifferentpests.
  • 12. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 12 v) Model organisms, Tomatoplants,PeachpotatoAphidsandTwospottedladybirds a) Tomato Solanumlycopersicumoriginatedinthe Andes isseenthroughthe world andisaneconomically importantcrop (Paduchuri etal.2010.) It giveshumans vital nutrients suchasvitaminCand has beenknown foranti-oxidative effects(Raiolaetal.2014.) It isan importantmodel organismtotest withbecause it’sgenome hasbeensequenced. Whichisadvantageousbecause itisnow possible to lookat the gene interactionsthattake place withinthe plant foritsresponses. Furthermore it makesfora goodmodel because ithasthe possibilityof growingunderdifferentcultivation conditions. Ithasa short life cycle andlarge seedproduction.Meaningthatgenerationalstudiescan be quickly assessed. Ithas a small genome,(950Mb) lack of gene duplication,highself-fertilityand homozygosistsy.Meaningthatgene interactionscanquicklybe identifiedandthatall plantscan be made to have similarDNA sequencescreatingmore reliabledatasets.Furtheradvantagesinclude easyway of controllingpollinationandhybridization,asexual propagationbygraftingandpossibility of regeneratingwholeplantsfromdifferentexplants. Meaningthatthe experimental batchworked on will be easytomanagedandnot be taintedbyother tomatoesdue tothe additional meansof controllingitspopulation (Bai andLindhout2007; The TomatoGenome Consortium2012.) Tomato hassome unique featurescomparedtoothermodel organismssuchasArabidopsisorrice. For example ithassympodial shootsandisthe onlymodel plantwithcompoundleafsalongwitha large pool of tomato mutantswhichwere eitherspontaneousorinducedbychemicalsorirradiation. (Lozanoetal. 2009) Literature onstudiesinvolvinghave alreadybeenproducedlikethe studyof JA- deficientspr2mutantsof tomatoes. Itshowsa reducedresistance againstaphidscomparedto control.Thisindicates thatJA does playa role in defence fortomatoes. (Avilaetal 2012) b) GreenPeachAphids (GPA) GPA otherwise knownasMyzuspersicae targets400 plantspeciesbelongingto50 plantfamilies includingimportantcropslike potatoandtomatoplants(BlackmanandEastop. 2007.) Due to the wide range of targetsand itsrapid abilitytoincrease inpopulationsize andresistance to large numbersof pesticideshascausedthemtobecome a top agricultural pestinthe USA.( Georghiou and Lagunes-Tejada,1991; Vasquez,1995; Silvaetal.,2012a,b; KleinandWaterhouse,2000)
  • 13. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 13 GPA are capable of reducingthe woundingresponse of plantsbysealingthe woundby usingit’s saliva. Thisissecreted whenthe insectisfeeding,thusallowingthe aphidstofeedcontinuously avoidingthe plant’simmuneresponse (Miles,1999; will etal.2007, Will etal. 2009.) The saliva containseffectorsthatmanipulatehostphysiologytomake furthercolonizationeasierforother aphids(RodriguezandBos 2013.) Furtherevidencesuggests whenthe genesof the protein responsible forenhancingcolonizationMpC002of the GPA issilenced overall GPA colonizationwas reduced (Pitinoetal.2011; PitenoandHogenhout2013.) Since these happenedpostinfestation the ideaof pre-treatingthe seedswith JA inadvance beforeinfestation happenscanpotentiallygivethe planta fasterimmune response againstGPA. GPA iscapable of sexual andasexual (Pathenocarpic) reproduction.The GPAslife cycle utilizes primaryand secondaryhosts.The sexual cycle iscompletedonstone fruitsuchaspeachesand Canadianplums,the primaryhost.Secondaryhosts consistsof plantssuchas tomatoand potatoes. (BlackmanandEastop 2007) GPA geneticsequencingisnear completion (Ramseyetal. 2007) combinedwiththe developmentof plant-deliveredRNA-interference technologyforgene silencing has ledtothe understandingof the geneticworkingsof GPA particularlyinplant-aphidinteractions. (Pitinoetal.2011; PitinoandHogenhout 2013) c) Two spottedladybird. (TSL) Adaliabipunctata(TSL) isendemictoEurope,Asiaand Central America(Majerus1994.) TSL is a tree- dwellingspecies. TSLfeedsdifferentinsectpreyincludingaphids (Hemptinne andDesprets 1986.) TSL attaches to smoothservicesthrough by glandularswellingattheirposterior.The zygopodiumof larvae prevents dislodgementfromplants. (Dixon2000) The larvae are attractedtowardsblue-green light480-522nm wavelength thisimproves theirabilityof findinginfestedhostplants (Dimetryand Mansour 1976.) TSL are attracted to volatiles producedbyplants likethe sweetpepper.Thisattractioncanbe further enhancedbysimultaneousinfestationof two species of the same genus infestingone plant (Oliveria and Pareja2014.) It isnot yetknownthe impactof infestationof twodifferentgenus.The effectof such infestationsmaydependuponthe ladybird’sdiet. Thislackof knowledge isfurthersupported of the potential mixesof differentgenuscanbe demonstratedbycertaininsectssuchascaterpillars whichare capable of inhibitingthe productionof VOCsbyplants. Whichmayalterthe cocktail of VOCsproducedor inhibitthe productiontosuchanextentthatTSL are lesslikelytolocate infested plants(Schwartzbergetal.2011.)
  • 14. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 14 There has beendebate amongstscientists whetherornotplantVOCs that act as an attractant to herbivore predatorsbutinsectpheromones actas the attractant instead (Francisetal. 2004.) Some evidence indicatesthatthisisnot the case is that the aphidpheromonessuchas C-beta-Farnsense is whatattracts TSL towardsinfestedplants (Joachimetal. 2015.) vi) Aimsandobjectives The aim of thisprojectis to investigatethe effect thatJA pre-treatedseeds hasonattractingor repellingGPA orTSL andwhetherornot JA treatedplantsare capable of interplantsignalling. The firstobjective is tofigure outthe effectsof JA acidtreatedseedsondifferentvarietiesof tomato plant,AlisiaCraigandGardendelightusingaY tube experiment tosee whetherornot GPA and TSL are repelledorattractedtowards differentJA treatedplants;alsoobservehow GPA andTSL behaves to each plantvariety.The secondobjective istoworkoutwhetherornot interplantsignalling betweenJA treatedplantsandadjacentplantstake place andthenworkoutwhat thispotentially meansina wideragricultural andevolutionary context.The thirdobjectiveistoworkout future directionsof research couldgoand to planoutexperimentswhichcanbettermodel thisconcept. The final objective istoassesswhichvarietyof seedwouldbe bettertogrow inan agricultural environmentandassessthe reasonswhythiswouldbe the case. The hypothesis isthatboththe Ladybirdsandgreenpeachaphidswill show greaterpreference overthe JA treatedandAdjacent overthe control and no preference betweenthe adjacent-JA paringsof plants. The second hypothesisisthatthere will be adifference inthe way bothinsectspeciesreacttothe different tomatovarieties toJasmonicacidseedtreatment.
  • 15. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 15 3. Materialsandmethods Seedpreparation Two varieties of Solanumlycperisucm(Tomato) AlisiaCraig(AC) andGardenersDelight(GD) where used.The seedswhere preparedbyimmersingtheninside 10ml of water30ul of ethanol or30ul of 1M JA wasadded.For eachvarietyandgroup (Adjacent(ADJ),control (CON) andJA treated(JA)) six seedswhere preparedandfurthersampleswere preparedinsubsequentweeksforreservesamples and to ensure all samplestestedwhereof the same age. Each sample where storedinafridge overnightbefore plantation.Ondayof plantationthe seedswhere washedin500ml of water and stirredfortenminutestoensure minimal JA orethanol influencesthe seedsdirectlyduringgrowth. Growth conditions and plantation Seedswere plantedinindividualpotsandeachpot was3cm apart from eachother,to prevent interplantsignallingfromthe JA plantsthe controls where 6mawayfrom eachgroup (figure 5.) The greenhouse grownin hadanaverage of 22 degreesCelsiusdaytime and18 degreesCelsiusnight time witha photoperiodfor14 hours.Theywere leftfora weektogrow before beingusedinthe Y- tube Setup (figure 6.) Figure 5. Showsa diagramof the formationplantswhere setupinthe greenhouse.JA are the JA treatedplants,ADJare the adjacent to JA treatedplantand CON standsfor the controls.Whichwere placeddistancesfromeachotherasshownby the arrows.
  • 16. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 16 Y Tube set up and preparation steps. For all plantsused,the numberof leafswhere countedandthe average surface areawasestimated by measuringthe lengthandwidthof 10% of leafs.The average wasthentakenbetweenthose. The Y tube experimentwasset upin accordance to figure 6. The Jars where sealed leftwiththe pump on for1 hour before use.Thenalarge simple randomsample of TSLand GPA where collected.In separate rounds6 insectsof eitherGPA or TSL are placedintothe Y tube of firstthe ladybirdsand thenthe GPA. Every 6 minutes the decisionswhere recordedthiswasrepeatedforeachpairing until 60 data setswhere collected foreachcombinationof plants. The groupswhere setupas JA-ADJ, ADJ- CON JA-CON thiswasrepeatedforeachgroup 3 timesusingthree differentsetsof plantsfor each variety of plant. Leadingtoeachsetof data havingtested180 insectdecisions forboth GPA and TSL for eachsample set. Figure 6 showsthe Y tube setup.The tubingwasplastictubingwithoutholesandthe containerswhere made out of glass. (Notmade to scale)
  • 17. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 17 4. Results i) Primarydata and leaves data 60 decisionswere made fromeachof the three setsof plants,of which3 repeatswhere done usinga separate setof three plantsfromtwo differentvarietiesof tomatoplant. Towork out the P values the two tail T-testwasperformed. On average lessdecisionswere made comparedtonodecisions forboth varieties of plantsandboth speciesof insects. Forthe GPA for all pairsof GD the P value revealsthatthere isa significant difference betweennodecisionsagainstdecision.(P<0.05) ForAC for GPA there was nosignificant difference betweendecision (P>0.05) andnodecisionforthe CON-JA treatedand CON-ADJpairs there wasa significantdifference betweenthe JA treated-ADJpairinfavourof nodecisions. (P<0.05) For TSL there wasa significantdifference betweennodecisionsanddecisionsforboth varietiesof plants(P<0.05.) For leaf measurementsforACthere wasa significance difference forthe average surface areaforall ADJ-JA,CON-JA andADJ-CON pairs.(P<0.05) For AC the average quantity of leavesthere wasa significantdifferencebetweenthe ADJ-CON pair(P<0.05) andno significantdifference betweenthe ADJ-JA andJA-control pairs.(P>0.05) For leaf measurements forGDplantsthere wasno significant difference betweenADJ-JA,CON-JA andADJ-CON (P>0.05.) For GD for average quantity of leafs there wasa significantdifference betweenADJ-control andJA control (P<0.05) For the ADJ-JA pair there wasno significantdifferencebetweenleaf size.(P>0.05) (Table 2) AC Average Leaf quantity Average surface area(cm^2) ADJ/CON 18/22 8/5.5 ADJ/JA 14/15 7.9/7.6 CON/JA 18/16 5.7/6.9 GD ADJ/CON 19/15 8.7/6.5 ADJ/JA 14/16 8/6.5 CON/JA 16/18 6.8/8.2 Table 2: The average leaf numberandaverage surface areaforboth varietiesof plantsusedinthe Ytube experimentfromthe three pairsof plantsusedforeach setup.
  • 18. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 18 ii) GD (Gardner’sdelight) On average forthe GD plants there isa greaterpreference forthe JA treatedandADJ plantsoverthe control for bothinsectspeciesandverylittle difference inpreference betweenthe JA treated-ADJ pairs. For GD withGPA there wasno significantdifferencebetweenthe JA treated-CON andJA treated-ADJ (P>0.05) forADJ-CON there wasa significance difference shown.(P<0.05) ForGD with TSL there was nosignificantdifference between ADJ-JA pair, (P>0.05) there wasa significant difference between JA treated-CON andADJ-CON (P<0.05.)
  • 19. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 19 Figure 7 mean number decisions oftwo spottedladybirds and greenpeachpotatoaphids betweenthree sets ofplants of GDJA andCON (A) adjacent andCON (B), ADJ andJA (C) Made bythe average of 180 total decisions per plant turningto 60 total onaverage per repeat in the Y tube set up(Figure 5) . The average leaf number andsurface area of each leaf is shown ontable 2. 0 10 20 30 40 50 Control JA Treated No decision Aphid GD CON-JA Average number of decisions 01020304050 Control JA treated No decision Ladybird GD CON-JA Average number of decisions 0 10 20 30 40 Control JA Treated No decision Aphid GD CON-ADJ Average number of decisions 0510152025303540 Control Adjacent No decision Ladybird GD CON-ADJ Average number of decisions 0 10 20 30 40 50 Control JA Treated No decision Aphid GD ADJ-JA Average number of decisions 01020304050 Adjacent JA treated No decision Ladybird GD ADJ-JA Average number of decisions A B C
  • 20. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 20 iii) AC (AlisaCraig) On average there isa preference frombothinsectsthe ACJA treatedandadjacentplantsoverthe control whilstthere is nosignificantdifference betweenthe preferencebetweenthe JA-ADJsamples for the AC plants. ForGPA there wasno significantdifference betweenCON-JA treated,CON-ADJ and JA-ADJ.(P>0.05) For TSL there wasno significantdifferencebetweenJA-CONandADJ-JA samples(P>0.05.) there wasa significantdifference betweenADJ-CON (P<0.05)
  • 21. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 21 Figure 8 mean number decisions oftwo spottedladybird andgreen peach potatoaphids betweenthree sets of plants ofAC adjacent andCON (A), ADJ andJA (B) andJA and CON (C) Made bythe average of180 total decisions per plant turning to 60 to tal on average per repeat inthe Y tube set up (Fig.5 ). The average leafnumber andsurface area ofeachleaf is shownon Table 2. 0 10 20 30 40 Control JA Treated No decision Aphid AC CON-JA Average number of decisions 01020304050 Control JA treated No decision Ladybird AC CON-JA Average number of decisions 0 10 20 30 40 Control JA Treated No decision Aphid AC CON-ADJ Average number of decisions 010203040 Control JA treated No decision Ladybird AC CON-ADJ Average number of decisions 0 10 20 30 40 50 60 Control JA Treated No decision Aphid AC ADJ-JA Average number of decisions 0102030405060 Control JA treated No decision Ladybird AC ADJ-JA Average number of decisions A B C
  • 22. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 22 iv) Summary For TSL for AC comparedwithGD forADJ-CON, ACmade more decisionscomparedwith GD,but withGD TSL greaterpreferredADJ overthe control.Betweenthe ADJ-JA between TSLthere wasa greaterpreference of choice forthe GD overthe JA.For the TSL there islittle difference inthe numberof insectsthatchose the JA overthe CON butthere isa greaternumberof TSL chose the control in the ACplantsthan the GD plants. For GPA forAC and GD there islittle difference inpreferencebetweenthe twovarietiesof plants. There isalso forGPA a strongerpreference forJA treatedplants of GD overthe AC butlittle difference inthe preference inthe adjacentplantsbothvarieties. Forthe GPA a greaternumberof insectschose the JA treatedof the AC overthe GD howevertheirwhere farlessthatchose the control plantsof the GD overthe ACplants.
  • 23. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 23 5. Discussion i) Gardner’sDelight Peachpotatoaphid For Gardner’sDelightwith greenpeachpotato aphids there is apreference betweenthe ADJ-CON and no preferencebetweenJA treated-CON. (Figure 7A-C.) Thiscouldbe since the plantsAdjacent to it have beenaffectedbyaunique volatilethatactedlike anaphid pheromone suchasC-beta- farnsense makingADJplants more attractive to invasivespecies(Joachimetal.2015.) Insteadof benefitingthe adjacentplant.The volatileemissions of ADJ effectively become ahoneytrap, for attractinggreenpeachpotato aphids.Thisbenefitsthe JA treatedplantbecause itreducesthe aphid populationinfestingit.Anothermechanismthatmayhave formedtopreventfurtherinvasion by makingtheirscentsharderto distinguish betweenJA treatedplantsformed amechanismtomake theirscentharderto smell like CON plants bynotproducingthese aphidattractingvolatiles. HoweverwhentryingtodistinguishbetweenADJ-JA treated there wasnosignificantdifference. This difficultytodistinguishbetweenthe twocouldarise since greenpeachpotato aphidsare generalists, meaningtheirolfactorysystemsmaynothave evolvedanefficientmechanismtocompare similar scentslike atomato specialistmayhave evolved. Itispossible thatspecialistaphidscandistinguish betweenthe ADJ-JAtreatedpairthiswarrantsfurtherinvestigation. Other literatureseemsto suggestthatgeneralistaphids dopreferthe scentof volatileemittingplantscomparedto none volatile emittingonesbutonlytovolatilesemittedwheninfestedbyanotherspeciesof insect. Furthermore noreferencesof thisproposed honeytrapmechanism seemtoexistincurrant literature makingitanovel areaof research (Girlingetal.2006.) Most literature doesnotsuggest aphidsare beingattractedto volatile emittingplants andsome suggeststhe opposite effectof them beingrepelled.(Smartetal.2013; OliveriaandPareja2014; Schwartzbergetal.2011) There wasno significantdifference betweenADJ-JA itcouldbe possible thatsince the scents betweenthe twocouldbe due tothe experimentsetupthatthe scents are similarenoughtocreate a maskingeffectdue tothe narrownessof the tubes. (Figure 7A-C.) Forfurtherinvestigation usinga well ventilated greenhousetodetectpreference of insectinfestation betweenADJ,JA treatedand CON plants overa longperiodof time andcountingthe numberof insectsinvesting the plants,could see if there isa preference betweenthe twoVOCemittingplants.Thisisbecause comparedtothe Y tube experiment wherethe volatilesare concentratedtoa place where the volatilesdispersed meaningtheymaybe easiertodiscernandthe aphids will be inalessstressful environmentmaking it more likely observe theirnormal behaviour andsee there populationdistribution. (Lopez-Sepulcre and Kokko2005.)
  • 24. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 24 Anotherpossibleexperiment todowould be to workout whatunique volatile organiccompoundsof ADJ plantsproduce whichleadstothe masking and/orhoneytrapeffectswiththe use of gas chromatographyandmass spectrometry.Thiswill make itpossibletocompare andcontrast the volatilesproducedbyJA treatedplants.Whichwill grantthe abilitytofindanyunique volatilesnot emittedbyJA andemittedbythe ADJplantsand vice versa. Thenuse Y tube experiment withthe unique volatiles extractedfromgaschromatography andnoscentto findwhichscentcausesthe honeytrap effect.Similarexperimentshave beenperformedtofigure outthe functionsof such volatilesinthe past sothe methoddescribedshouldwork (Boldizsaretal.2011; Schaueret al.2006.) ii) Gardner’sDelightTwospottedladybird For Gardner’sdelight withthe twospottedladybird the paringsacceptedthe null hypothesisof ADJ- JA whichwas expectedandthe null hypothesiswasrejectedforthe ADJ-CandC-JA pairingswhich was expected.(Figure7A-C) The reasoningbehind astowhy greenpeachpotatoaphids shown differentresultscouldbe because the scentreceptorsof greenpeachpotatoaphids are differentto twospottedladybirdsolfactory receptors, thatare capable of detectingdifferentcompoundsto greenpeachpotatoaphids.(Figure 7A-C) The reasonwhyJA treatedandADJ plants emitvolatiles couldbe that theyevolvedthismechanismtocreate a largerfieldof effectforvolatileemission for the two spottedladybirds andotherherbivore enemies todetect.A largersignal thatthisplantis infectedhere inalarge openenvironmentispreferabletoa small signal whichatgreaterdistancesis harderto detect. (Figure 9) Althoughthere appearstobe no suchliterature Thatshowsthiseffectit may be possible toinvestigateitthroughthe use of Laser-basedinfraredspectroscopyandproton transferreactionmassspectrometry due totheirhighsensitivitytolocate the difference between concentrationsof VOCsinlarge groupsof plantscomparedto VOCemissionof anindividual interms of range by testthemVOCemissionsatdifferentrangestoobserve whichVOCemissionrange isthe widest(HarrenandCristescu2013.)
  • 25. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 25 Figure 9: (Notto scale.) Showsthe possible areaof effectof the tomatoplantsif emittingvolatilesaloneorin groups.A) Showsthe effectof an individual VOCemittingplantwhichshowsasmallerVOCareaof effect where TSL wouldbe attractedto.B) Showsa group of VOCemittingplantsthathave communicatedwitheach otherto produce a much widerare of effectcomparedwithA.Demonstratingthe advantage of interplant communicationwhendealingwithapestissue.The widerarealeadstomore TSL potentiallybeingattractedto the plants.
  • 26. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 26 If this endsupbeingthe case the widerarea of signallinghasthe keyadvantage of attractingmore twospottedladybirds todeal with infestation.Whichwouldshow that the keyadvantage of interplantsignallinginthat the infested plantwouldbe capable of activatingthe nearbyplants defence response. Similareventsof interplantsignallinghasbeendescribedbypastinvestigations (Castelynetal.2015 ;Heil andKarban 2010; Kostand Heil 2006.) Thiscouldbe why ADJ plantsthat produce VOCsthat are attractive to TSL because theyproduce the same kindof volatilesthatare attract them.(Figure 7 A-C) Thishasthe addedbenefittothe adjacentplantstohelpthemprevent infestationevenwiththe possible increasedrate of infestationcausedbythe honeytrapeffect. To testwhetherornot thisisthe case a possible future experimenttodoisto compare and contrast the effectivenessof asignal of a JA treatedwithadjacentplantsinattractingpredatorscomparedto a JA treatedplantonits own ina greenhouseandobserve theirpopulationdistribution(Lopez- Sepulcre andKokko2005.) A group of volatile organiccompound emittingplants mayalsohave the advantage of havinghigher concentrations of volatileorganiccompounds thanasingle plant. Whichmaycause the two spotted ladybirds toperceive thatmore foodislocatedinlocationwiththe bigger volatileconcentration than the locationwithalowervolatile concentration. Whichhassimilarlybeenseenin bioengineeredArabidopsisthalianabutonan individual levelviabioengineeringwhere increased concentrationsof volatileemissionof nerolidol,aplantvolatile organiccompounds ledtohigher numbersof carnivoreslandingonthe plant(Houshyani etal.2013.) Thisindicates apossible evolutionarymechanismastowhy signal amplificationtotwospottedladybirds wouldhave originallybroughtaboutsuchbehaviour more foodina largerarea meanshigherchance tobread leadingtoa higherpreference of highconcentrationvolatile areas,itpotentiallyindicatesahigher qualityterritorytohabitatleadingtoa potentiallyhigherpopulationdistribution.
  • 27. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 27 Since the plantsare releasingvolatilesnotbecause of infestationbutbecause of beingJA treatedor adjacentto themthere islesschance of themhavinglongtermresidence due tothe absence of food.But itincreasestheirchancesof goingtowardsthe tomatoplantand there isthe potential of twospottedladybirds topotentiallypopulate the plantsthatare already infesteddue tothe food presentthere.Howeverthe chance remains thatthisvolatileorganiccompound signallingisthatit may cause the dispersal of the twospottedladybirdswhich will reduce the benefitsof the infested plantdue to lesspatrollingTSL(Smartetal. 2013; Lopez-Sepulcre andKokko2005.) Therefore itmay be possible thatthere isa pointof whichwhere the Adjacent-JA signallingstopstopreventdispersal. A future experimenttodo wouldbe to testto see if populationdispersals of twospottedladybirds on a largergroup of volatile organiccompound emittingplantsthatare notinfestedorcanbe done througha Y tube experimentwhereagroupof plantsemittingvolatilescanbe testedagainstasingle plantemittingvolatiles. (Lopez-Sepulcre andKokko2005) iii) Greenpeachpotato aphids AlisaCraig. For greenpeachpotatoaphids,the AlisaCraigplantsall three pairingsof plantsacceptedthe null hypothesisthiswasunexpectedforthe C-JA andC-ADJpairingsandexpectedof the JA-ADJpairings. (Figure 8 A-C) The resultsindicatesthatthe volatilesproducedbyACfor GPA donot produce a scent that istheycan detect. Comparedwiththe Gardner’sDelight variety(Figure7A-C) indicatesthatthe differentvarietiesof plantshave differenttraitswhichdealswithinfestationusingdifferent strategies. By producingnovolatilesattractive to greenpeachpotatoaphidsimplies thatgreenpeachpotato aphidswill be lesslikelytolocate AlisaCraig comparedtoGardner’sDelight.Inan agricultural settingthiswouldbe advantageousforusingAlisaCraigvarietycrops overGardner’sDelight because there will be noincrease inthe numberof aphidsgoingtothe plantsbecause of the volatiles produced.Whilstwith Gardner’sDelight there wouldbe the disadvantageof adjacentplantsbeing attractedto the volatilesof ADJplants.Indicatingthat AlisaCraigwouldthe superiorcroptopre- treat the seedsof jasmonicacid anduse commerciallyforJA treatment. These resultsindicatethat AlisaCraigmay have evolvedamore mutualisticrelationshipbetweenitsneighbourswhen comparedwiththe Gardner’sDelight where the honeytrapeffecttakesplace.
  • 28. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 28 Howeverthe disadvantage of lackingof the honeytraptraitinthe AC varietycouldmeanthatonce a plantisinfestedthe populationof Aphidsare lesslikelytodisperse due tochemical cues. Whichmay come at a disadvantage because the plantsare more likelytodie due toinfestationbeing concentrated.Whichcouldmeanthatonce the plantisdeadthe aphidswouldmove ontoother plantsand will be able tokill inthe cropmore efficientlydue tothe lowerpopulationdistribution than whatcouldbe observedwithGDplants. Therefore itwouldbe importanttocarry out a possible experimenttotest tosee if the benefitoutweighsthe costhighlighted.Thiscanbe tested betweenthe twopre-treatedseed varietiestocompare the effectivenessof aninfestationbetween these twovarietiesinseparate greenhouseswithsimilarpopulationsof aphids tosee which populationof aphidscausesthe mostdamage andcompare bothwitha control sample. What thisexperimentfailedtodoisto testwhetherornot JA treatedplantsstill producesdirect defence metabolitessuchastrypsinproteininhibitorsandsee if crosstalkcan be achievedbyalso pre-treatingseedswithethylene tosee if youcaninduce multipledirectdefenceresponses.Thenby testingthe physiological effectthishasoninsectsinfestingdifferentspeciesof plants.Thiscould helpreduce the needforpesticidesbyallowingplantstodefendagainstattacksthemselves(EU directive 2009; Onkokesungetal.2010.) iv) AlisaCraigTwo spottedladybirds For AlisaCraigwithtwospottedladybirds there wasnosignificantdifferencebetween ADJ-JA treatedwhichwasexpectedandJA treated-controlwhichwasunexpected.The ADJ-control pair showna significantdifferencewhichwasexpected. (Figure 8A-C) The reasoningbehindwhyJA treated-control plantshadnosignificantdifference isthat JA treatedplantsmayhave undergone an epigeneticchange frombeingpre-treatedwhichisonlypossibleforthisvarietydue toitsunique geneticmakeup(Tomatogenome consortium2012; Heimesetal.2015.) Thischange may have causedsome of its volatile emittingpropertiesandisanevolvedmechanismtosave energy.Butit still emitscertain volatileswhichtransmitssignalstoother adjacentplantswhichproducesthe volatilesitneedstoattract twospottedladybirds toitsgeneral vicinity.(Figure 9) Therefore even thoughit isnot directlyemittingvolatilesitselfitstill gainsthe benefitsof the protectionvolatile emissionsof otherplants byutilizingits’evolvedmechanism.
  • 29. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 29 In an agricultural contextpre-treatingthe seedswithJA mayhave the riskof havingTSL beingless likelytodetectthe infestedtomatoplant due the adjacentplantsproducingthe attractive scent. Thismay create an lessevenpopulationdistributionacrossthe AlisaCraigcropsinorderto locate foodfocusedonthe ADJ plants as whatcomparedto whatcould potentiallybe observedwith Gardener’sDelight.Howeverthe reverse mayalsobe true itmay be by the JA treatedplantnot producingvolatilesattractive itmaybe that itbecomeseasiertodiscernbetweenthe infestedplant and non-infestedplantsinthisvariety.Thusmakingita more populousareawhich twospotted ladybirdsfirstinvestigatesforaphidinfestation.Thisseems feasible because greenpeachpotato aphidsduringinfestationproducesawoundsealingpropertiesintheirsalviamakingthe plantmore noticeable becauseof its lackof attractive volatiles inareawhere astrongvolatile scentis the norm. (Miles1999; will etal.2007, Will etal.2009.) Essentiallythismayleadtothe twospottedladybirds to firsthone inthe volatile scentsandthentheymaythenhave evolvedthe behaviouratthe highest concentrationsof volatilestobe able tolocate an area inthat area where lessscentisproducedin an infestedorpre-treatedseedwhichmimicsthiseffectinordertofindtheirprey. Howeverinthis situationcouldhave anagricultural disadvantageinthe contextof pre-treatingthe seeds because it couldmeanan unevenpopulationdistributionof twospottedladybirds beingfocusedonthe JA treatedplantscouldleadtothe othernearbyplantsbeing more prone toinitial infestationmeaning the ADJ plantswouldneedtobe firstinfested inordertoattract two spottedladybirds tothe plants emittingstrongerscents.Inordertoinvestigate whichone isthe case itwouldmeantaking two spottedladybirds intoagreenhousesettingorganise the plantslike figure 5insee measure populationdistributionof TSLfor AC(Lopez-Sepulcre andKokko2005.)
  • 30. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 30 v) Decisionvsnodecision Withinbothvarietiesof plantsandbothspecies of insects there wasasignificantdifference between makinga decisionagainstnodecisionof whichmostinsectsmade nodecision. The possiblereason for thispreference tomake nodecisionis thatthey were placedoutside of theirnormal habitat leadingtoabnormal behaviour. Furthermore someof the twospottedladybirds aswell hadtobe shippedinanduseddue to time constraintsleadingtofurtherconfuse theirnormal behaviour. It alsocan be due to the lack of otherstimuli suchas seeingthe tomatoplantswhichaffectedtheir decisionprocessesbecause itmaybe thatmore stimuli increasesthe chancesof makingthe decision to pursue the scent.A secondcause forindecision fromvolatile organiccompounds producedbythe plantsmixedtogetherleadingtosome possibleconfusioninthe insectsolfactorysystemwhich wouldparticularprevalentinthe ADJ-JA pairsforGD plants.(Figure 7C) To testto see if itis due to the lack of otherstimuli one cantry to add stimuli inanew tube setup to incorporate the visual stimulusof the plantwiththe volatilesandanotherwithoutvolatilesandjustthe visual stimulusof the plantand a third groupwithjustvolatiles andacontrol withno stimuli tosuggestnearbyplants to observe whetherornot addingextrastimuli doeseffectthe decisiveness of the insects. Indecisioncouldhave also occurred due tothe diversityinboth insectspecies genepools. Thismay have ledto varyinglevelsof sensitivityintheirolfactorysystemsthatare usedtodetectthe difference of the twogroupsof volatile organiccompounds.Itmaybe possible thatsome may have recently fedtherefore where nothungryenough toleadthemtospendenergylookingfora new foodsource. It mayalso be possible thatforsome insectgenotypes are notbornwiththe capability of detectingvolatileorganiccompounds andfavourothermethodsof detection. Itwouldbe possible totesttosee suchvariabilitydoesexistinsome of the methodsdescribedbyGetahunetal. 2013, whichusedextracellularsingle sensillumrecordingtomeasure thissensitivity.Thenfrom those methodsfilteroutthe differentgroupsof insectsinaccordance totheirsensitivityof each insectspeciesandtestthe numberof decisionstheymake againstthe numberof nodecisionsusing the same methodsinthe materialsandmethodssectionof thisinvestigation.
  • 31. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 31 There isa greaterlevel of significance displayedbyJA treated-ADJpairof insectsmakingnodecision as seenin Figures7C and8C. Thiscouldbe due to theirscentsbeingsimilarthatitcausedgreater confusionamongstthose insectsunlesstheyare variantsbornwiththe correctgenescapable of producingan olfactorysystem detectingthe difference betweenJA treated-ADJ. thereforecausing higherratesof indecision.Howeverinthe case of AlisaCraigthe ADJ-JA treatedpairisless pronounced thisindicatesthatforthe twospottedladybirdsare more decisive inchoosing Alisa Craig comparedwithGardner’sDelight since the difference betweenthe decisionsvsthe no decisionsismore pronounced.Whichindicatesthatfor AlisaCraigplantsandladybirdsthatthey have a higherchance of attractingladybirdsincomparisontothe Gardner’sdelight whichinstead appearsto utilize the ADJplants withthe honeytrapeffectdescribedbefore toprotectthemagainst infestation. For AlisaCraigwithpeachpotatoaphids the JA treated-CON andADJ-CONare exceptionstothis trendsince there wasno significantdifference betweenthe decisionsandnodecisions.Thiscouldbe due to the JA treatedandADJ plantsproducedamuch more differentiated andstrongerscentin comparison tothe control plants. Thisshowsthatfor aphidsandAlisaCraigplantsthat JA treated and the ADJ plants volatiles appeartobe more randomcomparedto Gardner’sdelight.Thisis supported bythere beingnosignificantdifference betweenthe choicesmade betweenthe JA treated-CON andADJ-CON. Howeveritisstill arguable that since the null isacceptedthatthey appearto move more comparedto than when toGardner’sDelightpairs whichindicatesthatthe volatilesproducedmay have aninfluence intheirbehaviour. A potentialexplanationtothiscould be that AC may have a unique mutualisticrelationshipwithone ormore bacterial speciesunique to the plant,similartohowrhizobacteriainterfereswiththe attractionof parasitoids thankstoplant- bacteriainteractionsthankstoJA signalling(Pinedaetal.2013)
  • 32. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 32 To investigate if thispossibleplant-bacteriainteractionhasanimpacton aphidbehaviour,wouldbe to testa JA treatedplantthat hasbeentreatedwithantibacterialagentsonthe surface of the plant. Thenusingsimilarmethodsof the Ytube set upin thisinvestigation(Figure 5) see whetherornot thishas an effectoninsectbehaviourcomparedwithacontrol and a plantnot treatedwith antimicrobial agents, tosee if thishasanimpacton aphidbehaviour.If itisthe case that there isan effectthe nextstepwouldbe toisolate the microbiome andfindthe bacterial speciesthatproduces thiseffect.Fromthere furtherresearchcouldbe done tosee if thisbacteriacan have potential future agricultural applicationstopossiblytryandreduce the ratesof infestationonplants orisolate the specificcompoundsproducedbythe bacteriaandproduce itforfarmers.Thiscouldhelpreduce the rates of infestation of aphidsandmayhelpinthe EU directivesaimtoreduce pesticide byuse of sustainable alternatives (EU2009.) vi) Leafsquantity andAverage surface area The average quantity of leafsforAlisaCraigandGardner’sDelightmostof the resultsrejectedthe null hypothesis. Thismayinfluence the behaviourof the insectsdue to volatile organiccompounds productionbeingaffectedsince leavesproduce jasmonatevolatileorganiccompounds. Thisis shownbyEffmertetal 2008 whichdemonstratesthatareductioninleaf numberreducedoverall volatile emission. Thiscouldreduce the accuracyof the resultssince the large difference inleaf numbercouldaffectthe resultsbecause one plantinanyexperimental paircouldhave produced significantlymore volatilesthananother.Therefore if thisexperimentwhereperformedagain statistical testsshouldbe done inadvance betweenselectedplantstoensure thatthe error due to biasdoesnot appear.Eveninthe case of the control planetsthathave notbeentreatedstill emits othervolatile organiccompounds. For leaf surface areafor the AlisaCraigand Gardner’sDelight there are resultsthatrejectthe null hypothesiswhichnegativelyeffectsthe accuracyof the results.Thisisbecause surface areais anothertraitwhichinfluences the releaseof volatiles,since the largerthe surfacesareathe greater the release of volatiles(Constable etal.1999.) Whencombinedwiththe measurementsseenwith the average quantity of leavesthiscanpotentiallyleadinto agreaterinaccuracyinthe resultsdue to the impact ithas on the difference of volatilesemittedbetweentwoplants.
  • 33. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 33 vii) Discussionof resultscomparedtootherstudies In Zhanget al 2013 showsthatJA signallingforthe attraction of enemiesof herbivores hasbeen demonstratedinotherspeciesof plantsuchas Arabidopsisthaliana.Where the female, Diadegma semiclasumconfirmshowstheyhave agreaterpreference overJA treatedplantsover acontrol. Similartohowthe two spottedladybirdsshow a greaterpreference overthe JA treatedovera control for bothvarietiesof plants.(Figure 7and 8) The groups inZhang etal 2013 where separated ingreenhouses anddidnotuse a Y tube set up(Figure 5) makingthe resultsmore reliable.Butthis studyhas no reference towhetherornotplantscommunicate toeach otherso cannotbe usedto predictthe behaviourof the behaviourof Diadegmasemiclasumtoadjacentplantsorhow Arabidopsisthalianainfluencesotherinsectsbehaviour. Zhang etal. 2013 putsintoquestionthe efficacyof whetherornotthiswouldbe feasible by observingthatthose plantsthatwhere infestedwiththe white-fliesappearedtosupressthe ability of the crop abilitytoattract these wasps. Similartohow GPA suppressesthe plantsabilityto produce VOCs.(Miles,1999; will etal. 2007; Will etal.2009.) Howeverthe potential advantageof pre-treatingtheseplantscouldoutweighthe costthisisbecause byhavingJA treatedplantsout there inadvance before infestation willmeanapopulationof predatorsof interestwill be more likelytobe aroundthese plantstodeal withearlyinfestation. Aninvestigationonthe effectsof pre- treatingseedsof otherspeciescanbe performedtosee if similareffectscanbe inducedinother crops. Whichwill be goodforthe agricultural industrybecause itwill reduce theiroverall needtouse pesticidesforothercropsinaccordance to the EU directive (EU2009.) In Paschold etal 2006 showsthatplantsare capable of communicating witheachotherbyplacing themwithinanair conditionedchamber whenwounded.These experiments show it’spossible for wounded plantstoemitvolatilestothe unwoundedplants,andinduce aresponse inthem.Thisis similartothe effectsobservedinthisinvestigation of the JA treatedplantssignallingtothe adjacent plants. Since woundingresponsecausesthe transmissionof Jasmonatesaswell gaschromatography resultsof the receivershownthatthe receiverplantsdidreleasevolatiles.Whichfurthersupports the resultswhichsuggeststhatADJplants can influenceinsectdecision byproducingvolatiles emittedbyJA treatedplants.
  • 34. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 34 Smart etal 2013, shows an experimentsimilartothisexperimentthroughthe use of aY tube setup and pre-treatingseedswithJA.(Figure 5) Theyusedadifferentvariety of tomato,the moneymaker, it wasshownin these resultsthatusingpredatorymites there isaclearpreference inthe predators for targetingthe JA treatedplants overthe control samples due toVOCsproduced.Whencomparing these resultswithTSL,withGD andAC withresultsinCON-JA (Figure7and 8) alsoshowna significantdifferencebetweenthe pairwithgreaterpreference towards JA treatedplants.This showsthat thisattractionfor tomatoplants VOCsisnot relatedtojust to TSL but to otherspeciesof predatoryinsects. Vii) Conclusion The research showsthe firsthypothesiswasincorrectforshownchoice preference thataphidsand ladybirdschose between plantpairs. The secondhypothesishasshowntobe correct since JA treated plantsare capable of interplantsignalling thisisbecause ADJplants wherecapable of signallingto ladybirdsandaphids. Thisinvestigationhasadded towhatisknownto the subject,itshowsthat JA treatedseedsare capable of producingvolatiles capable of signallingtoplants. Italsoshowsthat differentvarietiesof tomatoplant signal toeachotherindifferentways,like withGardner’sDelight havingthe honey trapeffectandAlisaCraighavingitsownabilitytodirectlyattractladybirds silencedbutisstill emitsvolatilesthatcommunicate withadjacentplantsto attract ladybirds.The shortcomingsof the investigationwasthatthere was a significantdifference foraverage leaf surface area and average leaf quantity forthe majorityof plants whichmayhave ledtoan unbalanced emissionof volatiles.The researchhasleftseveral unansweredquestions,suchashow doesJA seed treatmentaffectdirectdefence responsesof plants,whatspecificvolatile orgroupof volatilesin Gardner’sDelightvarietyproducesthe honeytrapeffectandhow wouldthe insectsreacttoJA treatedplantsina more realisticsettinglikeagreenhouseintermsof populationdistribution.A few more questionswhichhave beenleftunansweredare whichvarietyof plantbestworkswithJA treatmentandwhetherornot bacteria-plantinteractionshave beenaffectedbyJA treatment.The resultsshowthatJA treatmentpotentiallyhasause in agriculture asa possible alternativefor pesticideshoweverfurthertrialsonhow thistreatmentwouldinfluence insectbehaviourinthe real worldneedstobe done.
  • 35. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 35 6. Bibliography Ament K, KantM R, Maurice W. Sabelis, Michel A. Haring, andRobert C. Schuurink (2015)Jasmonic Acid MediatesTomato’sResponsetoRootKnotNematodes JournalPlantGrowth Regulation 34:196– 205 Arimura G, MatsuiK, and TakabayashiJ. (2009)Chemical andmolecular ecology of herbivore-induced plant volatiles:proximate factors andtheir ultimatefunctions. Plant Cell Physiology 50:911–923 Avila C A, Are´valo-Soliz, L M, Jia, L., NavarreD A, Chen, Z, Howe, G.A. et al. (2012)Lossof functionof FATTY ACID DESATURASE7 in tomatoenhancesbasal aphidresistance in a salicylate-dependent manner. PlantPhysiology 158:2028–2041. Bai Y, LindhoutP (2007)Domesticationandbreeding of tomatoes:what havewe gained andwhat can we gain in the future? Annualof Botany 100:1085–1094. Baldwin IT, Kessler A. (2002)Plantresponsestoinsect herbivory theemerging molecular analysis. Annual review of plantbiology 53:299-328 Blackman, R L, andEastop, V F (2007). Aphidsonthe World's HerbaceousPlantsand Shrubs. Vol. 1: Host Listsand Keys; Vol. 2: The Aphids. EntomologiaExperimentalis et Applicata 125:3 325-325 BoldizsarI, Fuzfai Z and Molnar-PerlI (2011)Characteristic fragmentation patterns of trimethylsilylandtrimethylsilyl-oximederivatives ofplant disaccharidesas obtained by gas chromatography coupled toion-trap mass spectrometry Journalof Chormatography 1218:7864- 7868. Castelyn H D, Appelgryn J J, Mafa M S, Pretorius Z A, Visser B. (2015) Volatiles emitted by leaf rust infected wheat induce a defence responsein exposed uninfected wheat seedlings. Australasian Plant Pathology. 44:245-254 ConstableJ.V.H, Guenther A.B, Schimel D.S, MonsonR.K. (1999)Modellingchangesin VOC emission in responseto climate change in the continentalUnitedState. Global ChangeBiology 5:791-806 DegenhardtD C, Refi-Hind S, Stratmann, J W andLincoln D E (2010)Systeminandjasmonicacid regulate constitutiveand herbivoreinduced systemicvolatile emissionsin tomato, Solanum lycopersicum. Phytochemistry 71:2024–2037
  • 36. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 36 Delker C , StenzelI, Hause B, MierschO, FeussnerI, Wasternack C (2006) JasmonateBiosynthesis inArabidopsis thaliana‐ Enzymes, Products, Regulation. PlantBiology 8:297- 306 Dimetry N Z, MansourM H. (1976)The choice of ovipositionsitesby the ladybirdbeetle Adalia bipunctata(L.). Experientia 3, 181–182 Dixon, Hance andThrierry (2006)InsectPredator–Prey Dynamics. LadybirdBeetles & Biological Control. Journalf insect conservation10:4 375-376 DombrechtB, XueG.P, SpragueS.J, KirkegaardJ. A., RossJ.J, Reid, J B (2007)MYC2 differentially modulatesdiverse jasmonate-dependentfunctioninArabidopsis. Plantcell 19:2225-2245 Effmert U, Dinse C, Piechulla B (2008)Influence of Green Leaf Herbivory by Manducasexta onFloral Volatile Emissionby Nicotiana suavolens EU Directive 2009/128/ECofthe Europeanparliament andof the council. (2009)Establishinga framework for community actionto achieve the sustainableuse of pesticides. Fan J. W, Hu C. L. , Zhang, L. N, Li Z. L, Zhao F. K, WangS. H. (2015)JasmonicAcid MediatesTomato’s Responseto RootKnotNematodesJ PlantGrowth Regul 34:196–205 Figueroa P, Browse J. (2012)The ArabidopsisJAZ2 promotercontainsa G-Box and thymidine-rich modulethat are Necessary andsufficient for jasmonatedependantactivationby MYCTranscription factors and repressionby Jaz proteins. Plantand cell physiology 53:2 330-343 Francis F, Lognay G, HaubrugeE (2004)Olfactory responsesto aphid andhostplant volatile releases: (E)-b-farnesene an effective kairomonefor the predatorAdalia bipunctata. Journalchemical ecology 30:4 741–755 Georghiou, G. P andLagunes-Tejada, A. (1991).TheOccurrence of Resistanceto Pesticides in Arthropods. AnIndex of Cases ReportedThrough1989. Rome:FAO (Book) Getahun M.N, OlssonS.B, Lavista-LlanosS, HassonB.S, Wicher D. (2013)InsectOdorantResponse Sensitivity IsTuned By Metabotropically Autoregulated Olfactory Receptors. PLOSONE 8:3 e58889
  • 37. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 37 Girling R.D, Hassall, Tumer J.Gand Poppy G.M. (2006) Behaviouralresponsesofthe aphidparasitoid Diaeretiella rapae to volatiles from Arabidopsis thalianainduced by Myzuspersicae. Entomologia Experimentalis et Applicata 120: 1–9 Gullermo H. Jimenez –Aleman, Ricardo A. R. Machado, HelmarGortis, IanT. Baldwin and Wilhelm Boland. (2015)Synthesis, structuralcharacterizationadbiological activity of two diastereomeric JA lle macrolactones. Org. Biomolecular chemistry 13:5885-5893 Harren J.M and CristescuS.M. (2013.)Onlinereal-time detection of volatile emissionsfrom plant tissue. AoB Plants5 doi:10.1093/aobpla/plt003 Heil, M. & Karban, R. (2010)Explaining evolutionof plant communicationby airborne signals. Trends in Ecology & Evolution, 25, 137–144. Hemptinne, J.-L.;Desprets, A, 1986:Pollenas a springfood for Adalia bipunctata. In:Ecology of Aphidophaga. Ed. by Hodek, I. Dordrecht: Dr W. Junk;Prague:Academia; 29–35 Heil, M. & Karban, R. (2010)Explaining evolutionof plant communicationby airbornesignals. Trends in Ecology & Evolution, 25, 137–144. Heil M, Ton J (2008)Long-distancesignallingin plant defence. Trends PlantSci 13(6):264–272 Heimes C, Thiele J, MolkenTV, Hauser T.P (2015)Interactive impactsof a herbivoreand a pathogen on two resistance typesof Barbarea vulgaris(Brassicaceae) Oecologia 177:441-452 Joachim C, Vosteen I, Weisser W W (2015)The aphidalarm pheromone(E)-b-farnesenedoes notact as a cue for predatorssearching ona plant. Chemoecology 25:105–113 Klein C, andWaterhouseD F (2000). DistributionandImportanceofArthropodsAssociated with Agriculture andForestry in Chile. Canberra: ACIAR MonographN 68 KostC and Heil M. (2006)Herbivore-inducedplantvolatiles induce an indirect defence in neighbouringplants. Journalof Ecology 2006. 94:619-628 Li L, Li C, Lee GI, Howe GA (2002)distinct roles for jasmonatesynthesisandaction in the systemic woundresponseof tomato. ProcNationalAcademy of Science 99:6416–6421JournalofIntegrative PlantBiology 51 6:581–592
  • 38. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 38 Leibee G andCapinera L. (1995)Pesticide resistance in Florida insects limits managementoptions. Florida Entomologist 78:3 386-399 Lopez-SepulcreA andKokkoH. (2005)Territorial Defense, Territory Size and PopulationRegulation. The American Naturalist166:3 317-329 LorenzoO, Chico J.M, Sanchez-SerranoJ.J andSolano. R(2004)Jasmonate-insenstive1 encodesaMYC transcriptionfactor essential to discriminate between different jasmonateregulated defence responsesin ArabidopsisPlantcell 16 1938-1950. LozanoR, Gimenez E, Cara B, Capel J, AngostoT (2009)Genetic analysisof reproductivedevelopment in tomato. InternationalJournalof DevelopmentalBiology 53:1635–1648 Majerus, M. E. N., 1994a:Ladybirds. London:HarperCollins, 367 MansourN Z. (1976)The choice of ovipositionsitesby the ladybirdbeetle Adalia bipunctata(L.). Experientia 3, 181–182 Miles, P. W. (1999). Aphidsaliva. Biol. Rev. 74, 41–85. doi:10.1017/S0006323198005271 Mithofer A and BolandWihelm. (2012)Plantdefence againstherbivores:Chemical aspectsannual reviews plant biology 63 431-450 Oliveira M S andPareja M (2014)Attraction of a ladybirdto sweet pepper damagedby two aphid species simultaneously orsequentially Arthropod-PlantInteractions8:547–555 OnkokesungN , Baldiwn I and Galis I (2010)The role of Jasmonicacid andethylene crosstalk in direct defense of Nicotianaattenuateplants againstchewing herbivores. Journalof Plantsignalling and behaviour5:10 1305-1307
  • 39. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 39 OsbournA. (1996)Saponinsandplantdefence: a soapstory. Trendsin PlantScience 1 4-9 PaduchuriP, GohokarS, ThamkeB, SubhasM (2010)Transgenic tomatoes. InternationalJournalAdvances in Biotechnology Res2:69–72. PascholdA, Halitschke R and Baldwin IT (2006)Using‘mute’ plantsto translate volatile signals. The PlantJournal45:275–291 PettersonJ, NikovicV, Ahmed E (1999)Volatiles from different barley cultivarsaffect aphid acceptance of neighbouringplants. Acta Agric 49:152–157 Pitino, M., Coleman, A. D., Maffei, M.E., Ridout, C. J., and Hogenhout, S.A. (2011). Silencingof aphid genes by RNA feeding from plants. PLoSONEdoi: 10.1371/journal.pone.0025709 Pitino, M., andHogenhout, S. A. (2013). Aphidprotein effectors promoteaphidcolonizationin a plant species-specific manner. Molecular PlantMicrobe Interactions26:1 130–139 Raiola A, Rigano MM, Calafiore R, FruscianteL andBarone A (2014). Enhancingthehuman-promoting effects of tomatofruit for bio fortified food. Hindawi PublishingCorporation vol. 2014, ArticleID 139873, 16 pages, 2014. doi:10.1155/2014/139873 Robert Donaryk andTeruhikoYoshihara(1995)Structure-Activity relationshipsofcyclopentane analogsof jasmonicacid for inducedresponsesof Canolaseedlings Brassica napus.. Journalof chemical ecology 21:1735-1734 Rodriguez, P. A., andBos, J. I. B. (2013). Toward understandingtherole of aphid effectors in plant infestation. Mol. Plant-MicrobeInteract. 26, 25–30. SchwartzbergEG, Boroczky K, TumlinsonJH(2011)Pea aphids, Acyrthosiphonpisum, suppress induced plantvolatiles in broadbean, Vicia faba. JournalChemical Ecology 37:1055–1062. Schauer N and Fernie A.R (2006)Plantmetabolomics:towards biological functionand mechanism. Tends in plantscience 11:10 508-516
  • 40. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 40 Silva, A. X., Bacigalupe, L. D., Luna-Rudloff,M.,and Figueroa,C.C. (2012a). Insecticideresistance mechanismsin the green peach aphid Myzuspersicae(Hemiptera:Aphididae) II:Costsandbenefits. PLoSONE 7:6 e36366 Silva, A. X., Jander, G., Samaniego,H.,Ramsey,J.S.,andFigueroa,C. C. (2012b). Insecticideresistance mechanismsin the green peach aphid Myzuspersicae (Hemiptera:Aphididae) I: a transcriptomicsurvey. PLoSONE7:6 e36366 SmartL E, MartinJ L, Limpalaer M, Bruce T J, Pickett J A (2013)Responseof herbivore andpredatory mites to tomatoplantsexposedto jasmonic acid seed treatment Journalof Chemical Ecology 39 1297-1300 StrantonovitchP , Elias J, DenholmI, Slater R. (2014)An individual-basedmodelof the evolutionof pesticide based resistance in heterogenousenvironments:controlof Meligethesaenus populationin oilseed rape crops. PloSONE9:12 e115631 StrappsonP, Delia M, Pinto-Zevallos, Sulav P, Edwin GR, FelonG W, PauloH, Zarbin. (2014)Enhancing plant resistance at the seed stage, low concentrationsof methyljasmonatereduce the performance of the leaf miner Tuta absoluta butdonotlater the behaviourof its predator Chrysoperla externa. Journalchemical ecology. 40:1090-1098 TamogamiS., Ralkwal R. & Agrawal G.K. (2008)Interplantcommunication:airbornemethyljasmonate is essentially convertedinto JA and JA-lle activatingjasmonate signallingpathway and VOCsemission. Biochemical and BiophysicalResearch Communications376, 723–727. The TomatoGenome Consortium(2012)Thetomatogenome sequence providesinsightsintofleshy fruit evolution. Nature485:635–641. Thaler J.S (2002)Effect of Jasmonate-inducedplantresponsesontheNatural Enemies of Herbiovres. Journalof Animal Ecology 71:1 141-150 Van Schie, C.C.N., Haring, M.A. andSchuurink, R.C. (2007)Tomatolinaloolsynthaseis inducedin trichomesby jasmonic acid. Plant Mol. Biol. 64:251–263
  • 41. DylanPenlington Biol387 Interplantsignallingandthe effectivenessof itsvolatilesproducedbyJasmonicAcidtreatment 41 Vasquez, B. L. (1995). “Resistanttomostinsecticides, Chapter 15,”in Book of InsectsRecords, eds T. J. Walker (Gainesville, FL: University of Florida), 34–36. Wager A, Browse J. (2012)Social network:JAZ protein interactionsexpand our knowledgeof jasmonatesignalling. Frontiersin plant science. 3:31 1-11 Wakeil N E, Volkmar C, SallamA A. (2010)Jasmonicacid induces resistance to economically importantinsect pestsin winter wheat. Pestmanagementscience 66:549-554 Will T, Kornemann, S R, Furch A C U, Tjallingii, W.F andVan Bel A J E (2009). Aphidwatery saliva counteractssieve-tubeocclusion: a universalphenomenon. JournalOfExperimental Biology 212, 3305–3312. Will T, Tjallingii, W. F., Thonnessen, A., andvan Bel, A. J. E. (2007). Molecularsabotageof plant defense by aphidsaliva. Proc. nationalAcademy of science U.S.A. 104, 10536–10541 Zu-GuangLi , Ke-XianChen, Hai-Ying Xie andJian-RongGao(2009)QuantitativeStructure-property RelationshipStudieson Amino Acid Conjugatesof JasmonicAcid as Defense SignallingMolecules. Journalof integrative plant biology 51:6 581-592 ZhangPJ, BroekgaardenC, ZhengSJ, Tjeerd A. L,. JoopSnorean, vanJ A, Gols LR andDicke M. (2013) Jasmonateandethylene signalling mediate whitefly-inducedinterference with indirect plantdefense in Arabidopsisthaliana New Phytologist197:1291-1299