SlideShare a Scribd company logo
1 of 16
Download to read offline
Biopharma PEG https://www.biochempeg.com
Prospects And Future Trend of mRNA
Therapeutics
The great success of the mRNA COVID-19 vaccines have revived interest in using mRNA
to express therapeutic proteins. In addition to the mRNA COVID-19 vaccine, a series of
clinical trials have begun using mRNA to express vascular endothelial growth factor
(VEGF) to treat heart failure, and CRISPR-Cas9 mRNA to treat rare genetic diseases.
However, a number of challenges remain to be addressed before mRNA can be
established as a universal therapeutic modality for rare and common diseases. To
overcome these challenges, scientists are developing a series of new technologies,
including optimization of mRNA sequences, development of organ/tissue-specific lipid
carriers, and in vivo transdermal drug delivery systems. The combination of these
advances holds the promise of unlocking the promise of mRNA therapeutics beyond
vaccines to treat a variety of disease types.
A review paper entitled: Unlocking the promise of mRNA therapeutics was recently
published in Nature Biotechnology, discussing how to unlock the promise of mRNA
therapeutics in terms of mRNA design and purification, improving the timing and level of
mRNA expression, improving mRNA delivery systems, tissue-specific delivery systems,
and repeat drug delivery strategies, and summarizing current clinical trends in mRNA
therapeutics.
The widely proven safety and efficacy of mRNA COVID-19 vaccines, which have been
administered in billions of people around the world, suggests the potential to develop a
new generation of mRNA-based therapies beyond vaccines.
Biopharma PEG https://www.biochempeg.com
Differences between mRNA vaccines and mRNA
therapeutics
Compared with mRNA vaccines, the development of mRNA therapeutics faces more
challenges. Because mRNA vaccines only need to produce a small amount of protein, the
body's immune system amplifies the immune signal through cellular and
antibody-mediated immune responses. mRNA therapeutics requires more than 1,000
times the level of protein expressed by mRNA vaccines to reach the therapeutic threshold.
Moreover, typically, mRNA therapeutics need to act on specific target pathways, cells,
tissues or organs. Therefore, attention should be paid to the absorption of mRNA by target
cells, which determines the duration and level of mRNA expression. The bioavailability,
cycle half-life and delivery efficiency of lipid carrier delivery to tissues may be rate-limiting
factors.
By intravenous injection, mRNA therapeutics can be easily targeted to the liver, but their
effective delivery to other solid organs remains challenging. In addition, repeated
administration is currently facing obstacles. For the treatment of chronic diseases, multiple
administration is usually required, but even optimized mRNA and LNPs can activate
innate immunity after multiple administration, thus reducing the expression of therapeutic
monowhite.
Biopharma PEG https://www.biochempeg.com
F1 mRNA Vaccines and mRNA Therapeutics
1. Increase protein production
While mRNA's inherent immunogenicity enhances its effectiveness as a vaccine, it also
hinders its potential as a therapy. mRNA therapy requires high levels of protein
expression to achieve therapeutic effect, and in mouse models used for enzyme
replacement therapy, local regenerative therapy, and tumor immunotherapy, doses 50 to
1000 times higher than those used for mRNA vaccines are typically required. The need for
high protein expression levels has led to a variety of strategies for optimizing mRNA to
Biopharma PEG https://www.biochempeg.com
minimize immune responses, enhance mRNA stability and maximize translation
efficiency.
The figure below is a schematic diagram of different modifications of mRNA that are
currently in clinical use or are being studied to improve protein expression efficiency.
mRNA consists of five main domains - 5' cap, 5' untranslated region (5'UTR), open
reading frame (ORF), 3' untranslated region (3'UTR) , Poly(A) tail (PolyA). Optimization of
these five domains can enhance protein expression levels.
The innate immunogenicity of mRNA, while enhancing its effectiveness as a vaccine,
hinders its use as a therapeutic agent that requires higher levels of protein expression.
The need for high levels of protein expression has led to a variety of strategies to optimize
mRNA load to minimize innate immune responses, enhance mRNA stability, and
maximize translation (see Figure 2). However, for any given indication, the nature of the
mRNA cargo must be related to the efficiency of the delivery system (e.g., direct versus
systemic injection) and the mode of action of the protein of interest.
F2 Optimization of different mRNA structures
For mRNA vaccines and mRNA therapeutics, perhaps the most critical development is the
discovery that chemical modifications to nucleosides can significantly reduce the
immunogenicity of mRNA and increase protein expression levels. This is also at the heart
Biopharma PEG https://www.biochempeg.com
of patent claims in the mRNA field so far. In addition to chemical modification of mRNA,
codon optimization of mRNA sequence is also expected to develop effective therapeutic
mRNA without chemical modification.
In addition to protein expression levels, a key limiting factor for mRNA therapeutics in
treating chronic diseases is its short protein production time and therefore the need for
repeated administration. There are several optimizations of mRNA structure to increase
the duration of protein expression, such as self-amplifying mRNA (saRNA) and circular
mRNA (circRNA).
Self-amplifying mRNA (saRNA) utilizes the self-replicating ability of RNA alphavirus,
which can self-replicate in cells, thereby reducing the dosage and frequency of
administration. Compared with linear and modified mRNA, only one-tenth the amount of
self-replicating mRNA is needed to achieve similar protein expression levels. A number of
self-amplifying mRNA COVID-19 vaccines are currently in clinical trials. In addition, there
is another form of self-amplifying mRNA - trans-amplified mRNA (taRNA), which puts the
replicase and the target gene on two mRNAs, which is safer and helps to reduce the size
of the mRNA.
Circular mRNA (circRNA), which circularizes linear mRNA, can prevent mRNA from being
degraded by exonucleases, extend the half-life of mRNA in cells, and increase its total
protein expression. Moreover, circular mRNAs avoid the expensive 5' caps and
cumbersome Poly(A) tails that linear mRNAs must add. Furthermore, circular mRNAs
significantly reduced immune responses without chemical modification.
Biopharma PEG https://www.biochempeg.com
F3 Different mRNA forms
It should be noted that the purification of mRNA and the reduction of by-product
double-stranded RNA (dsRNA) can not only reduce the immune response, but also
increase the protein expression level.
2. Vectors And Delivery Systems
The inherent instability of mRNA leads to the need for a packaging/delivery system to
protect mRNA from nuclease degradation and allow it to be taken up by the cell, released
within the cell, and translated into proteins.
Biopharma PEG https://www.biochempeg.com
F4 Intracellular delivery and translation of mRNA
LNPs delivery system
Most of the mRNA vaccines/therapies currently on the market and in development
use lipid nanoparticles (LNPs) as carriers. LNP was first proposed more than 60 years
ago and has since undergone many changes and advances, finally being used clinically
for the first time to deliver siRNA therapy. LNPs consists of four key components:
structural lipids, cholesterol, cationic or ionizable lipids, and invisible lipids. Structural
lipids are the basic scaffolds of LNPs, and the addition of cholesterol in different
proportions can stabilize the structure of LNPs and regulate its properties, such as
membrane fluidity, elasticity and permeability. Cationic lipids or ionizable lipids are
essential for loading negatively charged mRNA into LNP. The invisible lipids are
mainly polyethylene glycol (PEG) modified lipids, whose addition can reduce the
immunogenicity and increase the stability of LNP. But it's worth noting that some people
are allergic to PEG, which can be a recurring obstacle in the treatment of chronic diseases.
Biopharma PEG https://www.biochempeg.com
Therefore, the optimization of polyethylene glycol (PEG) modified lipids or the
development of other stealth lipids is the focus of current research.
F5 Development milestones of the LNPs
Meanwhile, other delivery vectors based on cells, extracellular vesicles and bionic
vesicles are being developed and validated as alternative vectors in preclinical studies.
Biopharma PEG https://www.biochempeg.com
F6 Advantages and challenges of LNP, extracellular vesicles, cells and bionic vectors
3. Tissue Targeting
Biopharma PEG https://www.biochempeg.com
Realizing the full potential of mRNA therapy will require more advanced delivery systems
in the body, especially for solid organs such as the heart, kidneys, brain and lungs. For
most molecular therapies, the liver is the easiest organ for delivery, and its porous
vasculature facilitates efficient uniform delivery and passage of large particles. Thus,
simple intravenous administration enables efficient expression of mRNA cargo in the liver
with corresponding therapeutic protein levels (Supplementary Table 1). However,
targeting most organs other than the liver requires improved delivery systems, either
directly through the catheter or through the engineering of appropriately oriented
packaging systems. Each organ has its own advantages and barriers to efficient delivery.
Biopharma PEG https://www.biochempeg.com
4. Drug Administration For Chronic Diseases
The ability to specifically and efficiently deliver mRNA repeatedly while maintaining high
protein yields is a key requirement for the transition of mRNA from vaccines to
therapeutic drugs. Enzyme replacement therapy that relies on recombinant proteins
illustrates this point vividly. For example, hemophilia A and B blood disorders due to a
deficiency of the clotting protein are usually treated with 3–7 weekly systemic injections of
factor VIII or factor IX recombinant protein, respectively, with a relatively short half-life of
approximately 12 hours. Preclinical studies in mice have shown that this regimen can be
replaced by a single weekly systemic injection of 0.2–0.5 mg/kg of linearly modified mRNA
while maintaining protein levels above clinically relevant thresholds (Supplementary Table
1). In another approach, clinical results of DNA-based gene therapy for hemophilia using
AAV vectors showed an increase in protein levels during the first 2 years, after which they
leveled off. Recent data suggest that supplementation is required after 5-7 years due to
Biopharma PEG https://www.biochempeg.com
immune rejection of viral vectors. Viral vectors have their own safety concerns, especially
in pediatric indications.
The real added value of mRNA therapeutics compared to protein drugs is the ability to
synthesize high levels of intracellular protein. This in vivo approach enables direct
targeting of metabolic diseases such as Crigler-Najjar syndrome, methylmalonic acidemia,
propionic acidemia, and cystic fibrosis, which are technically difficult to treat with proteins
(Supplementary Table 1) . For example, current treatment of propionic acidemia consists
of activating urea production of carboglutamate through ingestion of 100–250 mg/kg per
day. Although it mitigated the toxic buildup of ammonia, it did not treat the underlying
metabolic defects. In contrast, a dual dose of 0.5 -- 2 mg/kg − of hPCCA and one of
hPCCB mRNA every 3 weeks in a knockout mouse model showed sustained reductions in
plasma biomarker and enzyme activity for 3 months and is currently in Phase I clinical
trials.Although it mitigated the toxic buildup of ammonia, it did not treat the underlying
metabolic defects. In contrast, a dual dose of 0.5 -- 2 mg/kg − of hPCCA and one of
hPCCB mRNA every 3 weeks in a knockout mouse model showed sustained reductions in
plasma biomarker and enzyme activity for 3 months and is currently in Phase I clinical
trials.
5. Clinical Research
mRNA vaccines have successfully completed phase III clinical trials and received
international regulatory approval, while most mRNA therapeutics are in early clinical
phase I studies with a major focus on safety (Supplementary Table 2: mRNA Therapeutics
Clinical Trials). Given that mRNA therapeutics can produce virtually any protein either
systemically or locally, a broad range of potential disease indications and protein classes
is currently being investigated. Protein classes that can be delivered by mRNA include
enzyme proteins, receptors, intracellular proteins, mitochondrial membrane proteins,
secreted proteins, and gene editing proteins (Table 3: Summary of different classes of
potential mRNA therapeutics). To date, only two clinical studies have produced
Biopharma PEG https://www.biochempeg.com
encouraging results in terms of safety and efficacy signals: VEGF mRNA for heart failure
and mRNA encoding CRISPR–Cas9 for hereditary amyloidosis.
Biopharma PEG https://www.biochempeg.com
Table 3: Summary of different classes of potential mRNA therapeutics
Conclusion
Thirty years of scientific and clinical progress, combined with enormous efforts to develop
an mRNA COVID-19 vaccine, heralds a promising future for mRNA therapeutics. Today,
Biopharma PEG https://www.biochempeg.com
we are able to rapidly design and synthesize clinical-grade mRNA in an automated,
scalable, cell-free format with only a few mouse clicks.
In the near future, we also have the potential to generate modular, scalable GMP grade
manufacturing units that can be located in any GMP grade facility, eliminating the need for
cold chain transportation. Lyophilized stored mRNA therapeutics will also be available,
which will largely solve the distribution problems of current mRNA vaccines due to the
difficulty of transportation and preservation. With the development of new LNP and
non-LNP vectors, the side effects will also be improved. Increased carrier capacity makes
it possible to deliver complex genes and base editing, and with repeatable delivery, mRNA
therapy is expected to replace current protein replacement therapies.
Looking back at the history of recombinant protein therapy, in the early days of the field, it
was expected that most growth factors would become drugs. However, it remains to be
seen whether VEGF will become a clinically valuable treatment now, 30 years after it was
cloned. The future of mRNA therapeutics may therefore depend on matching this
"software of life" to the "hardware" of the human physiological system, improving accuracy,
extending duration under safety conditions, and delivering long-term chronic drugs.
In the coming years, the rapid development of mRNAs, intracellular vectors, and delivery
systems in vivo, combined with in-depth biological and clinical insights and intuition,
should offer new hope to many patients with clinical needs that cannot be easily met by
other therapeutic modalities.
It is expected that with the advancement of science and the development of technology,
mRNA therapeutics will be used more widely. As a reliable worldwide supplier of PEG &
ADC linkers, Biopharma PEG supplies a variety of high purity PEG derivatives, PEG
linkers and ADC linkers to empower drug research & development. We can produce and
provide some PEG products as ingredients used in COVID-19 vaccines.
Biopharma PEG https://www.biochempeg.com
Reference:
Eduarde Rohner , Ran Yang, Kylie S. Foo,et al, Unlocking the promise of mRNA Therapeutics, nature
biotechnology, volume 40, 2022.10, 1586-1600
Related article:
[1]. 5 Potential Applications of mRNA Therapy
[2]. Lipid Nanoparticles: Key Technology For mRNA Delivery
[3]. mRNA Technology: Current Trends and Prospects
[4]. Overview of mRNA-Lipid Nanoparticle COVID-19 Vaccines

More Related Content

Similar to Prospects And Future Trend of mRNA Therapeutics.pdf

RNA based therapeutic: Paradigms shift in drug discovery and delivery
RNA based therapeutic: Paradigms shift in drug discovery and deliveryRNA based therapeutic: Paradigms shift in drug discovery and delivery
RNA based therapeutic: Paradigms shift in drug discovery and deliveryswapnaligadade
 
Pe gylated drug delivery systems for si rna drug development in cancer therapy
Pe gylated drug delivery systems for si rna drug development in cancer therapyPe gylated drug delivery systems for si rna drug development in cancer therapy
Pe gylated drug delivery systems for si rna drug development in cancer therapyDoriaFang
 
Lipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptx
Lipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptxLipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptx
Lipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptxCreative-Biolabs
 
Translation of genetic information
Translation of genetic information Translation of genetic information
Translation of genetic information Paola Gomez
 
Lipid Nanoparticles (LNP) for mRNA Drug Delivery.pdf
Lipid Nanoparticles (LNP) for mRNA Drug Delivery.pdfLipid Nanoparticles (LNP) for mRNA Drug Delivery.pdf
Lipid Nanoparticles (LNP) for mRNA Drug Delivery.pdfDoriaFang
 
CRISPRCas9 Gene Therapy Delivery Strategies.pdf
CRISPRCas9 Gene Therapy Delivery Strategies.pdfCRISPRCas9 Gene Therapy Delivery Strategies.pdf
CRISPRCas9 Gene Therapy Delivery Strategies.pdfDoriaFang
 
Nucleic acid therapeutics recent development
Nucleic acid therapeutics recent developmentNucleic acid therapeutics recent development
Nucleic acid therapeutics recent developmentDoriaFang
 
mRNA lipid nanoparticles
mRNA lipid nanoparticlesmRNA lipid nanoparticles
mRNA lipid nanoparticlesssuserc656fd
 
mRNA vaccines against emerging infectious diseases; A challenging approach of...
mRNA vaccines against emerging infectious diseases; A challenging approach of...mRNA vaccines against emerging infectious diseases; A challenging approach of...
mRNA vaccines against emerging infectious diseases; A challenging approach of...AI Publications
 
MEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptxMEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptxPrithivirajan Senthilkumar
 
Central dogma of genetic information
Central dogma of genetic informationCentral dogma of genetic information
Central dogma of genetic informationDaniel Vanegas
 
Lipid nanoparticles for mRNA vaccines
Lipid nanoparticles for mRNA vaccinesLipid nanoparticles for mRNA vaccines
Lipid nanoparticles for mRNA vaccinesKaliannan Durairaj
 
Unlocking the Potential of mRNA Vaccines and Therapeutics
Unlocking the Potential of mRNA Vaccines and TherapeuticsUnlocking the Potential of mRNA Vaccines and Therapeutics
Unlocking the Potential of mRNA Vaccines and TherapeuticsMerck Life Sciences
 
Canine oncoprotein targets for Melanoma, Breast Cancer, Osteosarcoma
Canine oncoprotein targets for Melanoma, Breast Cancer, OsteosarcomaCanine oncoprotein targets for Melanoma, Breast Cancer, Osteosarcoma
Canine oncoprotein targets for Melanoma, Breast Cancer, OsteosarcomaSnehal Salunkhe
 
mRNA for Regenerative Medicine
mRNA for Regenerative MedicinemRNA for Regenerative Medicine
mRNA for Regenerative MedicineCreative Biolabs
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfDoriaFang
 
Genetic polymorphism in drug transport and drug targets.
Genetic polymorphism in drug transport and drug targets.Genetic polymorphism in drug transport and drug targets.
Genetic polymorphism in drug transport and drug targets.pavithra vinayak
 

Similar to Prospects And Future Trend of mRNA Therapeutics.pdf (20)

RNA based therapeutic: Paradigms shift in drug discovery and delivery
RNA based therapeutic: Paradigms shift in drug discovery and deliveryRNA based therapeutic: Paradigms shift in drug discovery and delivery
RNA based therapeutic: Paradigms shift in drug discovery and delivery
 
Pe gylated drug delivery systems for si rna drug development in cancer therapy
Pe gylated drug delivery systems for si rna drug development in cancer therapyPe gylated drug delivery systems for si rna drug development in cancer therapy
Pe gylated drug delivery systems for si rna drug development in cancer therapy
 
Lipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptx
Lipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptxLipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptx
Lipid Nanoparticle-based mRNA Vaccine Creative Biolabs.pptx
 
Translation of genetic information
Translation of genetic information Translation of genetic information
Translation of genetic information
 
Lipid Nanoparticles (LNP) for mRNA Drug Delivery.pdf
Lipid Nanoparticles (LNP) for mRNA Drug Delivery.pdfLipid Nanoparticles (LNP) for mRNA Drug Delivery.pdf
Lipid Nanoparticles (LNP) for mRNA Drug Delivery.pdf
 
CRISPRCas9 Gene Therapy Delivery Strategies.pdf
CRISPRCas9 Gene Therapy Delivery Strategies.pdfCRISPRCas9 Gene Therapy Delivery Strategies.pdf
CRISPRCas9 Gene Therapy Delivery Strategies.pdf
 
Nucleic acid therapeutics recent development
Nucleic acid therapeutics recent developmentNucleic acid therapeutics recent development
Nucleic acid therapeutics recent development
 
mRNA lipid nanoparticles
mRNA lipid nanoparticlesmRNA lipid nanoparticles
mRNA lipid nanoparticles
 
mRNA vaccines against emerging infectious diseases; A challenging approach of...
mRNA vaccines against emerging infectious diseases; A challenging approach of...mRNA vaccines against emerging infectious diseases; A challenging approach of...
mRNA vaccines against emerging infectious diseases; A challenging approach of...
 
MEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptxMEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 1, PCG SEM 2.pptx
 
Central dogma of genetic information
Central dogma of genetic informationCentral dogma of genetic information
Central dogma of genetic information
 
Lipid nanoparticles for mRNA vaccines
Lipid nanoparticles for mRNA vaccinesLipid nanoparticles for mRNA vaccines
Lipid nanoparticles for mRNA vaccines
 
Unlocking the Potential of mRNA Vaccines and Therapeutics
Unlocking the Potential of mRNA Vaccines and TherapeuticsUnlocking the Potential of mRNA Vaccines and Therapeutics
Unlocking the Potential of mRNA Vaccines and Therapeutics
 
Canine oncoprotein targets for Melanoma, Breast Cancer, Osteosarcoma
Canine oncoprotein targets for Melanoma, Breast Cancer, OsteosarcomaCanine oncoprotein targets for Melanoma, Breast Cancer, Osteosarcoma
Canine oncoprotein targets for Melanoma, Breast Cancer, Osteosarcoma
 
mRNA for Regenerative Medicine
mRNA for Regenerative MedicinemRNA for Regenerative Medicine
mRNA for Regenerative Medicine
 
Polymophism in the promoter
Polymophism in the promoterPolymophism in the promoter
Polymophism in the promoter
 
Peroxisomes in dermatology
Peroxisomes in dermatologyPeroxisomes in dermatology
Peroxisomes in dermatology
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
 
Genetic polymorphism in drug transport and drug targets.
Genetic polymorphism in drug transport and drug targets.Genetic polymorphism in drug transport and drug targets.
Genetic polymorphism in drug transport and drug targets.
 
molecular.pdf
molecular.pdfmolecular.pdf
molecular.pdf
 

More from DoriaFang

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfDoriaFang
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfDoriaFang
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfDoriaFang
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfDoriaFang
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfDoriaFang
 
Summary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfSummary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfDoriaFang
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfDoriaFang
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfDoriaFang
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfDoriaFang
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfDoriaFang
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDoriaFang
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfDoriaFang
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfDoriaFang
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfDoriaFang
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfDoriaFang
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfDoriaFang
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfDoriaFang
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfDoriaFang
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfDoriaFang
 
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfNectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfDoriaFang
 

More from DoriaFang (20)

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdf
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
 
Summary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfSummary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdf
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdf
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdf
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdf
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdf
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdf
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdf
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdf
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdf
 
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfNectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
 

Recently uploaded

Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxWorkforce Group
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Neil Kimberley
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...lizamodels9
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangaloreamitlee9823
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒anilsa9823
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...amitlee9823
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityEric T. Tung
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxpriyanshujha201
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...rajveerescorts2022
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...amitlee9823
 

Recently uploaded (20)

Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptx
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
 

Prospects And Future Trend of mRNA Therapeutics.pdf

  • 1. Biopharma PEG https://www.biochempeg.com Prospects And Future Trend of mRNA Therapeutics The great success of the mRNA COVID-19 vaccines have revived interest in using mRNA to express therapeutic proteins. In addition to the mRNA COVID-19 vaccine, a series of clinical trials have begun using mRNA to express vascular endothelial growth factor (VEGF) to treat heart failure, and CRISPR-Cas9 mRNA to treat rare genetic diseases. However, a number of challenges remain to be addressed before mRNA can be established as a universal therapeutic modality for rare and common diseases. To overcome these challenges, scientists are developing a series of new technologies, including optimization of mRNA sequences, development of organ/tissue-specific lipid carriers, and in vivo transdermal drug delivery systems. The combination of these advances holds the promise of unlocking the promise of mRNA therapeutics beyond vaccines to treat a variety of disease types. A review paper entitled: Unlocking the promise of mRNA therapeutics was recently published in Nature Biotechnology, discussing how to unlock the promise of mRNA therapeutics in terms of mRNA design and purification, improving the timing and level of mRNA expression, improving mRNA delivery systems, tissue-specific delivery systems, and repeat drug delivery strategies, and summarizing current clinical trends in mRNA therapeutics. The widely proven safety and efficacy of mRNA COVID-19 vaccines, which have been administered in billions of people around the world, suggests the potential to develop a new generation of mRNA-based therapies beyond vaccines.
  • 2. Biopharma PEG https://www.biochempeg.com Differences between mRNA vaccines and mRNA therapeutics Compared with mRNA vaccines, the development of mRNA therapeutics faces more challenges. Because mRNA vaccines only need to produce a small amount of protein, the body's immune system amplifies the immune signal through cellular and antibody-mediated immune responses. mRNA therapeutics requires more than 1,000 times the level of protein expressed by mRNA vaccines to reach the therapeutic threshold. Moreover, typically, mRNA therapeutics need to act on specific target pathways, cells, tissues or organs. Therefore, attention should be paid to the absorption of mRNA by target cells, which determines the duration and level of mRNA expression. The bioavailability, cycle half-life and delivery efficiency of lipid carrier delivery to tissues may be rate-limiting factors. By intravenous injection, mRNA therapeutics can be easily targeted to the liver, but their effective delivery to other solid organs remains challenging. In addition, repeated administration is currently facing obstacles. For the treatment of chronic diseases, multiple administration is usually required, but even optimized mRNA and LNPs can activate innate immunity after multiple administration, thus reducing the expression of therapeutic monowhite.
  • 3. Biopharma PEG https://www.biochempeg.com F1 mRNA Vaccines and mRNA Therapeutics 1. Increase protein production While mRNA's inherent immunogenicity enhances its effectiveness as a vaccine, it also hinders its potential as a therapy. mRNA therapy requires high levels of protein expression to achieve therapeutic effect, and in mouse models used for enzyme replacement therapy, local regenerative therapy, and tumor immunotherapy, doses 50 to 1000 times higher than those used for mRNA vaccines are typically required. The need for high protein expression levels has led to a variety of strategies for optimizing mRNA to
  • 4. Biopharma PEG https://www.biochempeg.com minimize immune responses, enhance mRNA stability and maximize translation efficiency. The figure below is a schematic diagram of different modifications of mRNA that are currently in clinical use or are being studied to improve protein expression efficiency. mRNA consists of five main domains - 5' cap, 5' untranslated region (5'UTR), open reading frame (ORF), 3' untranslated region (3'UTR) , Poly(A) tail (PolyA). Optimization of these five domains can enhance protein expression levels. The innate immunogenicity of mRNA, while enhancing its effectiveness as a vaccine, hinders its use as a therapeutic agent that requires higher levels of protein expression. The need for high levels of protein expression has led to a variety of strategies to optimize mRNA load to minimize innate immune responses, enhance mRNA stability, and maximize translation (see Figure 2). However, for any given indication, the nature of the mRNA cargo must be related to the efficiency of the delivery system (e.g., direct versus systemic injection) and the mode of action of the protein of interest. F2 Optimization of different mRNA structures For mRNA vaccines and mRNA therapeutics, perhaps the most critical development is the discovery that chemical modifications to nucleosides can significantly reduce the immunogenicity of mRNA and increase protein expression levels. This is also at the heart
  • 5. Biopharma PEG https://www.biochempeg.com of patent claims in the mRNA field so far. In addition to chemical modification of mRNA, codon optimization of mRNA sequence is also expected to develop effective therapeutic mRNA without chemical modification. In addition to protein expression levels, a key limiting factor for mRNA therapeutics in treating chronic diseases is its short protein production time and therefore the need for repeated administration. There are several optimizations of mRNA structure to increase the duration of protein expression, such as self-amplifying mRNA (saRNA) and circular mRNA (circRNA). Self-amplifying mRNA (saRNA) utilizes the self-replicating ability of RNA alphavirus, which can self-replicate in cells, thereby reducing the dosage and frequency of administration. Compared with linear and modified mRNA, only one-tenth the amount of self-replicating mRNA is needed to achieve similar protein expression levels. A number of self-amplifying mRNA COVID-19 vaccines are currently in clinical trials. In addition, there is another form of self-amplifying mRNA - trans-amplified mRNA (taRNA), which puts the replicase and the target gene on two mRNAs, which is safer and helps to reduce the size of the mRNA. Circular mRNA (circRNA), which circularizes linear mRNA, can prevent mRNA from being degraded by exonucleases, extend the half-life of mRNA in cells, and increase its total protein expression. Moreover, circular mRNAs avoid the expensive 5' caps and cumbersome Poly(A) tails that linear mRNAs must add. Furthermore, circular mRNAs significantly reduced immune responses without chemical modification.
  • 6. Biopharma PEG https://www.biochempeg.com F3 Different mRNA forms It should be noted that the purification of mRNA and the reduction of by-product double-stranded RNA (dsRNA) can not only reduce the immune response, but also increase the protein expression level. 2. Vectors And Delivery Systems The inherent instability of mRNA leads to the need for a packaging/delivery system to protect mRNA from nuclease degradation and allow it to be taken up by the cell, released within the cell, and translated into proteins.
  • 7. Biopharma PEG https://www.biochempeg.com F4 Intracellular delivery and translation of mRNA LNPs delivery system Most of the mRNA vaccines/therapies currently on the market and in development use lipid nanoparticles (LNPs) as carriers. LNP was first proposed more than 60 years ago and has since undergone many changes and advances, finally being used clinically for the first time to deliver siRNA therapy. LNPs consists of four key components: structural lipids, cholesterol, cationic or ionizable lipids, and invisible lipids. Structural lipids are the basic scaffolds of LNPs, and the addition of cholesterol in different proportions can stabilize the structure of LNPs and regulate its properties, such as membrane fluidity, elasticity and permeability. Cationic lipids or ionizable lipids are essential for loading negatively charged mRNA into LNP. The invisible lipids are mainly polyethylene glycol (PEG) modified lipids, whose addition can reduce the immunogenicity and increase the stability of LNP. But it's worth noting that some people are allergic to PEG, which can be a recurring obstacle in the treatment of chronic diseases.
  • 8. Biopharma PEG https://www.biochempeg.com Therefore, the optimization of polyethylene glycol (PEG) modified lipids or the development of other stealth lipids is the focus of current research. F5 Development milestones of the LNPs Meanwhile, other delivery vectors based on cells, extracellular vesicles and bionic vesicles are being developed and validated as alternative vectors in preclinical studies.
  • 9. Biopharma PEG https://www.biochempeg.com F6 Advantages and challenges of LNP, extracellular vesicles, cells and bionic vectors 3. Tissue Targeting
  • 10. Biopharma PEG https://www.biochempeg.com Realizing the full potential of mRNA therapy will require more advanced delivery systems in the body, especially for solid organs such as the heart, kidneys, brain and lungs. For most molecular therapies, the liver is the easiest organ for delivery, and its porous vasculature facilitates efficient uniform delivery and passage of large particles. Thus, simple intravenous administration enables efficient expression of mRNA cargo in the liver with corresponding therapeutic protein levels (Supplementary Table 1). However, targeting most organs other than the liver requires improved delivery systems, either directly through the catheter or through the engineering of appropriately oriented packaging systems. Each organ has its own advantages and barriers to efficient delivery.
  • 11. Biopharma PEG https://www.biochempeg.com 4. Drug Administration For Chronic Diseases The ability to specifically and efficiently deliver mRNA repeatedly while maintaining high protein yields is a key requirement for the transition of mRNA from vaccines to therapeutic drugs. Enzyme replacement therapy that relies on recombinant proteins illustrates this point vividly. For example, hemophilia A and B blood disorders due to a deficiency of the clotting protein are usually treated with 3–7 weekly systemic injections of factor VIII or factor IX recombinant protein, respectively, with a relatively short half-life of approximately 12 hours. Preclinical studies in mice have shown that this regimen can be replaced by a single weekly systemic injection of 0.2–0.5 mg/kg of linearly modified mRNA while maintaining protein levels above clinically relevant thresholds (Supplementary Table 1). In another approach, clinical results of DNA-based gene therapy for hemophilia using AAV vectors showed an increase in protein levels during the first 2 years, after which they leveled off. Recent data suggest that supplementation is required after 5-7 years due to
  • 12. Biopharma PEG https://www.biochempeg.com immune rejection of viral vectors. Viral vectors have their own safety concerns, especially in pediatric indications. The real added value of mRNA therapeutics compared to protein drugs is the ability to synthesize high levels of intracellular protein. This in vivo approach enables direct targeting of metabolic diseases such as Crigler-Najjar syndrome, methylmalonic acidemia, propionic acidemia, and cystic fibrosis, which are technically difficult to treat with proteins (Supplementary Table 1) . For example, current treatment of propionic acidemia consists of activating urea production of carboglutamate through ingestion of 100–250 mg/kg per day. Although it mitigated the toxic buildup of ammonia, it did not treat the underlying metabolic defects. In contrast, a dual dose of 0.5 -- 2 mg/kg − of hPCCA and one of hPCCB mRNA every 3 weeks in a knockout mouse model showed sustained reductions in plasma biomarker and enzyme activity for 3 months and is currently in Phase I clinical trials.Although it mitigated the toxic buildup of ammonia, it did not treat the underlying metabolic defects. In contrast, a dual dose of 0.5 -- 2 mg/kg − of hPCCA and one of hPCCB mRNA every 3 weeks in a knockout mouse model showed sustained reductions in plasma biomarker and enzyme activity for 3 months and is currently in Phase I clinical trials. 5. Clinical Research mRNA vaccines have successfully completed phase III clinical trials and received international regulatory approval, while most mRNA therapeutics are in early clinical phase I studies with a major focus on safety (Supplementary Table 2: mRNA Therapeutics Clinical Trials). Given that mRNA therapeutics can produce virtually any protein either systemically or locally, a broad range of potential disease indications and protein classes is currently being investigated. Protein classes that can be delivered by mRNA include enzyme proteins, receptors, intracellular proteins, mitochondrial membrane proteins, secreted proteins, and gene editing proteins (Table 3: Summary of different classes of potential mRNA therapeutics). To date, only two clinical studies have produced
  • 13. Biopharma PEG https://www.biochempeg.com encouraging results in terms of safety and efficacy signals: VEGF mRNA for heart failure and mRNA encoding CRISPR–Cas9 for hereditary amyloidosis.
  • 14. Biopharma PEG https://www.biochempeg.com Table 3: Summary of different classes of potential mRNA therapeutics Conclusion Thirty years of scientific and clinical progress, combined with enormous efforts to develop an mRNA COVID-19 vaccine, heralds a promising future for mRNA therapeutics. Today,
  • 15. Biopharma PEG https://www.biochempeg.com we are able to rapidly design and synthesize clinical-grade mRNA in an automated, scalable, cell-free format with only a few mouse clicks. In the near future, we also have the potential to generate modular, scalable GMP grade manufacturing units that can be located in any GMP grade facility, eliminating the need for cold chain transportation. Lyophilized stored mRNA therapeutics will also be available, which will largely solve the distribution problems of current mRNA vaccines due to the difficulty of transportation and preservation. With the development of new LNP and non-LNP vectors, the side effects will also be improved. Increased carrier capacity makes it possible to deliver complex genes and base editing, and with repeatable delivery, mRNA therapy is expected to replace current protein replacement therapies. Looking back at the history of recombinant protein therapy, in the early days of the field, it was expected that most growth factors would become drugs. However, it remains to be seen whether VEGF will become a clinically valuable treatment now, 30 years after it was cloned. The future of mRNA therapeutics may therefore depend on matching this "software of life" to the "hardware" of the human physiological system, improving accuracy, extending duration under safety conditions, and delivering long-term chronic drugs. In the coming years, the rapid development of mRNAs, intracellular vectors, and delivery systems in vivo, combined with in-depth biological and clinical insights and intuition, should offer new hope to many patients with clinical needs that cannot be easily met by other therapeutic modalities. It is expected that with the advancement of science and the development of technology, mRNA therapeutics will be used more widely. As a reliable worldwide supplier of PEG & ADC linkers, Biopharma PEG supplies a variety of high purity PEG derivatives, PEG linkers and ADC linkers to empower drug research & development. We can produce and provide some PEG products as ingredients used in COVID-19 vaccines.
  • 16. Biopharma PEG https://www.biochempeg.com Reference: Eduarde Rohner , Ran Yang, Kylie S. Foo,et al, Unlocking the promise of mRNA Therapeutics, nature biotechnology, volume 40, 2022.10, 1586-1600 Related article: [1]. 5 Potential Applications of mRNA Therapy [2]. Lipid Nanoparticles: Key Technology For mRNA Delivery [3]. mRNA Technology: Current Trends and Prospects [4]. Overview of mRNA-Lipid Nanoparticle COVID-19 Vaccines