SlideShare a Scribd company logo
1 of 39
Development and Application of
GVVPT2 Gradients and
Nonadiabatic Coupling Terms
Daniel P. Theis
University of North Dakota
Chemistry Department
Grand Forks, ND
2
• Electronic Structure Theory and the GVVPT2 Method.
Outline
◦ Importance of each property.
◦ Challenges for evaluating those properties.
◦ Benchmark calculations.
• N2O2 Dissociation.
• Analytic Expressions for the GVVPT2 Molecular Gradients, Nonadiabatic
Coupling Terms, and State-Specific Electric Dipole Moments.
3
Electronic Structure Theory
  );()();(),(ˆ xrxxrxr elelel
eNe EVT  
);(
)(
xr
x
el
el
E



)(
)(
)(
)(
TG
TS
TH
Tk
F
F
F
Rxn
Electronic structure theory studies the behavior of a chemical system by determining
the electronic energy and electronic wave function that influences the system.
Energy
xOO
)S(O2)(O 412
2

g
In order to generate reliable results the electronic structure method needs to account
for the static and dynamic correlation that influences the chemical system.
4
Energy
xOO
)S(O2)(O 412
2

g
Electronic Structure Theory:
Properties of a Reliable Method
+
1
8
1
7
1
6
1
5
1
4
1
3
2
2
2
1 0
8
0
7
0
4
2
3
2
2
2
1
2
2
2
1 
)(O 12
2

g )S(O2 4
Electronic Structure Theory:
Static Correlation
5
In order to generate reliable results the electronic structure method needs to account
for the static and dynamic correlation that influences the chemical system.
Electronic Structure Theory:
Dynamic Correlation
6
True Dynamic
Correlation
SCF Approximation
of that Correlation
)(x
)(x
)(xel
E
SCF Procedure
)(xSTART
In order to generate reliable results the electronic structure method needs to account
for the static and dynamic correlation that influences the chemical system.
Time Required to Perform
the Calculation
Time Required
to Perform the
Calculation
GVVPT2
7
No Static
Correlation
Includes Static
Correlation
No Dynamic
Correlation
HF MCSCF
Includes Dynamic
Correlation
DFT (Time ≈ HF)
PT
CC, CI
MRPT
MRCC, MRCI
Electronic Structure Theory:
The GVVPT2 Method
In order to generate reliable results the electronic structure method needs to account
for the static and dynamic correlation that influences the chemical system.
0.00
1.00
2.00
3.00
4.00
5.00
6.00
1.00 2.00 3.00 4.00 5.00 6.00
xLiH (Å)
RelativeEnergy(eV)
GVVPT2 potential energy surfaces for
the X 1g
+and A 1g
+ states of LiH
1. GVVPT2 takes into account static and dynamic correlation effects.
2. GVVPT2 can determine accurate electronic energies for systems with low lying,
nearly degenerate electronic states.
The Benefits of the GVVPT2 Method
8
1. GVVPT2 takes into account static and dynamic correlation effects.
2. GVVPT2 can determine accurate electronic energies for systems with low lying,
nearly degenerate electronic states.
3. GVVPT2 potential energy surfaces are contentious, differentiable functions of
geometry, that ensure the evaluation of molecular gradients.
The Benefits of the GVVPT2 Method
9
GVVPT2 potential energy
surface of Mn2 (X 1g
+)
3.0 4.0 5.0 6.0
0.00
0.02
0.04
0.06
0.08
xMnMn (Å)
RelativeEnergy(eV)
3.0 4.0 5.0
-0.27
0.00
0.27
xMnMn (Å)
Energy+62606.90(eV)
MCQDPT potential energy
surface of Mn2 (X 1g
+)
10
The Importance of Electronic
State Properties
)(
)(
)(
)(
TG
TS
TH
Tk
F
F
F
Rxn
The determination of macroscopic date often requires the evaluation of properties
of the electronic states
Energy
xOO
)S(O2)(O 412
2

g

)(xμel
el
el
el
dx
d
dx
dE






x1
x2
11
Molecular Gradients
  xxx xxg

 )()( elel
E
xx
x



a
el
dx
dE )(Analytic molecular gradients lead to the efficient
determination of:
• Transition States
• Minimum energy paths
O
O O
O
O
O
x1 x1
x2
x2
q q
• Minima (Possible reaction intermediates)
12
Molecular Gradients
◦ Harmonic frequencies and normal modes
of vibration
O
O O
O
O O
O
O O
• Second derivatives (Hessians)
• Transition States
• Minimum energy paths
◦ Approximations of H(T), S(T), etc. b
b
el
ab
el
a
ba
el
ab
x
xgxg
dxdx
Ed
H








2
)()(
)(
)(
,,
2
xx
x
x
xx
  xxx xxg

 )()( elel
E
xx
x



a
el
dx
dE )(Analytic molecular gradients lead to the efficient
determination of:
• Minima (Possible reaction intermediates)
13
 
  )(
)()(
2
1
2
1
x
xxκ
x
x
elel
elelel




Nonadiabatic Coupling Terms
Energy
xAB
AB*
AB
AB → AB* → A + Bhv
Nonadiabatic coupling terms determine the likelihood
that a radiationless electronic transition will occur
during a chemical reaction.
14
Nonadiabatic coupling terms determine the likelihood
that a radiationless electronic transition will occur
during a chemical reaction.
 
  )(
)()(
2
1
2
1
x
xxκ
x
x
elel
elelel




Nonadiabatic Coupling Terms
0.00
1.00
2.00
3.00
4.00
5.00
6.00
1.00 2.00 3.00 4.00 5.00 6.00
xLiH (Å)
RelativeEnergy(eV)
GVVPT2 potential energy surfaces for
the X 1g
+and A 1g
+ states of LiH Types of Reactions this will
Affect:
• Charge Transfer Reactions
• Photochemical Reactions
15
Electronic Dipole Moments
Electronic dipole moments are used:
• To calculate vibrational excitation strengths.
• To evaluating the energies of intermolecular reactions.
16
Electronic Dipole Moments
Electronic dipole moments are used:
• In some implicit solvation models.
NH3 + CH3Cl → CH3NH3
 + Cl
No Solvation
Implicit Solvation
(H2O)
CH3NH3
 + Cl
NH3 + CH3Cl
Energy
Reaction Coordinate
17
Electronic Dipole Moments
  0EE Eμ

 )(,
elel
LR E
0E
E




a
el
dE
dE )(
Electronic dipole moments are used:
• In some implicit solvation models.
elelel
HF   μμ ˆ,
el
a
el
  ˆ
NH3 + CH3Cl → CH3NH3
 + Cl
No Solvation
Implicit Solvation
(H2O)
CH3NH3
 + Cl
NH3 + CH3Cl
Energy
Reaction Coordinate
18
Developing Computer Codes to Determine Those Properties:
Challenges that were Addressed
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
Challenge Solution
Complicated formulas define
E
GVV and |
GVV(1)
First develop codes for the GVVPT2 dipole moments and
the MRCISD gradients and nonadiabatic coupling terms.
  
 )()()()( )2()2(
2
1)2(
xZxZxHxH MMMMMM
eff
MM
  )()()()()(2)( )1()2(
xCxXxHxCxCIxZ PMQPMQPMMPMMM 
)()()()1(
xxx m qI
I
qI HDX e

 
)(
)(tanh
)(
x
x
x
m
m
m I
I
I
e
e
e
E
E
D



   

e
eee
Lq
qI
III
HE
m
xxxx mmm
22
4
1
2
1
)()()()( 
)()()()( )2(2
xAxHxAx 

  M
eff
MMM
GVV
E )()()()( xAxHxAx 

  TTTT
MRCISD
E
19
Developing Computer Codes to Determine Those Properties:
Challenges that were Addressed
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
Challenge Solution
The presence of electronic
structure parameters in E
GVV
and |
GVV(1)
By using a Lagrangian based approach to derive the
analytical formulas it was not necessary to evaluate the
derivatives of the electronic structure parameters.













  


m a
m
m
GVV
m I a
mI
mI
GVV
a
GVV
a
GVV
x
A
A
E
x
C
C
E
x
E
dx
dE 2222
)(x
  
 )()()()( )2()2(
2
1)2(
xZxZxHxH MMMMMM
eff
MM
  )()()()()(2)( )1()2(
xCxXxHxCxCIxZ PMQPMQPMMPMMM 

)()()()( )2(2
xAxHxAx 

  M
eff
MMM
GVV
E
20
Developing Computer Codes to Determine Those Properties:
Challenges that were Addressed
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
Challenge Solution
|
GVV(1) is not orthogonal to
the other 1st order GVVPT2
wave functions.
Replace |
GVV(1) by |
GVV(2) when deriving an
expression for the nonadiabatic coupling terms. Once the
expression is obtained eliminate all the 3rd and 4th order
terms.
)()1()0()( nGVVGVVGVVnGVV
   
);(0)1()1(
nOGVVGVV
 
)4(0)2()2(
OGVVGVV
 
3n
21
Developing Computer Codes to Determine Those Properties:
Challenges that were Addressed
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
Challenge Solution
Unstable numerical algorithms This problem still needs to be resolved.
Numerical Algorithms are procedures that are used to perform mathematical
calculations or operations.
Example: Tan(q)
22
Developing Computer Codes to Determine Those Properties:
Progress Summary
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
Property Analytic
Formulas
Written
Code
Debugged
Code
Benchmark
Tests
GVVPT2 Molecular Gradients Done Done Done Done
GVVPT2 Nonadiabatic Coupling
Terms
Done Done Incomplete Incomplete
GVVPT2 Dipole Moments Done Done Done Done
MRCISD Molecular Gradients Done Done Done Done
MRCISD Nonadiabatic Coupling
Terms
Done Done Incomplete Incomplete
23
GVVPT2 Electric Dipole Moments for the
X 1g
+ State of LiH
1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
z
(Debye)
RLiH
(Ang.)
• Roos Aug. TZ Basis Set
Technical Details: LiH (C∞v)
• 1:1 SA-MCSCF MOs
• (2:10)-CAS + 1 Core Orb.
24
GVVPT2 Electric Dipole Moments for the
A 1g
+ State of LiH
• Roos Aug. TZ Basis Set
Technical Details: LiH (C∞v)
• 1:1 SA-MCSCF MOs
• (2:10)-CAS + 1 Core Orb.
2 3 4 5 6 7 8
-6
-4
-2
0
2
4
6
8
10
12
z
(Debye)
RLiH
(Ang.)
25
Molecule Analytical Values Deviation from Numerical Values
Geometry Description X Y Z X Y Z
H2O O 4.517477 -0.086969 0.000000 -3.22×10-6 9.00×10-8 0.00
Asym. Str. (0.5 Å) H1 -4.482958 -0.020627 0.000000 3.33×10-6 -8.90×10-7 0.00
H2 -0.034519 0.107596 0.000000 -3.45×10-6 -8.40×10-7 0.00
LiH (X 1+) H 0.000000 0.000000 -0.014113 0.00 0.00 0.00
Avoided Crossing Li 0.000000 0.000000 0.014113 0.00 0.00 0.00
LiH (A 1+) H 0.000000 0.000000 -0.004441 0.00 0.00 0.00
Avoided Crossing Li 0.000000 0.000000 0.004441 0.00 0.00 0.00
• cc-pVTZ Basis Set
Technical Details: H2O (Cs – Broken Sym.)
• RCO = 1.205 Å, RCH = 1.611 Å, and RCH = 1.111 Å.
• (8:6)-CAS + 1 Core Orb.
• HCH = 116.1o and OCH = 121.9o
1 2
• Roos Aug. TZ Basis Set
Technical Details: LiH (C∞v)
• 9:1 SA-MCSCF MOs
• (2:10)-CAS + 1 Core Orb.
• RLiH = 3.400 Å
Analytical GVVPT2 Gradients for H2O and LiH
26
Molecule Analytical Values Deviation from Numerical Values
Geometry Description X Y Z X Y Z
H2O O 4.521281 -0.105445 0.000000 -3.14×10-6 0.00 0.00
Asym. Str. (0.5 Å) H1 -4.483541 -0.017956 0.000000 3.15×10-6 -1.00×10-8 0.00
H2 -0.037740 0.123401 0.000000 0.00 1.00×10-8 0.00
LiH (X 1+) H 0.000000 0.000000 -0.014491 0.00 0.00 0.00
Avoided Crossing Li 0.000000 0.000000 0.014491 0.00 0.00 0.00
LiH (A 1+) H 0.000000 0.000000 -0.004457 0.00 0.00 0.00
Avoided Crossing Li 0.000000 0.000000 0.004457 0.00 0.00 0.00
• cc-pVTZ Basis Set
Technical Details: H2O (Cs – Broken Sym.)
• RCO = 1.205 Å, RCH = 1.611 Å, and RCH = 1.111 Å.
• (8:6)-CAS + 1 Core Orb.
• HCH = 116.1o and OCH = 121.9o
1 2
• Roos Aug. TZ Basis Set
Technical Details: LiH (C∞v)
• 9:1 SA-MCSCF MOs
• (2:10)-CAS + 1 Core Orb.
• RLiH = 3.400 Å
Analytical MRCISD Gradients for H2O and LiH
Method Geometry
Geometry Description R1 R1 
GVVPT2 (C2v) 1.382 Å 1.382 Å 85.2o
GVVPT2 (Cs) 1.383 Å 1.381 Å 85.2o
MRCISD (C2v) 1.391 Å 1.391 Å 85.4o
GVVPT2 and MRCISD minimum energy geometries along the
conical intersection seam between the first two 1A1 states of O3
• aug(sp)-cc-pVDZ Basis Set
Technical Details: H2CO (Cs – Broken Sym.)
• (12:7)-CAS
27
• Geometry optimizations, gradients calculations, and frequency calculations verify that
the GVVPT2 method accurately describes the chemically important regions of most
potential energy surfaces.
Conclusions
28
• The GVVPT2 gradients are continuous across potential energy surfaces, including
regions of avoided crossings.
• Analytic formulas for GVVPT2 electric dipole moments, molecular gradients, and
nonadiabatic coupling terms have been developed which scale at approximately 2-3
times the speed of the GVVPT2 energy.
• Computational implementation of GVVPT2 electric dipole moments and analytic
gradients show excellent agreement with finite difference calculations.
• MRCISD and GVVPT2 predictions for the minimum energy geometries along the
conical intersection seam between the first two 1A1 states of O3 are in close agreement
with one another.
N
O
N
O
N
O
N
O
+
• Experimental Geometry:
◦ C2v Symmetry
◦ RNN = 2.2630 Å; RNO = 1.1515 Å; ONN = 97.17o
• Electronic State: 1A1
• Bonding:
◦ ED = 710  40 cm-1
◦ Bonding occurs through the NO p* orbitals
Nitric Oxide Dimer – N2O2
29
30
Energy(eV)
RNN (a.u.) RNN (a.u.)
Marouani, S. et al. J. Phys. Chem. A. 2010, 114, 3025.
The Excited States of N2O2
MRCI CASSCF
31
0.00 eV
4.77 eV
5.45 eV
Focus of the Study
(8 2 0)
(7 3 0)
(8 1 1)
(6 4 0)
(7 2 1)
(8 0 2)
(6 3 1)
NO (X 2P) + NO (A 2+) ~ (F)20(p2p)8(p2p)1(R3s)1*
NO (X 2P) + NO (a 4P) ~ (F)20(p2p)7(p2p)3(R3s)0*
NO (X 2P) + NO (X 2P) ~ (F)20(p2p)8(p2p)2(R3s)0*
(F)20 = 2×(s1s)2(s1s)2(s2s)2(s2s)2* *
N N
O O
N N
O O
N N
O O
N N
O O
p2p Orbitals
N N
O O
N N
O O
N N
O O
N N
O O
*p2p Orbitals
N N
O O
N N
O O
R3s Orbitals
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
2.263 2.763 3.263 3.763 4.263 4.763 5.263 5.763
Energy(eV) Potential Energy Surfaces for the Electronic Singlet and
Triplet States of the Lowest Dissociation Limit
Vertical Excitation Energies of (NO)2.
State GVVPT2 (eV) MRCISD (eV)
1 1A1 0.00 0.00
1 3B1 0.27 0.27
1 1B1 0.29 0.39
2 1A1 0.53 0.51
1 3B2 0.64 0.59
1 3A2 0.41 0.61
1 1A2 0.54 0.62
2 3B2 0.98 0.87
32
RNN (Å)
1 1A1 2 1A1 1 1A2 1 1B1 1 3A2 1 3B1 1 3B2 2 3B2
East, A. L. L.. J. Chem. Phys. 1998, 109, 2185.
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.1
7.2
2.263 2.763 3.263 3.763 4.263 4.763 5.263 5.763
RNN (Å)
Energy(eV)
MRCISD calculation of the Energy at the Dissociation Limit:
◦ The adiabatic (X 2P) → (a 4P) excitation energy (4.79 eV) closely
agreed with the experimentally measured value (4.78 eV).
◦ The minimum energy geometry (1.151 Å) closely agreed with the
experimentally measured bond length (1.152 Å).
Potential Energy Surfaces for the Triplet Electronic States of
the Second Lowest Dissociation Limit
331 3A1 2 3A1 2 3A2 3 3A2 2 3B1 3 3B1 3 3B2 4 3B2
Potential Energy Surfaces for the 1A1 and 3A1 States
34
Potential Energy Surfaces for the 1A2 and 3A2 States
35
Potential Energy Surfaces for the 1B1 and 3B1 States
36
Potential Energy Surfaces for the 3B2 States
37
• Photodissociation studies of N2O2 suggested the existence of “dark states”, that undergo
nonadiabatic transitions.
Interpretation and Conclusions
38
• GVVPT2 is capable of generating accurate potential energy surfaces of the NO + NO
dissociation limits of N2O2.
• From those calculations several areas of potentially strong nonadiabatic coupling were
identified.
• Many of those states have B2 symmetry and involve a excitation energy of 5 – 6 eV.
These results are consistent with photofragment measurements which predict that the
244 – 190 nm UV bands involve B2 electronic states.
Dr. Mark R. Hoffmann
Dr. Yuriy G. Khait
Patrick Tamukang
Rashel Mokambe
Jason Hicks
Erik Timmian
Jennifer Theis
Jeremy and Kate Casper
National Science Foundation
Acknowledgements
39

More Related Content

What's hot

Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...limbraj Ravangave
 
Frequency analyis i
Frequency analyis iFrequency analyis i
Frequency analyis ifoxtrot jp R
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...ijrap
 
Applications of schrodinger equation
Applications of schrodinger equationApplications of schrodinger equation
Applications of schrodinger equationZalman Ali
 
Propagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medumPropagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medumMidoOoz
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manualstudent
 
Chiral symmetry breaking and confinement effects on dilepton and photon produ...
Chiral symmetry breaking and confinement effects on dilepton and photon produ...Chiral symmetry breaking and confinement effects on dilepton and photon produ...
Chiral symmetry breaking and confinement effects on dilepton and photon produ...Daisuke Satow
 
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...iosrjce
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overviewClaudio Attaccalite
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法Computational Materials Science Initiative
 
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ijrap
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Teoría Cuántica de la Radiacion
Teoría Cuántica de la RadiacionTeoría Cuántica de la Radiacion
Teoría Cuántica de la RadiacionAlejandro Correa
 

What's hot (20)

Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
 
Frequency analyis i
Frequency analyis iFrequency analyis i
Frequency analyis i
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
 
Dynamics of nonlocal structures
Dynamics of nonlocal structuresDynamics of nonlocal structures
Dynamics of nonlocal structures
 
Applications of schrodinger equation
Applications of schrodinger equationApplications of schrodinger equation
Applications of schrodinger equation
 
Propagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medumPropagation of electromagnetic waves in weak anisotropic medum
Propagation of electromagnetic waves in weak anisotropic medum
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
 
Resonant Tunneling
Resonant TunnelingResonant Tunneling
Resonant Tunneling
 
Chiral symmetry breaking and confinement effects on dilepton and photon produ...
Chiral symmetry breaking and confinement effects on dilepton and photon produ...Chiral symmetry breaking and confinement effects on dilepton and photon produ...
Chiral symmetry breaking and confinement effects on dilepton and photon produ...
 
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
 
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Rigid rotators
Rigid rotatorsRigid rotators
Rigid rotators
 
Electromagnetic waves
Electromagnetic wavesElectromagnetic waves
Electromagnetic waves
 
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
 
Approximations in DFT
Approximations in DFTApproximations in DFT
Approximations in DFT
 
Teoría Cuántica de la Radiacion
Teoría Cuántica de la RadiacionTeoría Cuántica de la Radiacion
Teoría Cuántica de la Radiacion
 

Viewers also liked

Treasurehunt Slideshare
Treasurehunt SlideshareTreasurehunt Slideshare
Treasurehunt Slidesharetrialrun
 
CADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDADCADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDADRicardo Aucapiña
 
sugumar resume
sugumar resumesugumar resume
sugumar resumesugu mani
 
PhD Defence Part 2
PhD Defence Part 2PhD Defence Part 2
PhD Defence Part 2Daniel Theis
 
Estimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'AfàsiaEstimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'AfàsiaIsabel Pintor Hernández
 
Ramesh resume
Ramesh resumeRamesh resume
Ramesh resumeRamesh R
 
Game development -session on unity 3d
Game development -session on unity 3d Game development -session on unity 3d
Game development -session on unity 3d Muhammad Maaz Irfan
 
Design phase of game development of unity 2d game
Design phase of game development of unity 2d game Design phase of game development of unity 2d game
Design phase of game development of unity 2d game Muhammad Maaz Irfan
 
This is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de JaneiroThis is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de JaneiroRoberto Miranda Socorro
 

Viewers also liked (14)

Pastel Qualifications
Pastel QualificationsPastel Qualifications
Pastel Qualifications
 
Treasurehunt Slideshare
Treasurehunt SlideshareTreasurehunt Slideshare
Treasurehunt Slideshare
 
CADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDADCADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDAD
 
sugumar resume
sugumar resumesugumar resume
sugumar resume
 
DaisyDeviL
DaisyDeviLDaisyDeviL
DaisyDeviL
 
PhD Defence Part 2
PhD Defence Part 2PhD Defence Part 2
PhD Defence Part 2
 
mini account
mini accountmini account
mini account
 
Estimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'AfàsiaEstimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
 
Ramesh resume
Ramesh resumeRamesh resume
Ramesh resume
 
tutorial de slideshare
tutorial de slidesharetutorial de slideshare
tutorial de slideshare
 
Game development -session on unity 3d
Game development -session on unity 3d Game development -session on unity 3d
Game development -session on unity 3d
 
Delegated legislation
Delegated legislationDelegated legislation
Delegated legislation
 
Design phase of game development of unity 2d game
Design phase of game development of unity 2d game Design phase of game development of unity 2d game
Design phase of game development of unity 2d game
 
This is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de JaneiroThis is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de Janeiro
 

Similar to PhD Defence Part 1

poster_portrait
poster_portraitposter_portrait
poster_portraitRyanMoodie
 
King_Notes_Density_of_States_2D1D0D.pdf
King_Notes_Density_of_States_2D1D0D.pdfKing_Notes_Density_of_States_2D1D0D.pdf
King_Notes_Density_of_States_2D1D0D.pdfLogeshwariC2
 
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...eeiej_journal
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Mustefa Jibril
 
Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20Yoshitaro Takaesu
 
Csl11 11 f15
Csl11 11 f15Csl11 11 f15
Csl11 11 f15kodam2512
 
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementaritySteady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementarityGianluca Angelone
 
Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...Mustefa Jibril
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
 
Precise position control of a magnetic levitation system System using Differe...
Precise position control of a magnetic levitation system System using Differe...Precise position control of a magnetic levitation system System using Differe...
Precise position control of a magnetic levitation system System using Differe...CHANDRASHEKHAR GUTTE
 
Physical Chemistry Exam Help
Physical Chemistry Exam HelpPhysical Chemistry Exam Help
Physical Chemistry Exam HelpLive Exam Helper
 
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...AEIJjournal2
 
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...Alexander Decker
 
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...Alexander Decker
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?ABDERRAHMANE REGGAD
 

Similar to PhD Defence Part 1 (20)

poster_portrait
poster_portraitposter_portrait
poster_portrait
 
King_Notes_Density_of_States_2D1D0D.pdf
King_Notes_Density_of_States_2D1D0D.pdfKing_Notes_Density_of_States_2D1D0D.pdf
King_Notes_Density_of_States_2D1D0D.pdf
 
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...
 
RLC circuits.pdf
RLC circuits.pdfRLC circuits.pdf
RLC circuits.pdf
 
Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20
 
Csl11 11 f15
Csl11 11 f15Csl11 11 f15
Csl11 11 f15
 
SV-coupledChannelSONaCs-v1.5
SV-coupledChannelSONaCs-v1.5SV-coupledChannelSONaCs-v1.5
SV-coupledChannelSONaCs-v1.5
 
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementaritySteady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
 
Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
Precise position control of a magnetic levitation system System using Differe...
Precise position control of a magnetic levitation system System using Differe...Precise position control of a magnetic levitation system System using Differe...
Precise position control of a magnetic levitation system System using Differe...
 
Physical Chemistry Exam Help
Physical Chemistry Exam HelpPhysical Chemistry Exam Help
Physical Chemistry Exam Help
 
1 1 4
1 1 41 1 4
1 1 4
 
1 1 4
1 1 41 1 4
1 1 4
 
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
 
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
 
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
A chaotic particle swarm optimization (cpso) algorithm for solving optimal re...
 
2013.02.15 poster @ Toyama
2013.02.15 poster @ Toyama2013.02.15 poster @ Toyama
2013.02.15 poster @ Toyama
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 

PhD Defence Part 1

  • 1. Development and Application of GVVPT2 Gradients and Nonadiabatic Coupling Terms Daniel P. Theis University of North Dakota Chemistry Department Grand Forks, ND
  • 2. 2 • Electronic Structure Theory and the GVVPT2 Method. Outline ◦ Importance of each property. ◦ Challenges for evaluating those properties. ◦ Benchmark calculations. • N2O2 Dissociation. • Analytic Expressions for the GVVPT2 Molecular Gradients, Nonadiabatic Coupling Terms, and State-Specific Electric Dipole Moments.
  • 3. 3 Electronic Structure Theory   );()();(),(ˆ xrxxrxr elelel eNe EVT   );( )( xr x el el E    )( )( )( )( TG TS TH Tk F F F Rxn Electronic structure theory studies the behavior of a chemical system by determining the electronic energy and electronic wave function that influences the system. Energy xOO )S(O2)(O 412 2  g
  • 4. In order to generate reliable results the electronic structure method needs to account for the static and dynamic correlation that influences the chemical system. 4 Energy xOO )S(O2)(O 412 2  g Electronic Structure Theory: Properties of a Reliable Method
  • 5. + 1 8 1 7 1 6 1 5 1 4 1 3 2 2 2 1 0 8 0 7 0 4 2 3 2 2 2 1 2 2 2 1  )(O 12 2  g )S(O2 4 Electronic Structure Theory: Static Correlation 5 In order to generate reliable results the electronic structure method needs to account for the static and dynamic correlation that influences the chemical system.
  • 6. Electronic Structure Theory: Dynamic Correlation 6 True Dynamic Correlation SCF Approximation of that Correlation )(x )(x )(xel E SCF Procedure )(xSTART In order to generate reliable results the electronic structure method needs to account for the static and dynamic correlation that influences the chemical system.
  • 7. Time Required to Perform the Calculation Time Required to Perform the Calculation GVVPT2 7 No Static Correlation Includes Static Correlation No Dynamic Correlation HF MCSCF Includes Dynamic Correlation DFT (Time ≈ HF) PT CC, CI MRPT MRCC, MRCI Electronic Structure Theory: The GVVPT2 Method In order to generate reliable results the electronic structure method needs to account for the static and dynamic correlation that influences the chemical system.
  • 8. 0.00 1.00 2.00 3.00 4.00 5.00 6.00 1.00 2.00 3.00 4.00 5.00 6.00 xLiH (Å) RelativeEnergy(eV) GVVPT2 potential energy surfaces for the X 1g +and A 1g + states of LiH 1. GVVPT2 takes into account static and dynamic correlation effects. 2. GVVPT2 can determine accurate electronic energies for systems with low lying, nearly degenerate electronic states. The Benefits of the GVVPT2 Method 8
  • 9. 1. GVVPT2 takes into account static and dynamic correlation effects. 2. GVVPT2 can determine accurate electronic energies for systems with low lying, nearly degenerate electronic states. 3. GVVPT2 potential energy surfaces are contentious, differentiable functions of geometry, that ensure the evaluation of molecular gradients. The Benefits of the GVVPT2 Method 9 GVVPT2 potential energy surface of Mn2 (X 1g +) 3.0 4.0 5.0 6.0 0.00 0.02 0.04 0.06 0.08 xMnMn (Å) RelativeEnergy(eV) 3.0 4.0 5.0 -0.27 0.00 0.27 xMnMn (Å) Energy+62606.90(eV) MCQDPT potential energy surface of Mn2 (X 1g +)
  • 10. 10 The Importance of Electronic State Properties )( )( )( )( TG TS TH Tk F F F Rxn The determination of macroscopic date often requires the evaluation of properties of the electronic states Energy xOO )S(O2)(O 412 2  g  )(xμel el el el dx d dx dE      
  • 11. x1 x2 11 Molecular Gradients   xxx xxg   )()( elel E xx x    a el dx dE )(Analytic molecular gradients lead to the efficient determination of: • Transition States • Minimum energy paths O O O O O O x1 x1 x2 x2 q q • Minima (Possible reaction intermediates)
  • 12. 12 Molecular Gradients ◦ Harmonic frequencies and normal modes of vibration O O O O O O O O O • Second derivatives (Hessians) • Transition States • Minimum energy paths ◦ Approximations of H(T), S(T), etc. b b el ab el a ba el ab x xgxg dxdx Ed H         2 )()( )( )( ,, 2 xx x x xx   xxx xxg   )()( elel E xx x    a el dx dE )(Analytic molecular gradients lead to the efficient determination of: • Minima (Possible reaction intermediates)
  • 13. 13     )( )()( 2 1 2 1 x xxκ x x elel elelel     Nonadiabatic Coupling Terms Energy xAB AB* AB AB → AB* → A + Bhv Nonadiabatic coupling terms determine the likelihood that a radiationless electronic transition will occur during a chemical reaction.
  • 14. 14 Nonadiabatic coupling terms determine the likelihood that a radiationless electronic transition will occur during a chemical reaction.     )( )()( 2 1 2 1 x xxκ x x elel elelel     Nonadiabatic Coupling Terms 0.00 1.00 2.00 3.00 4.00 5.00 6.00 1.00 2.00 3.00 4.00 5.00 6.00 xLiH (Å) RelativeEnergy(eV) GVVPT2 potential energy surfaces for the X 1g +and A 1g + states of LiH Types of Reactions this will Affect: • Charge Transfer Reactions • Photochemical Reactions
  • 15. 15 Electronic Dipole Moments Electronic dipole moments are used: • To calculate vibrational excitation strengths. • To evaluating the energies of intermolecular reactions.
  • 16. 16 Electronic Dipole Moments Electronic dipole moments are used: • In some implicit solvation models. NH3 + CH3Cl → CH3NH3  + Cl No Solvation Implicit Solvation (H2O) CH3NH3  + Cl NH3 + CH3Cl Energy Reaction Coordinate
  • 17. 17 Electronic Dipole Moments   0EE Eμ   )(, elel LR E 0E E     a el dE dE )( Electronic dipole moments are used: • In some implicit solvation models. elelel HF   μμ ˆ, el a el   ˆ NH3 + CH3Cl → CH3NH3  + Cl No Solvation Implicit Solvation (H2O) CH3NH3  + Cl NH3 + CH3Cl Energy Reaction Coordinate
  • 18. 18 Developing Computer Codes to Determine Those Properties: Challenges that were Addressed Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111. Challenge Solution Complicated formulas define E GVV and | GVV(1) First develop codes for the GVVPT2 dipole moments and the MRCISD gradients and nonadiabatic coupling terms.     )()()()( )2()2( 2 1)2( xZxZxHxH MMMMMM eff MM   )()()()()(2)( )1()2( xCxXxHxCxCIxZ PMQPMQPMMPMMM  )()()()1( xxx m qI I qI HDX e    )( )(tanh )( x x x m m m I I I e e e E E D         e eee Lq qI III HE m xxxx mmm 22 4 1 2 1 )()()()(  )()()()( )2(2 xAxHxAx     M eff MMM GVV E )()()()( xAxHxAx     TTTT MRCISD E
  • 19. 19 Developing Computer Codes to Determine Those Properties: Challenges that were Addressed Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111. Challenge Solution The presence of electronic structure parameters in E GVV and | GVV(1) By using a Lagrangian based approach to derive the analytical formulas it was not necessary to evaluate the derivatives of the electronic structure parameters.                   m a m m GVV m I a mI mI GVV a GVV a GVV x A A E x C C E x E dx dE 2222 )(x     )()()()( )2()2( 2 1)2( xZxZxHxH MMMMMM eff MM   )()()()()(2)( )1()2( xCxXxHxCxCIxZ PMQPMQPMMPMMM   )()()()( )2(2 xAxHxAx     M eff MMM GVV E
  • 20. 20 Developing Computer Codes to Determine Those Properties: Challenges that were Addressed Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111. Challenge Solution | GVV(1) is not orthogonal to the other 1st order GVVPT2 wave functions. Replace | GVV(1) by | GVV(2) when deriving an expression for the nonadiabatic coupling terms. Once the expression is obtained eliminate all the 3rd and 4th order terms. )()1()0()( nGVVGVVGVVnGVV     );(0)1()1( nOGVVGVV   )4(0)2()2( OGVVGVV   3n
  • 21. 21 Developing Computer Codes to Determine Those Properties: Challenges that were Addressed Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111. Challenge Solution Unstable numerical algorithms This problem still needs to be resolved. Numerical Algorithms are procedures that are used to perform mathematical calculations or operations. Example: Tan(q)
  • 22. 22 Developing Computer Codes to Determine Those Properties: Progress Summary Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111. Property Analytic Formulas Written Code Debugged Code Benchmark Tests GVVPT2 Molecular Gradients Done Done Done Done GVVPT2 Nonadiabatic Coupling Terms Done Done Incomplete Incomplete GVVPT2 Dipole Moments Done Done Done Done MRCISD Molecular Gradients Done Done Done Done MRCISD Nonadiabatic Coupling Terms Done Done Incomplete Incomplete
  • 23. 23 GVVPT2 Electric Dipole Moments for the X 1g + State of LiH 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 z (Debye) RLiH (Ang.) • Roos Aug. TZ Basis Set Technical Details: LiH (C∞v) • 1:1 SA-MCSCF MOs • (2:10)-CAS + 1 Core Orb.
  • 24. 24 GVVPT2 Electric Dipole Moments for the A 1g + State of LiH • Roos Aug. TZ Basis Set Technical Details: LiH (C∞v) • 1:1 SA-MCSCF MOs • (2:10)-CAS + 1 Core Orb. 2 3 4 5 6 7 8 -6 -4 -2 0 2 4 6 8 10 12 z (Debye) RLiH (Ang.)
  • 25. 25 Molecule Analytical Values Deviation from Numerical Values Geometry Description X Y Z X Y Z H2O O 4.517477 -0.086969 0.000000 -3.22×10-6 9.00×10-8 0.00 Asym. Str. (0.5 Å) H1 -4.482958 -0.020627 0.000000 3.33×10-6 -8.90×10-7 0.00 H2 -0.034519 0.107596 0.000000 -3.45×10-6 -8.40×10-7 0.00 LiH (X 1+) H 0.000000 0.000000 -0.014113 0.00 0.00 0.00 Avoided Crossing Li 0.000000 0.000000 0.014113 0.00 0.00 0.00 LiH (A 1+) H 0.000000 0.000000 -0.004441 0.00 0.00 0.00 Avoided Crossing Li 0.000000 0.000000 0.004441 0.00 0.00 0.00 • cc-pVTZ Basis Set Technical Details: H2O (Cs – Broken Sym.) • RCO = 1.205 Å, RCH = 1.611 Å, and RCH = 1.111 Å. • (8:6)-CAS + 1 Core Orb. • HCH = 116.1o and OCH = 121.9o 1 2 • Roos Aug. TZ Basis Set Technical Details: LiH (C∞v) • 9:1 SA-MCSCF MOs • (2:10)-CAS + 1 Core Orb. • RLiH = 3.400 Å Analytical GVVPT2 Gradients for H2O and LiH
  • 26. 26 Molecule Analytical Values Deviation from Numerical Values Geometry Description X Y Z X Y Z H2O O 4.521281 -0.105445 0.000000 -3.14×10-6 0.00 0.00 Asym. Str. (0.5 Å) H1 -4.483541 -0.017956 0.000000 3.15×10-6 -1.00×10-8 0.00 H2 -0.037740 0.123401 0.000000 0.00 1.00×10-8 0.00 LiH (X 1+) H 0.000000 0.000000 -0.014491 0.00 0.00 0.00 Avoided Crossing Li 0.000000 0.000000 0.014491 0.00 0.00 0.00 LiH (A 1+) H 0.000000 0.000000 -0.004457 0.00 0.00 0.00 Avoided Crossing Li 0.000000 0.000000 0.004457 0.00 0.00 0.00 • cc-pVTZ Basis Set Technical Details: H2O (Cs – Broken Sym.) • RCO = 1.205 Å, RCH = 1.611 Å, and RCH = 1.111 Å. • (8:6)-CAS + 1 Core Orb. • HCH = 116.1o and OCH = 121.9o 1 2 • Roos Aug. TZ Basis Set Technical Details: LiH (C∞v) • 9:1 SA-MCSCF MOs • (2:10)-CAS + 1 Core Orb. • RLiH = 3.400 Å Analytical MRCISD Gradients for H2O and LiH
  • 27. Method Geometry Geometry Description R1 R1  GVVPT2 (C2v) 1.382 Å 1.382 Å 85.2o GVVPT2 (Cs) 1.383 Å 1.381 Å 85.2o MRCISD (C2v) 1.391 Å 1.391 Å 85.4o GVVPT2 and MRCISD minimum energy geometries along the conical intersection seam between the first two 1A1 states of O3 • aug(sp)-cc-pVDZ Basis Set Technical Details: H2CO (Cs – Broken Sym.) • (12:7)-CAS 27
  • 28. • Geometry optimizations, gradients calculations, and frequency calculations verify that the GVVPT2 method accurately describes the chemically important regions of most potential energy surfaces. Conclusions 28 • The GVVPT2 gradients are continuous across potential energy surfaces, including regions of avoided crossings. • Analytic formulas for GVVPT2 electric dipole moments, molecular gradients, and nonadiabatic coupling terms have been developed which scale at approximately 2-3 times the speed of the GVVPT2 energy. • Computational implementation of GVVPT2 electric dipole moments and analytic gradients show excellent agreement with finite difference calculations. • MRCISD and GVVPT2 predictions for the minimum energy geometries along the conical intersection seam between the first two 1A1 states of O3 are in close agreement with one another.
  • 29. N O N O N O N O + • Experimental Geometry: ◦ C2v Symmetry ◦ RNN = 2.2630 Å; RNO = 1.1515 Å; ONN = 97.17o • Electronic State: 1A1 • Bonding: ◦ ED = 710  40 cm-1 ◦ Bonding occurs through the NO p* orbitals Nitric Oxide Dimer – N2O2 29
  • 30. 30 Energy(eV) RNN (a.u.) RNN (a.u.) Marouani, S. et al. J. Phys. Chem. A. 2010, 114, 3025. The Excited States of N2O2 MRCI CASSCF
  • 31. 31 0.00 eV 4.77 eV 5.45 eV Focus of the Study (8 2 0) (7 3 0) (8 1 1) (6 4 0) (7 2 1) (8 0 2) (6 3 1) NO (X 2P) + NO (A 2+) ~ (F)20(p2p)8(p2p)1(R3s)1* NO (X 2P) + NO (a 4P) ~ (F)20(p2p)7(p2p)3(R3s)0* NO (X 2P) + NO (X 2P) ~ (F)20(p2p)8(p2p)2(R3s)0* (F)20 = 2×(s1s)2(s1s)2(s2s)2(s2s)2* * N N O O N N O O N N O O N N O O p2p Orbitals N N O O N N O O N N O O N N O O *p2p Orbitals N N O O N N O O R3s Orbitals
  • 32. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2.263 2.763 3.263 3.763 4.263 4.763 5.263 5.763 Energy(eV) Potential Energy Surfaces for the Electronic Singlet and Triplet States of the Lowest Dissociation Limit Vertical Excitation Energies of (NO)2. State GVVPT2 (eV) MRCISD (eV) 1 1A1 0.00 0.00 1 3B1 0.27 0.27 1 1B1 0.29 0.39 2 1A1 0.53 0.51 1 3B2 0.64 0.59 1 3A2 0.41 0.61 1 1A2 0.54 0.62 2 3B2 0.98 0.87 32 RNN (Å) 1 1A1 2 1A1 1 1A2 1 1B1 1 3A2 1 3B1 1 3B2 2 3B2 East, A. L. L.. J. Chem. Phys. 1998, 109, 2185.
  • 33. 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 2.263 2.763 3.263 3.763 4.263 4.763 5.263 5.763 RNN (Å) Energy(eV) MRCISD calculation of the Energy at the Dissociation Limit: ◦ The adiabatic (X 2P) → (a 4P) excitation energy (4.79 eV) closely agreed with the experimentally measured value (4.78 eV). ◦ The minimum energy geometry (1.151 Å) closely agreed with the experimentally measured bond length (1.152 Å). Potential Energy Surfaces for the Triplet Electronic States of the Second Lowest Dissociation Limit 331 3A1 2 3A1 2 3A2 3 3A2 2 3B1 3 3B1 3 3B2 4 3B2
  • 34. Potential Energy Surfaces for the 1A1 and 3A1 States 34
  • 35. Potential Energy Surfaces for the 1A2 and 3A2 States 35
  • 36. Potential Energy Surfaces for the 1B1 and 3B1 States 36
  • 37. Potential Energy Surfaces for the 3B2 States 37
  • 38. • Photodissociation studies of N2O2 suggested the existence of “dark states”, that undergo nonadiabatic transitions. Interpretation and Conclusions 38 • GVVPT2 is capable of generating accurate potential energy surfaces of the NO + NO dissociation limits of N2O2. • From those calculations several areas of potentially strong nonadiabatic coupling were identified. • Many of those states have B2 symmetry and involve a excitation energy of 5 – 6 eV. These results are consistent with photofragment measurements which predict that the 244 – 190 nm UV bands involve B2 electronic states.
  • 39. Dr. Mark R. Hoffmann Dr. Yuriy G. Khait Patrick Tamukang Rashel Mokambe Jason Hicks Erik Timmian Jennifer Theis Jeremy and Kate Casper National Science Foundation Acknowledgements 39