SlideShare a Scribd company logo
1 of 17
Daniel Sobczynski
SURE Program
Maroney Group
Chrisjoe A. Joseph, Project Leader
Julius Campecino, Graduate Student Mentor
Overview
 Why Hydrogen?
 Hydrogenase Specifics
 Isolation of the Ni-Fe Hydrogenase
 Hydrogen Production
 Hydrogen Utilization
 Benefits of the Project
 Future Studies
Why Hydrogen?
 Can be used for
electrochemical cells
 Can be formed by
biological catalysts
 Clean emissions
Image credit: www.autopten.com
Hydrogenase Specifics
H2 2H+
2e-+
H2 D2O+ HD + HDO
o-H2 p-H2
Image credit: Prof. Michael Maroney
Growing and Harvesting the cells
 Thiocapsa roseopersicina
 Phototropic
 Marine bacteria
 Withstands oxygen and
non-oxygen
environments
Centrifuge
Cell paste, stored at
-20˚C
Image credit: Julius Campecino
Hydrogenase Purification
supernatant
DEAE: Anion-exchange resin
filtrate DEAE with bound proteins
450mM NaCl + 20mM
Tris, pH 7.5
DEAE
clean DEAE
filtrate
filtrate butyl sepharose column*
butyl sepharose column
1mM TRIS buffer, pH 7.5
Q sepharose column
20mM TRIS buffer, pH 7.5
Q sepharose column
50mM MES buffer, pH 5.5
Q sepharose column
TRIS buffer, pH 7.5
pure hydrogenase
Dissolve 15g acetone powder in water
100 grams of ammonium sulfate,
butyl sepharose resin
300g cell paste
acetone powder
pellet
1M NaCl + 20mM Tris,
pH 7.5
native gel electrophoresis
(9% gel)
Electrocatalyst Design
Images credit: Prof. Dhandapani Venkataraman
Production of Hydrogen
O2Ti
O2Ti
O2Ti
Image credit:
Hydrogenase picture: Prof. Dhandapani Venkataraman
Hydrogen Utilization
Image credit:
Hydrogenase picture: Prof. Dhandapani Venkataraman
Additional Modification Site
Proximal Medial Distal
Images credit: Prof. Dhandapani Venkataraman
Benefits of the Project
 Versatility of the project
 Alternative to hydrogen
storage issue
 Water as output, and
possibly input too
Image credit:
Water drop: http://www.biofeedbackcalifornia.org
Future Studies
 Optimizing hydrogen
production and
utilization
 Finding a way to better
produce hydrogenase
 Integrating the project
goals into applied fields
of science
Butyl Seph, Tris Chromatogram
Max UV: 2200 mAU
%B concentration: 0 – 100 %
Conductivity range: 100 – 0 mS/cm
Fractions collected: All
H2ase Butyl 2 062409:10_UV H2ase Butyl 2 062409:10_Cond H2ase Butyl 2 062409:10_Conc
H2ase Butyl 2 062409:10_Fractions
-500
0
500
1000
1500
2000
mAU
50 100 150 200 250 300 350 400 ml
X1 X2 X3 X4 X5 X6 X7 X8
Q-Seph, Tris Chromatogram
H2ase Long QSeph A load002:10_UV H2ase Long QSeph A load002:10_Cond H2ase Long QSeph A load002:10_Conc
H2ase Long QSeph A load002:10_Fractions
500
1000
1500
2000
2500
mAU
220.0 230.0 240.0 250.0 min
X1 X2 X3 X4
Max UV: 2600 mAU
%B concentration: 60 %
Conductivity range: 25 – 50 mS/cm
Fractions collected: X2 , X3
Q-Seph, MES Chromatogram
H2ase MES QSephB load B 071209C001:10_UV H2ase MES QSephB load B 071209C001:10_Cond
H2ase MES QSephB load B 071209C001:10_Conc H2ase MES QSephB load B 071209C001:10_Fractions
0
50
100
150
200
250
mAU
160 180 200 220 240 ml
Waste X3 X4 Waste
Max UV: 230 mAU
%B concentration: 17.5 – 60 %
Conductivity range: 17.5 – 50 mS/cm
Fractions collected: X3 , X4
Pure Hydrogenase, EPR Results
Buffer Calculations
450 mM NaCl, 20mM Tris buffer, pH = 7.5
For 1L of buffer:
(Mol. Wt.) x (# of Mol) = 58.443g/mol x .45 mol = 26.29935 g NaCl
M1 * V1 = M2 * V2  Solve for V2
20mM * 1L = 1M * V2
V 2=20 mL of 1M Tris

More Related Content

Similar to SURE Program Research Intern_MaroneyLab

OEM Fiber Optic Products
OEM Fiber Optic Products OEM Fiber Optic Products
OEM Fiber Optic Products Tiana L. Riggi
 
Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...
Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...
Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...World Bulk Wine Exhibition Amsterdam - Asia
 
Pci Oxygen In Water Treatment
Pci   Oxygen In Water TreatmentPci   Oxygen In Water Treatment
Pci Oxygen In Water Treatmentdschneider1
 
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...MilliporeSigma
 
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...Merck Life Sciences
 
Green Site Project results
Green Site Project resultsGreen Site Project results
Green Site Project resultsPetra Scanferla
 
Anaerobic-Aerobic Treatment of Sewage
Anaerobic-Aerobic Treatment of SewageAnaerobic-Aerobic Treatment of Sewage
Anaerobic-Aerobic Treatment of SewageAmit Christian
 
New Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through ModeNew Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through ModeGBX Events
 
D1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaD1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaDrKristineJung
 
Development of an aqueous ammonia-based post-combustion capture technology fo...
Development of an aqueous ammonia-based post-combustion capture technology fo...Development of an aqueous ammonia-based post-combustion capture technology fo...
Development of an aqueous ammonia-based post-combustion capture technology fo...Global CCS Institute
 
BioH2Conference, Alessandro Carmona
BioH2Conference, Alessandro CarmonaBioH2Conference, Alessandro Carmona
BioH2Conference, Alessandro CarmonaIMDEA-Water
 
D1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaD1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaDrKristineJung
 
Application of Hydrodynamic cavitation as advanced oxidation process to treat...
Application of Hydrodynamic cavitation as advanced oxidation process to treat...Application of Hydrodynamic cavitation as advanced oxidation process to treat...
Application of Hydrodynamic cavitation as advanced oxidation process to treat...Sivakumar Kale
 
I risultati del progetto Green Site
I risultati del progetto Green SiteI risultati del progetto Green Site
I risultati del progetto Green SiteeAmbiente
 
Denoive presentation novembre_2013
Denoive presentation novembre_2013Denoive presentation novembre_2013
Denoive presentation novembre_2013Green Chemicals Blog
 
Biogas posterweb
Biogas posterwebBiogas posterweb
Biogas posterwebBaijan
 
D1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaD1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaDrKristineJung
 
Swift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nSwift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nKarlitox Saoj
 
Technology of cleaning and destruction of a surface of semiconductor plates u...
Technology of cleaning and destruction of a surface of semiconductor plates u...Technology of cleaning and destruction of a surface of semiconductor plates u...
Technology of cleaning and destruction of a surface of semiconductor plates u...Максим Зарезов
 

Similar to SURE Program Research Intern_MaroneyLab (20)

OEM Fiber Optic Products
OEM Fiber Optic Products OEM Fiber Optic Products
OEM Fiber Optic Products
 
Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...
Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...
Extraction kinetics of anthocyanins from wine lees: impact of microwave and s...
 
Pci Oxygen In Water Treatment
Pci   Oxygen In Water TreatmentPci   Oxygen In Water Treatment
Pci Oxygen In Water Treatment
 
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
 
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
Implementing a Fully Single-Use, Integrated mAb Biosimilars Purification Plat...
 
Green Site Project results
Green Site Project resultsGreen Site Project results
Green Site Project results
 
Anaerobic-Aerobic Treatment of Sewage
Anaerobic-Aerobic Treatment of SewageAnaerobic-Aerobic Treatment of Sewage
Anaerobic-Aerobic Treatment of Sewage
 
New Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through ModeNew Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
 
D1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaD1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study Lleida
 
Bionic - From Biomass to Energy
Bionic - From Biomass to EnergyBionic - From Biomass to Energy
Bionic - From Biomass to Energy
 
Development of an aqueous ammonia-based post-combustion capture technology fo...
Development of an aqueous ammonia-based post-combustion capture technology fo...Development of an aqueous ammonia-based post-combustion capture technology fo...
Development of an aqueous ammonia-based post-combustion capture technology fo...
 
BioH2Conference, Alessandro Carmona
BioH2Conference, Alessandro CarmonaBioH2Conference, Alessandro Carmona
BioH2Conference, Alessandro Carmona
 
D1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaD1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study Lleida
 
Application of Hydrodynamic cavitation as advanced oxidation process to treat...
Application of Hydrodynamic cavitation as advanced oxidation process to treat...Application of Hydrodynamic cavitation as advanced oxidation process to treat...
Application of Hydrodynamic cavitation as advanced oxidation process to treat...
 
I risultati del progetto Green Site
I risultati del progetto Green SiteI risultati del progetto Green Site
I risultati del progetto Green Site
 
Denoive presentation novembre_2013
Denoive presentation novembre_2013Denoive presentation novembre_2013
Denoive presentation novembre_2013
 
Biogas posterweb
Biogas posterwebBiogas posterweb
Biogas posterweb
 
D1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study LleidaD1.2-Demonstrator Case Study Lleida
D1.2-Demonstrator Case Study Lleida
 
Swift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nSwift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_n
 
Technology of cleaning and destruction of a surface of semiconductor plates u...
Technology of cleaning and destruction of a surface of semiconductor plates u...Technology of cleaning and destruction of a surface of semiconductor plates u...
Technology of cleaning and destruction of a surface of semiconductor plates u...
 

SURE Program Research Intern_MaroneyLab

  • 1. Daniel Sobczynski SURE Program Maroney Group Chrisjoe A. Joseph, Project Leader Julius Campecino, Graduate Student Mentor
  • 2. Overview  Why Hydrogen?  Hydrogenase Specifics  Isolation of the Ni-Fe Hydrogenase  Hydrogen Production  Hydrogen Utilization  Benefits of the Project  Future Studies
  • 3. Why Hydrogen?  Can be used for electrochemical cells  Can be formed by biological catalysts  Clean emissions Image credit: www.autopten.com
  • 4. Hydrogenase Specifics H2 2H+ 2e-+ H2 D2O+ HD + HDO o-H2 p-H2 Image credit: Prof. Michael Maroney
  • 5. Growing and Harvesting the cells  Thiocapsa roseopersicina  Phototropic  Marine bacteria  Withstands oxygen and non-oxygen environments Centrifuge Cell paste, stored at -20˚C Image credit: Julius Campecino
  • 6. Hydrogenase Purification supernatant DEAE: Anion-exchange resin filtrate DEAE with bound proteins 450mM NaCl + 20mM Tris, pH 7.5 DEAE clean DEAE filtrate filtrate butyl sepharose column* butyl sepharose column 1mM TRIS buffer, pH 7.5 Q sepharose column 20mM TRIS buffer, pH 7.5 Q sepharose column 50mM MES buffer, pH 5.5 Q sepharose column TRIS buffer, pH 7.5 pure hydrogenase Dissolve 15g acetone powder in water 100 grams of ammonium sulfate, butyl sepharose resin 300g cell paste acetone powder pellet 1M NaCl + 20mM Tris, pH 7.5 native gel electrophoresis (9% gel)
  • 7. Electrocatalyst Design Images credit: Prof. Dhandapani Venkataraman
  • 8. Production of Hydrogen O2Ti O2Ti O2Ti Image credit: Hydrogenase picture: Prof. Dhandapani Venkataraman
  • 9. Hydrogen Utilization Image credit: Hydrogenase picture: Prof. Dhandapani Venkataraman
  • 10. Additional Modification Site Proximal Medial Distal Images credit: Prof. Dhandapani Venkataraman
  • 11. Benefits of the Project  Versatility of the project  Alternative to hydrogen storage issue  Water as output, and possibly input too Image credit: Water drop: http://www.biofeedbackcalifornia.org
  • 12. Future Studies  Optimizing hydrogen production and utilization  Finding a way to better produce hydrogenase  Integrating the project goals into applied fields of science
  • 13. Butyl Seph, Tris Chromatogram Max UV: 2200 mAU %B concentration: 0 – 100 % Conductivity range: 100 – 0 mS/cm Fractions collected: All H2ase Butyl 2 062409:10_UV H2ase Butyl 2 062409:10_Cond H2ase Butyl 2 062409:10_Conc H2ase Butyl 2 062409:10_Fractions -500 0 500 1000 1500 2000 mAU 50 100 150 200 250 300 350 400 ml X1 X2 X3 X4 X5 X6 X7 X8
  • 14. Q-Seph, Tris Chromatogram H2ase Long QSeph A load002:10_UV H2ase Long QSeph A load002:10_Cond H2ase Long QSeph A load002:10_Conc H2ase Long QSeph A load002:10_Fractions 500 1000 1500 2000 2500 mAU 220.0 230.0 240.0 250.0 min X1 X2 X3 X4 Max UV: 2600 mAU %B concentration: 60 % Conductivity range: 25 – 50 mS/cm Fractions collected: X2 , X3
  • 15. Q-Seph, MES Chromatogram H2ase MES QSephB load B 071209C001:10_UV H2ase MES QSephB load B 071209C001:10_Cond H2ase MES QSephB load B 071209C001:10_Conc H2ase MES QSephB load B 071209C001:10_Fractions 0 50 100 150 200 250 mAU 160 180 200 220 240 ml Waste X3 X4 Waste Max UV: 230 mAU %B concentration: 17.5 – 60 % Conductivity range: 17.5 – 50 mS/cm Fractions collected: X3 , X4
  • 17. Buffer Calculations 450 mM NaCl, 20mM Tris buffer, pH = 7.5 For 1L of buffer: (Mol. Wt.) x (# of Mol) = 58.443g/mol x .45 mol = 26.29935 g NaCl M1 * V1 = M2 * V2  Solve for V2 20mM * 1L = 1M * V2 V 2=20 mL of 1M Tris