Hierarchical clustering and topology for psychometric validation

Senior Data Scientist/Author
Jun. 7, 2017
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
Hierarchical clustering and topology for psychometric validation
1 of 16

More Related Content

What's hot

Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...
Data Mining Concepts and Techniques, Chapter 10. Cluster Analysis: Basic Conc...Salah Amean
ClusteringClustering
ClusteringDr. C.V. Suresh Babu
Data Mining: Data PreprocessingData Mining: Data Preprocessing
Data Mining: Data PreprocessingLakshmi Sarvani Videla
Data miningData mining
Data miningRitesh Tiwari
Random graph modelsRandom graph models
Random graph modelsnetworksuw
Machine Learning - Accuracy and Confusion MatrixMachine Learning - Accuracy and Confusion Matrix
Machine Learning - Accuracy and Confusion MatrixAndrew Ferlitsch

Similar to Hierarchical clustering and topology for psychometric validation

The use of statistics in outcomes assessmentThe use of statistics in outcomes assessment
The use of statistics in outcomes assessmentjimber0910
Reading Material: Qualitative InterviewReading Material: Qualitative Interview
Reading Material: Qualitative Interviewfirdausabdmunir85
Stepsin researchprocesspartialleastsquareofstructuralequationmodeling2016Stepsin researchprocesspartialleastsquareofstructuralequationmodeling2016
Stepsin researchprocesspartialleastsquareofstructuralequationmodeling2016Aurangzeb Ch
Graduate Paper--Hierarchical clustring and topology for psychometrics paperGraduate Paper--Hierarchical clustring and topology for psychometrics paper
Graduate Paper--Hierarchical clustring and topology for psychometrics paperColleen Farrelly
Parts of research paperParts of research paper
Parts of research paperAllanAdem
An Experimental Template For Case Study ResearchAn Experimental Template For Case Study Research
An Experimental Template For Case Study ResearchZaara Jensen

Similar to Hierarchical clustering and topology for psychometric validation(20)

More from Colleen Farrelly

The Shape of Data--ODSC.pptxThe Shape of Data--ODSC.pptx
The Shape of Data--ODSC.pptxColleen Farrelly
Generative AI, WiDS 2023.pptxGenerative AI, WiDS 2023.pptx
Generative AI, WiDS 2023.pptxColleen Farrelly
Emerging Technologies for Public Health in Remote Locations.pptxEmerging Technologies for Public Health in Remote Locations.pptx
Emerging Technologies for Public Health in Remote Locations.pptxColleen Farrelly
Applications of Forman-Ricci Curvature.pptxApplications of Forman-Ricci Curvature.pptx
Applications of Forman-Ricci Curvature.pptxColleen Farrelly
Topology for Time Series.pptxTopology for Time Series.pptx
Topology for Time Series.pptxColleen Farrelly
Time Series Applications AMLD.pptxTime Series Applications AMLD.pptx
Time Series Applications AMLD.pptxColleen Farrelly

Recently uploaded

apidays London 2023 - How APIs support the democratization of FAIR data and d...apidays London 2023 - How APIs support the democratization of FAIR data and d...
apidays London 2023 - How APIs support the democratization of FAIR data and d...apidays
Choosing Between Microsoft Fabric, Azure Synapse Analytics and Azure Data Fac...Choosing Between Microsoft Fabric, Azure Synapse Analytics and Azure Data Fac...
Choosing Between Microsoft Fabric, Azure Synapse Analytics and Azure Data Fac...Cathrine Wilhelmsen
PLM 200.pdfPLM 200.pdf
PLM 200.pdfMidhun Mohan
[PositConf 2023] How Data Scientists Broke A/B Testing (and How We Can Fix It)[PositConf 2023] How Data Scientists Broke A/B Testing (and How We Can Fix It)
[PositConf 2023] How Data Scientists Broke A/B Testing (and How We Can Fix It)Carl Vogel
FavorIndexReport_R8.pdfFavorIndexReport_R8.pdf
FavorIndexReport_R8.pdfFavor Delivery
Industrial attachment at Impress Newtex Composite Textiles Limited.pptxIndustrial attachment at Impress Newtex Composite Textiles Limited.pptx
Industrial attachment at Impress Newtex Composite Textiles Limited.pptxEmranKabirSubarno

Recently uploaded(20)

Hierarchical clustering and topology for psychometric validation

Editor's Notes

  1. (Answers: Year, Abstruse, Village, Cambrian, Kings, 1/125, 4, 1) Bonus: Laplacian:Heat::Ricci:___ (Water, Cold, Curvature, Valley)--Curvature
  2. Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. Journal of extension, 37(2), 1-5. Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association.
  3. Costello, A. B. (2009). Getting the most from your analysis. Pan, 12(2), 131-146. Rouquette, A., & Falissard, B. (2011). Sample size requirements for the internal validation of psychiatric scales. International Journal of Methods in Psychiatric Research, 20(4), 235-249. DeCoster, J. (1998). Overview of factor analysis.
  4. Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete & Computational Geometry, 33(2), 249-274. Lee, H., Kang, H., Chung, M. K., Kim, B. N., & Lee, D. S. (2012). Persistent brain network homology from the perspective of dendrogram. IEEE transactions on medical imaging, 31(12), 2267-2277.
  5. Revelle, W. (1979). Hierarchical cluster analysis and the internal structure of tests. Multivariate Behavioral Research, 14(1), 57-74. Lee, H., Kang, H., Chung, M. K., Kim, B. N., & Lee, D. S. (2012). Persistent brain network homology from the perspective of dendrogram. IEEE transactions on medical imaging, 31(12), 2267-2277. Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12), 1540-1542. Chipman, H., & Tibshirani, R. (2006). Hybrid hierarchical clustering with applications to microarray data. Biostatistics, 7(2), 286-301.
  6. Gross, J. L., & Tucker, T. W. (1987). Topological graph theory. Courier Corporation.