SlideShare a Scribd company logo
1 of 39
TARGET SYSTEM NEUTRONICS
STUDY FOR THE NxGENS LPSS
Carl Willis,*
Guenter Muhrer†
*Nuclear Engineering Program,
The Ohio State University
†
Los Alamos Neutron Science Center
July 30, 2007
07/28/07 2
Background
• The LANSCE Materials Test Station (MTS) will provide a
high flux of fast neutrons for irradiating advanced nuclear
fuels and other samples.
– Tungsten target / tungsten reflected spallation source
• The MTS may also afford an opportunity to test the
LPSS concept for neutron scattering studies.
– Proton pulses on target are ~650 us at ~70 Hz
• Our aim has been to understand the performance of
various backscattering moderator configurations for the
proposed LPSS flight path, using MCNPX modeling.
07/28/07 3
Outline
• Basic geometry and neutronics overview
• Neutronic significance of beam mask, Cd “decoupler”
• Parametric studies of water moderator performance
– Flux vs. thickness
– Effects of a beryllium reflector / premoderator
– Flux vs. longitudinal proximity of moderator to target
– Impact on fluxes in MTS fuel
• Parametric studies of LH2 moderator performance
– Flux vs. thickness
– Effects of a Be reflector / premoderator
– Ortho-para composition effects
– Impact on fluxes in MTS fuel
• Neutron pulse shapes
• Conclusions and questions
07/28/07 4
Green: Tungsten Yellow: Aluminum
Blue: Coolant (D2O) Orange: Fuel
Red: Moderator Fluid (water or LH2)
Target Station Geometry
07/28/07 5
Be Reflector (rust color) and
Cd Decoupler (light green)
Target Station Geometry (ctd.)
07/28/07 6
High-energy neutrons are
produced in the spallation
target and irradiate
surrounding fuel and
material samples.
Shown: flux > 1 eV
Blue: ≤ 2E+13 n cm-2
s-1
mA-1
Red: ≥ 2E+15 n cm-2
s-1
mA-1
(Logarithmic shading scale)
Neutronics Overview (1)
07/28/07 7
Low-energy neutrons are
produced in the moderator
via the slowing-down of
spallation neutrons, and are
scattered out into the flight
path.
Shown: Be-reflected, Cd-
decoupled water moderator
Flux < 0.5 eV
Blue: ≤ 1E+10 n cm-2
s-1
mA-1
Red: ≥ 1E+14 n cm-2
s-1
mA-1
(Logarithmic shading scale)
Neutronics Overview (2)
07/28/07 8
Energy-dependent
flux is tallied in a 1-
cm-long central
region of two fuel
pins: an upstream
pin (1) and a
downstream pin (2).
Evaluating Impact of LPSS
Moderators on MTS Fuel
07/28/07 9
NEUTRON FLUX, 5.2 cm Water Moderator
(Neutron Beamline Point Detector)
1.E+04
1.E+05
1.E+06
1.E+07
1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
ENERGY (eV)
FLUXPERUNITLETHARGY(n/cm2
/s/mA)
With Cd Liner
Without Cd Liner
Adding Cd liner around moderator
decreases flux in the flight path by 0.65%.
07/28/07 10
NEUTRON FLUX
(Upstream Fuel Pin)
1.E+09
1.E+10
1.E+11
1.E+12
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
ENERGY (eV)
FLUXPERUNITLETHARGY(n/cm
2
/s/mA)
With Cd Liner
Without Cd Liner
Adding Cd liner around moderator
results in a 48% reduction in flux < 1eV.
07/28/07 11
NEUTRON FLUX < 400 meV
(Neutron Beamline Point Detector)
0.0E+00
5.0E+06
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
4 6 8 10 12 14 16 18 20
WATER MODERATOR THICKNESS (cm)
FLUX(n/cm
2
/s/mA)
Optimal thickness for water moderator:
~ 9 cm
07/28/07 12
NEUTRON FLUX < 400 meV
(Water Moderator)
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
3.5E+07
4 6 8 10 12 14 16 18 20
Moderator Thickness
Flux,n/cm2
/s/mA
No Reflector
4 cm Be Reflector
10 cm Be Reflector
15 cm Be Reflector
07/28/07 13
07/28/07 14
NEUTRON FLUX
(Downstream Fuel Pin)
1.E+08
1.E+09
1.E+10
1.E+11
1.E+12
1.E+13
1.E+14
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
ENERGY (eV)
FLUXPERUNITLETHARGY(n/cm2
/s/mA)
No Reflector
4 cm Be Reflector
9.2 cm Water Moderator
Adding 4 cm Be Reflector Causes ...
A Total Flux Increase of 0%
A Flux < 1 keV Increase of 40%
07/28/07 15
NEUTRON FLUX < 400 meV
(Water Moderator)
0.0E+00
5.0E+06
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
0 1 2 3 4 5 6 7 8 9 10
Moderator -z Offset (cm)
Flux,n/cm2
/s/mA
07/28/07 16
Water Moderator Summary
• For a bare water moderator, highest flight-path flux < 0.4
eV is achieved with a thickness of 9 cm.
• For a water moderator reflected / premoderated by 4 cm
Be, highest flux is achieved with a thickness of 7.5 cm.
2.00×107
4.80×107
PCS (Lujan), measured1
PCS (Lujan), MCNPX1
3.19×107
7.7 cm Water / 4 cm Be
1.95×107
9.2 cm Bare Water
Flight Path Flux, < 0.4 eV @ 27 m
(n cm-2
s-1
mA-1
)
Moderator
• Muhrer G. Personal communication.
07/28/07 17
Other Conclusions
• Cadmium Decoupler
For a 5.2 cm water moderator:
– Upstream fuel pin flux < 1 keV reduced by 48%
– Flight path flux reduced by 0.68%
– The decoupler significantly diminishes the low energy flux
impact in the fuel, while having minimal impact on LPSS
function.
• Beam Mask
– No influence on neutron production or moderator function
was noted.
• Moderator Offset
– Moving the moderator upstream results in a flux penalty of
about 1.75 × 106
n cm-2
s-1
mA-1
per centimeter of offset.
07/28/07 18
NEUTRON FLUX < 5 meV
(Neutron Beamline Point Detector)
8.0E+05
9.0E+05
1.0E+06
1.1E+06
1.2E+06
1.3E+06
1.4E+06
1.5E+06
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MODERATOR COMPOSITON (Fraction Ortho H)
FLUX(n/cm
2
/s/mA)
5.2 cm LH2 Moderator
07/28/07 19
NEUTRON FLUX < 5 meV
(Neutron Beamline Point Detector)
0.0E+00
5.0E+05
1.0E+06
1.5E+06
2.0E+06
2.5E+06
3.0E+06
3.5E+06
4.0E+06
4.5E+06
5.0E+06
4 6 8 10 12 14 16
MODERATOR THICKNESS (cm)
FLUX(n/cm2
/s/mA)
75% Ortho LH2
50% Ortho LH2
100% Para LH2
07/28/07 20
20-50 meV: Large drop
in cross-section for
parahydrogen
Ortho Hydrogen
Para Hydrogen
07/28/07 21
NEUTRON FLUX
(Neutron Beamline Point Detector)
1.E+04
1.E+05
1.E+06
1.E+07
1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
ENERGY (eV)
FLUXPERUNITLETHARGY(n/cm
2
/s/mA)
100% para LH2
100% ortho LH2
5.2 cm LH2 Moderator
07/28/07 22
NEUTRON FLUX
(Neutron Beamline Point Detector)
1.E+04
1.E+05
1.E+06
1.E+07
1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
ENERGY (eV)
FLUXPERUNITLETHARGY(n/cm
2
/s/mA)
100% para LH2
25% para LH2
15.2 cm LH2 Moderator
07/28/07 23
NEUTRON FLUX < 5 meV
(Neutron Beamline Point Detector)
0.E+00
1.E+06
2.E+06
3.E+06
4.E+06
5.E+06
6.E+06
4 6 8 10 12 14 16
MODERATOR THICKNESS (cm)
FLUX(n/cm
2
/s/mA)
No Reflector
4 cm Be Reflector
Liquid H2 Moderator, 50% ortho
07/28/07 24
LH2 Moderator Summary
• A thick pure parahydrogen moderator gives highest flux.
– Absorption is minimized
– Not realistic: neutrons may drive the conversion between
parahydrogen and orthohydrogen.
• For moderators thinner than 11 cm, pure parahydrogen
is inferior to mixtures containing some orthohydrogen.
– High inelastic scattering cross-section of orthohydrogen lowers
mean free path and improves slowing-down in thin moderators.
• Reflection and premoderation with Be greatly increases
performance.
– Flux improvement is more pronounced with LH2 than with water
moderators.
07/28/07 25
LH2 Moderator Summary (ctd.)
• A Be reflected / premoderated thick pure parahydrogen
moderator would be best but is not likely to be realistic.
* 9.1×106
* 8.6×106
SPEAR (Lujan), measured1,2
SPEAR (Lujan), MCNPX1,2
2.45×107
Be Reflected, 7.7 cm, 50% o
1.67×107
Bare, 12.2 cm, 50% o
Flight Path Flux, < 0.4 eV @ 27 m
(n cm-2
s-1
mA-1
)
Moderator
* Calculated for 27 m from a flight path of 8.64 m via inverse square law.
• Muhrer G. et al., Nuc. Inst. Methods A 527 (2004) 531-542
• Ino T. et al., Nuc. Inst. Methods A 525 (2004) 496-510
07/28/07 26
NEUTRON FLUX
(Upstream Fuel Pin)
1.E+08
1.E+09
1.E+10
1.E+11
1.E+12
1.E+13
1.E+14
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
ENERGY (eV)
FLUXPERUNITLETHARGY(n/cm
2
/s/mA)
Base Case
9.2 cm LH2 Moderator
9.2 cm Water Moderator
07/28/07 27
Pulse Shapes
• The time-dependent nature of the flight-path flux is
explained by slowing-down and storage of neutrons in
the moderator and reflector materials.
• One theoretical prediction of the neutron pulse shape
which attempts to account for both these effects is the
Ikeda-Carpenter Model.
07/28/07 28
Ikeda-Carpenter Model
Φ(v,t) = α (αt)2
exp(-αt) / 2
+ A exp(-βt)
-A exp[(-αt) (1+ (α-β)t + α(α-β)2
t2
/ (2β))]
Where
α = Σs v (inverse of the slowing-down time constant)
β = inverse of the storage time constant
A = R α3
β / (α-β)3
(R is a scaling parameter)
07/28/07 29
NEUTRON FLUX <5 meV
(Neutron Beamline Point Detector)
Storage Time = 74.4 µs
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04 5.0E-04 6.0E-04 7.0E-04 8.0E-04 9.0E-04 1.0E-03
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Expon. (Fit)
5.2 cm LH2 Moderator, 50% ortho
07/28/07 30
NEUTRON FLUX, λ = 4 Angstrom
(Neutron Beamline Point Detector)
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Ikeda-Carpenter
Expon. (Fit)
Storage Time = 71.2 µs
5.2 cm LH2 Moderator, 50% ortho
07/28/07 31
NEUTRON FLUX, λ = 2 Angstrom
(Neutron Beamline Point Detector)
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04
Time (s)
FLUXperTIME(n/cm2
/s2
/mA)
Data
Ikeda-Carpenter
Expon. (Fit)
Storage Time = 69.7 µs
5.2 cm LH2 Moderator, 50% ortho
07/28/07 32
NEUTRON FLUX, λ = 1 Angstrom
(Neutron Beamline Point Detector)
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
0.0E+00 2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04 1.8E-04 2.0E-04
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Ikeda-Carpenter
5.2 cm LH2 Moderator, 50% ortho
07/28/07 33
NEUTRON FLUX, λ = 0.5 Angstrom
(Neutron Beamline Point Detector)
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
0.0E+00 2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04 1.8E-04 2.0E-04
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Ikeda-Carpenter
5.2 cm LH2 Moderator, 50% ortho
07/28/07 34
NEUTRON FLUX, λ = 4 Angstrom
(Neutron Beamline Point Detector)
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Ikeda-Carpenter
Expon. (Fit)
Storage Time = 77.1 µs
9.2 cm Water Moderator
07/28/07 35
NEUTRON FLUX, λ = 2 Angstrom
(Neutron Beamline Point Detector)
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04 5.0E-04 6.0E-04 7.0E-04
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Ikeda-Carpenter
Expon. (Fit)
Storage Time = 77.4 µs
9.2 cm Water Moderator
07/28/07 36
NEUTRON FLUX, λ = 1 Angstrom
(Neutron Beamline Point Detector)
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Ikeda-Carpenter
Expon. (Fit)
Storage Time = 78.5 µs
9.2 cm Water Moderator
07/28/07 37
NEUTRON FLUX, λ = 0.5 Angstrom
(Neutron Beamline Point Detector)
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04
Time (s)
FLUXperTIME(n/cm
2
/s
2
/mA)
Data
Ikeda-Carpenter
9.2 cm Water Moderator
07/28/07 38
Conclusions
• A thick pure parahydrogen moderator gives highest flux.
– Absorption is minimized
– Not realistic: neutrons may drive the conversion between
parahydrogen and orthohydrogen.
• For moderators thinner than 11 cm, pure parahydrogen
is inferior to mixtures containing some orthohydrogen.
– High inelastic scattering cross-section of orthohydrogen lowers
mean free path and improves slowing-down in thin moderators.
• Reflection and premoderation with Be greatly increases
performance.
– Flux improvement is more pronounced with LH2 than with water
moderators.
07/28/07 39
Acknowledgements
I’d like to thank Guenter Muhrer for his mentorship.
My work was financially supported through the generosity
of the U.S. Department of Energy Nuclear Engineering
Fellowship.
Thanks to Eric Pitcher, Erich Schneider, Luc Daemen,
Bernice Williams, John Seal, and others who have
provided assistance.

More Related Content

What's hot

McGill Ozone Contactor Design Project
McGill Ozone Contactor Design ProjectMcGill Ozone Contactor Design Project
McGill Ozone Contactor Design ProjectNicholas Mead-Fox
 
Nuclear magnetic resonance logging
Nuclear magnetic resonance loggingNuclear magnetic resonance logging
Nuclear magnetic resonance loggingAvadhesh Shukla
 
Sonic log and its applications
Sonic log and its applicationsSonic log and its applications
Sonic log and its applicationsBadal Mathur
 
Modelling of water quality in sewer wwtp systems during normal and extreme co...
Modelling of water quality in sewer wwtp systems during normal and extreme co...Modelling of water quality in sewer wwtp systems during normal and extreme co...
Modelling of water quality in sewer wwtp systems during normal and extreme co...EVAnetDenmark
 
Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...
Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...
Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...DART Project
 
High resolution bound-fluid, free-fluid and total porosity w
High resolution bound-fluid, free-fluid and total porosity wHigh resolution bound-fluid, free-fluid and total porosity w
High resolution bound-fluid, free-fluid and total porosity wamrhaggag
 

What's hot (7)

McGill Ozone Contactor Design Project
McGill Ozone Contactor Design ProjectMcGill Ozone Contactor Design Project
McGill Ozone Contactor Design Project
 
Nuclear magnetic resonance logging
Nuclear magnetic resonance loggingNuclear magnetic resonance logging
Nuclear magnetic resonance logging
 
Sonic log and its applications
Sonic log and its applicationsSonic log and its applications
Sonic log and its applications
 
Bernoulli's in a Building
Bernoulli's in a BuildingBernoulli's in a Building
Bernoulli's in a Building
 
Modelling of water quality in sewer wwtp systems during normal and extreme co...
Modelling of water quality in sewer wwtp systems during normal and extreme co...Modelling of water quality in sewer wwtp systems during normal and extreme co...
Modelling of water quality in sewer wwtp systems during normal and extreme co...
 
Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...
Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...
Using Time Domain Reflectometry (TDR) to Monitor the Geophysical Properties o...
 
High resolution bound-fluid, free-fluid and total porosity w
High resolution bound-fluid, free-fluid and total porosity wHigh resolution bound-fluid, free-fluid and total porosity w
High resolution bound-fluid, free-fluid and total porosity w
 

Viewers also liked

updated resume
updated resumeupdated resume
updated resumeLori Vance
 
Catherine Ibargüen
Catherine IbargüenCatherine Ibargüen
Catherine IbargüenWendy Munza
 
T patagoniensis Argentina
T patagoniensis ArgentinaT patagoniensis Argentina
T patagoniensis ArgentinaMabel Ribicich
 
Poster Idea Development - Sean Wayne
Poster Idea Development - Sean WaynePoster Idea Development - Sean Wayne
Poster Idea Development - Sean Waynesewayne1254
 
Fotos históricas raríssimas
Fotos históricas raríssimasFotos históricas raríssimas
Fotos históricas raríssimasLuiz Dias
 
Smarter Calculator, Mortgage Calculator Milton
Smarter Calculator, Mortgage Calculator MiltonSmarter Calculator, Mortgage Calculator Milton
Smarter Calculator, Mortgage Calculator MiltonSimmoneliott
 
Opening sequence on any genre and a thriller
Opening sequence on any genre and a thrillerOpening sequence on any genre and a thriller
Opening sequence on any genre and a thrillergd12341
 
RSS herramientas digitales luis guarnizo
RSS herramientas digitales luis guarnizoRSS herramientas digitales luis guarnizo
RSS herramientas digitales luis guarnizoAngel Cdlm
 

Viewers also liked (14)

Nidhi Sharma
Nidhi SharmaNidhi Sharma
Nidhi Sharma
 
Resume yaswant
Resume yaswantResume yaswant
Resume yaswant
 
Treif_Insert_SM
Treif_Insert_SMTreif_Insert_SM
Treif_Insert_SM
 
updated resume
updated resumeupdated resume
updated resume
 
Catherine Ibargüen
Catherine IbargüenCatherine Ibargüen
Catherine Ibargüen
 
T patagoniensis Argentina
T patagoniensis ArgentinaT patagoniensis Argentina
T patagoniensis Argentina
 
Apostiladefisiologiahumana
Apostiladefisiologiahumana Apostiladefisiologiahumana
Apostiladefisiologiahumana
 
9. la piel
9. la piel9. la piel
9. la piel
 
Poster Idea Development - Sean Wayne
Poster Idea Development - Sean WaynePoster Idea Development - Sean Wayne
Poster Idea Development - Sean Wayne
 
Fotos históricas raríssimas
Fotos históricas raríssimasFotos históricas raríssimas
Fotos históricas raríssimas
 
Smarter Calculator, Mortgage Calculator Milton
Smarter Calculator, Mortgage Calculator MiltonSmarter Calculator, Mortgage Calculator Milton
Smarter Calculator, Mortgage Calculator Milton
 
Edublogs
EdublogsEdublogs
Edublogs
 
Opening sequence on any genre and a thriller
Opening sequence on any genre and a thrillerOpening sequence on any genre and a thriller
Opening sequence on any genre and a thriller
 
RSS herramientas digitales luis guarnizo
RSS herramientas digitales luis guarnizoRSS herramientas digitales luis guarnizo
RSS herramientas digitales luis guarnizo
 

Similar to paper_179415

Phase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte ComplexesPhase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte ComplexesDavid Scheuing
 
Electrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxElectrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxMabrook Saleh Amer
 
HDR Vincent Agache Defense
HDR Vincent Agache DefenseHDR Vincent Agache Defense
HDR Vincent Agache Defensevince3859
 
talk @ PPC at KIAS 2012.11.07
talk @ PPC at KIAS 2012.11.07talk @ PPC at KIAS 2012.11.07
talk @ PPC at KIAS 2012.11.07Yoshitaro Takaesu
 
The Dielectric Relaxation Properties And Dipole Ordering...
The Dielectric Relaxation Properties And Dipole Ordering...The Dielectric Relaxation Properties And Dipole Ordering...
The Dielectric Relaxation Properties And Dipole Ordering...Sarah Gordon
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Chelsey Crosse
 
Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20Yoshitaro Takaesu
 
4. Analytical Applications I_Voltammetric Detectors.ppt
4.   Analytical Applications I_Voltammetric Detectors.ppt4.   Analytical Applications I_Voltammetric Detectors.ppt
4. Analytical Applications I_Voltammetric Detectors.pptAbidJan4
 
An analytical method with numerical results to be used in the design of optic...
An analytical method with numerical results to be used in the design of optic...An analytical method with numerical results to be used in the design of optic...
An analytical method with numerical results to be used in the design of optic...nooriasukmaningtyas
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55BIOVIA
 
ECS Canada Spring Symposium 2018
ECS Canada Spring Symposium 2018ECS Canada Spring Symposium 2018
ECS Canada Spring Symposium 2018Taufique Z. Redhwan
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin filmAbdalla Darwish
 

Similar to paper_179415 (20)

Phase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte ComplexesPhase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte Complexes
 
Electrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxElectrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptx
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
 
HDR Vincent Agache Defense
HDR Vincent Agache DefenseHDR Vincent Agache Defense
HDR Vincent Agache Defense
 
Optimizing solid core_30955
Optimizing solid core_30955Optimizing solid core_30955
Optimizing solid core_30955
 
talk @ PPC at KIAS 2012.11.07
talk @ PPC at KIAS 2012.11.07talk @ PPC at KIAS 2012.11.07
talk @ PPC at KIAS 2012.11.07
 
Pushkar N Patil
Pushkar N PatilPushkar N Patil
Pushkar N Patil
 
The Dielectric Relaxation Properties And Dipole Ordering...
The Dielectric Relaxation Properties And Dipole Ordering...The Dielectric Relaxation Properties And Dipole Ordering...
The Dielectric Relaxation Properties And Dipole Ordering...
 
ILS_target
ILS_targetILS_target
ILS_target
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
 
UCISem
UCISemUCISem
UCISem
 
Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20Presentation @ KIAS pheno group end year meeting: 2012.12.20
Presentation @ KIAS pheno group end year meeting: 2012.12.20
 
4. Analytical Applications I_Voltammetric Detectors.ppt
4.   Analytical Applications I_Voltammetric Detectors.ppt4.   Analytical Applications I_Voltammetric Detectors.ppt
4. Analytical Applications I_Voltammetric Detectors.ppt
 
Voltammetry
VoltammetryVoltammetry
Voltammetry
 
An analytical method with numerical results to be used in the design of optic...
An analytical method with numerical results to be used in the design of optic...An analytical method with numerical results to be used in the design of optic...
An analytical method with numerical results to be used in the design of optic...
 
LDV
LDVLDV
LDV
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55
 
ECS Canada Spring Symposium 2018
ECS Canada Spring Symposium 2018ECS Canada Spring Symposium 2018
ECS Canada Spring Symposium 2018
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
 

paper_179415

  • 1. TARGET SYSTEM NEUTRONICS STUDY FOR THE NxGENS LPSS Carl Willis,* Guenter Muhrer† *Nuclear Engineering Program, The Ohio State University † Los Alamos Neutron Science Center July 30, 2007
  • 2. 07/28/07 2 Background • The LANSCE Materials Test Station (MTS) will provide a high flux of fast neutrons for irradiating advanced nuclear fuels and other samples. – Tungsten target / tungsten reflected spallation source • The MTS may also afford an opportunity to test the LPSS concept for neutron scattering studies. – Proton pulses on target are ~650 us at ~70 Hz • Our aim has been to understand the performance of various backscattering moderator configurations for the proposed LPSS flight path, using MCNPX modeling.
  • 3. 07/28/07 3 Outline • Basic geometry and neutronics overview • Neutronic significance of beam mask, Cd “decoupler” • Parametric studies of water moderator performance – Flux vs. thickness – Effects of a beryllium reflector / premoderator – Flux vs. longitudinal proximity of moderator to target – Impact on fluxes in MTS fuel • Parametric studies of LH2 moderator performance – Flux vs. thickness – Effects of a Be reflector / premoderator – Ortho-para composition effects – Impact on fluxes in MTS fuel • Neutron pulse shapes • Conclusions and questions
  • 4. 07/28/07 4 Green: Tungsten Yellow: Aluminum Blue: Coolant (D2O) Orange: Fuel Red: Moderator Fluid (water or LH2) Target Station Geometry
  • 5. 07/28/07 5 Be Reflector (rust color) and Cd Decoupler (light green) Target Station Geometry (ctd.)
  • 6. 07/28/07 6 High-energy neutrons are produced in the spallation target and irradiate surrounding fuel and material samples. Shown: flux > 1 eV Blue: ≤ 2E+13 n cm-2 s-1 mA-1 Red: ≥ 2E+15 n cm-2 s-1 mA-1 (Logarithmic shading scale) Neutronics Overview (1)
  • 7. 07/28/07 7 Low-energy neutrons are produced in the moderator via the slowing-down of spallation neutrons, and are scattered out into the flight path. Shown: Be-reflected, Cd- decoupled water moderator Flux < 0.5 eV Blue: ≤ 1E+10 n cm-2 s-1 mA-1 Red: ≥ 1E+14 n cm-2 s-1 mA-1 (Logarithmic shading scale) Neutronics Overview (2)
  • 8. 07/28/07 8 Energy-dependent flux is tallied in a 1- cm-long central region of two fuel pins: an upstream pin (1) and a downstream pin (2). Evaluating Impact of LPSS Moderators on MTS Fuel
  • 9. 07/28/07 9 NEUTRON FLUX, 5.2 cm Water Moderator (Neutron Beamline Point Detector) 1.E+04 1.E+05 1.E+06 1.E+07 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 ENERGY (eV) FLUXPERUNITLETHARGY(n/cm2 /s/mA) With Cd Liner Without Cd Liner Adding Cd liner around moderator decreases flux in the flight path by 0.65%.
  • 10. 07/28/07 10 NEUTRON FLUX (Upstream Fuel Pin) 1.E+09 1.E+10 1.E+11 1.E+12 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 ENERGY (eV) FLUXPERUNITLETHARGY(n/cm 2 /s/mA) With Cd Liner Without Cd Liner Adding Cd liner around moderator results in a 48% reduction in flux < 1eV.
  • 11. 07/28/07 11 NEUTRON FLUX < 400 meV (Neutron Beamline Point Detector) 0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07 4 6 8 10 12 14 16 18 20 WATER MODERATOR THICKNESS (cm) FLUX(n/cm 2 /s/mA) Optimal thickness for water moderator: ~ 9 cm
  • 12. 07/28/07 12 NEUTRON FLUX < 400 meV (Water Moderator) 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07 3.5E+07 4 6 8 10 12 14 16 18 20 Moderator Thickness Flux,n/cm2 /s/mA No Reflector 4 cm Be Reflector 10 cm Be Reflector 15 cm Be Reflector
  • 14. 07/28/07 14 NEUTRON FLUX (Downstream Fuel Pin) 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 ENERGY (eV) FLUXPERUNITLETHARGY(n/cm2 /s/mA) No Reflector 4 cm Be Reflector 9.2 cm Water Moderator Adding 4 cm Be Reflector Causes ... A Total Flux Increase of 0% A Flux < 1 keV Increase of 40%
  • 15. 07/28/07 15 NEUTRON FLUX < 400 meV (Water Moderator) 0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07 0 1 2 3 4 5 6 7 8 9 10 Moderator -z Offset (cm) Flux,n/cm2 /s/mA
  • 16. 07/28/07 16 Water Moderator Summary • For a bare water moderator, highest flight-path flux < 0.4 eV is achieved with a thickness of 9 cm. • For a water moderator reflected / premoderated by 4 cm Be, highest flux is achieved with a thickness of 7.5 cm. 2.00×107 4.80×107 PCS (Lujan), measured1 PCS (Lujan), MCNPX1 3.19×107 7.7 cm Water / 4 cm Be 1.95×107 9.2 cm Bare Water Flight Path Flux, < 0.4 eV @ 27 m (n cm-2 s-1 mA-1 ) Moderator • Muhrer G. Personal communication.
  • 17. 07/28/07 17 Other Conclusions • Cadmium Decoupler For a 5.2 cm water moderator: – Upstream fuel pin flux < 1 keV reduced by 48% – Flight path flux reduced by 0.68% – The decoupler significantly diminishes the low energy flux impact in the fuel, while having minimal impact on LPSS function. • Beam Mask – No influence on neutron production or moderator function was noted. • Moderator Offset – Moving the moderator upstream results in a flux penalty of about 1.75 × 106 n cm-2 s-1 mA-1 per centimeter of offset.
  • 18. 07/28/07 18 NEUTRON FLUX < 5 meV (Neutron Beamline Point Detector) 8.0E+05 9.0E+05 1.0E+06 1.1E+06 1.2E+06 1.3E+06 1.4E+06 1.5E+06 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 MODERATOR COMPOSITON (Fraction Ortho H) FLUX(n/cm 2 /s/mA) 5.2 cm LH2 Moderator
  • 19. 07/28/07 19 NEUTRON FLUX < 5 meV (Neutron Beamline Point Detector) 0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 2.5E+06 3.0E+06 3.5E+06 4.0E+06 4.5E+06 5.0E+06 4 6 8 10 12 14 16 MODERATOR THICKNESS (cm) FLUX(n/cm2 /s/mA) 75% Ortho LH2 50% Ortho LH2 100% Para LH2
  • 20. 07/28/07 20 20-50 meV: Large drop in cross-section for parahydrogen Ortho Hydrogen Para Hydrogen
  • 21. 07/28/07 21 NEUTRON FLUX (Neutron Beamline Point Detector) 1.E+04 1.E+05 1.E+06 1.E+07 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 ENERGY (eV) FLUXPERUNITLETHARGY(n/cm 2 /s/mA) 100% para LH2 100% ortho LH2 5.2 cm LH2 Moderator
  • 22. 07/28/07 22 NEUTRON FLUX (Neutron Beamline Point Detector) 1.E+04 1.E+05 1.E+06 1.E+07 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 ENERGY (eV) FLUXPERUNITLETHARGY(n/cm 2 /s/mA) 100% para LH2 25% para LH2 15.2 cm LH2 Moderator
  • 23. 07/28/07 23 NEUTRON FLUX < 5 meV (Neutron Beamline Point Detector) 0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 6.E+06 4 6 8 10 12 14 16 MODERATOR THICKNESS (cm) FLUX(n/cm 2 /s/mA) No Reflector 4 cm Be Reflector Liquid H2 Moderator, 50% ortho
  • 24. 07/28/07 24 LH2 Moderator Summary • A thick pure parahydrogen moderator gives highest flux. – Absorption is minimized – Not realistic: neutrons may drive the conversion between parahydrogen and orthohydrogen. • For moderators thinner than 11 cm, pure parahydrogen is inferior to mixtures containing some orthohydrogen. – High inelastic scattering cross-section of orthohydrogen lowers mean free path and improves slowing-down in thin moderators. • Reflection and premoderation with Be greatly increases performance. – Flux improvement is more pronounced with LH2 than with water moderators.
  • 25. 07/28/07 25 LH2 Moderator Summary (ctd.) • A Be reflected / premoderated thick pure parahydrogen moderator would be best but is not likely to be realistic. * 9.1×106 * 8.6×106 SPEAR (Lujan), measured1,2 SPEAR (Lujan), MCNPX1,2 2.45×107 Be Reflected, 7.7 cm, 50% o 1.67×107 Bare, 12.2 cm, 50% o Flight Path Flux, < 0.4 eV @ 27 m (n cm-2 s-1 mA-1 ) Moderator * Calculated for 27 m from a flight path of 8.64 m via inverse square law. • Muhrer G. et al., Nuc. Inst. Methods A 527 (2004) 531-542 • Ino T. et al., Nuc. Inst. Methods A 525 (2004) 496-510
  • 26. 07/28/07 26 NEUTRON FLUX (Upstream Fuel Pin) 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 ENERGY (eV) FLUXPERUNITLETHARGY(n/cm 2 /s/mA) Base Case 9.2 cm LH2 Moderator 9.2 cm Water Moderator
  • 27. 07/28/07 27 Pulse Shapes • The time-dependent nature of the flight-path flux is explained by slowing-down and storage of neutrons in the moderator and reflector materials. • One theoretical prediction of the neutron pulse shape which attempts to account for both these effects is the Ikeda-Carpenter Model.
  • 28. 07/28/07 28 Ikeda-Carpenter Model Φ(v,t) = α (αt)2 exp(-αt) / 2 + A exp(-βt) -A exp[(-αt) (1+ (α-β)t + α(α-β)2 t2 / (2β))] Where α = Σs v (inverse of the slowing-down time constant) β = inverse of the storage time constant A = R α3 β / (α-β)3 (R is a scaling parameter)
  • 29. 07/28/07 29 NEUTRON FLUX <5 meV (Neutron Beamline Point Detector) Storage Time = 74.4 µs 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04 5.0E-04 6.0E-04 7.0E-04 8.0E-04 9.0E-04 1.0E-03 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Expon. (Fit) 5.2 cm LH2 Moderator, 50% ortho
  • 30. 07/28/07 30 NEUTRON FLUX, λ = 4 Angstrom (Neutron Beamline Point Detector) 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Ikeda-Carpenter Expon. (Fit) Storage Time = 71.2 µs 5.2 cm LH2 Moderator, 50% ortho
  • 31. 07/28/07 31 NEUTRON FLUX, λ = 2 Angstrom (Neutron Beamline Point Detector) 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 Time (s) FLUXperTIME(n/cm2 /s2 /mA) Data Ikeda-Carpenter Expon. (Fit) Storage Time = 69.7 µs 5.2 cm LH2 Moderator, 50% ortho
  • 32. 07/28/07 32 NEUTRON FLUX, λ = 1 Angstrom (Neutron Beamline Point Detector) 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 0.0E+00 2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04 1.8E-04 2.0E-04 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Ikeda-Carpenter 5.2 cm LH2 Moderator, 50% ortho
  • 33. 07/28/07 33 NEUTRON FLUX, λ = 0.5 Angstrom (Neutron Beamline Point Detector) 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 0.0E+00 2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04 1.8E-04 2.0E-04 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Ikeda-Carpenter 5.2 cm LH2 Moderator, 50% ortho
  • 34. 07/28/07 34 NEUTRON FLUX, λ = 4 Angstrom (Neutron Beamline Point Detector) 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Ikeda-Carpenter Expon. (Fit) Storage Time = 77.1 µs 9.2 cm Water Moderator
  • 35. 07/28/07 35 NEUTRON FLUX, λ = 2 Angstrom (Neutron Beamline Point Detector) 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 0.0E+00 1.0E-04 2.0E-04 3.0E-04 4.0E-04 5.0E-04 6.0E-04 7.0E-04 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Ikeda-Carpenter Expon. (Fit) Storage Time = 77.4 µs 9.2 cm Water Moderator
  • 36. 07/28/07 36 NEUTRON FLUX, λ = 1 Angstrom (Neutron Beamline Point Detector) 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Ikeda-Carpenter Expon. (Fit) Storage Time = 78.5 µs 9.2 cm Water Moderator
  • 37. 07/28/07 37 NEUTRON FLUX, λ = 0.5 Angstrom (Neutron Beamline Point Detector) 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04 Time (s) FLUXperTIME(n/cm 2 /s 2 /mA) Data Ikeda-Carpenter 9.2 cm Water Moderator
  • 38. 07/28/07 38 Conclusions • A thick pure parahydrogen moderator gives highest flux. – Absorption is minimized – Not realistic: neutrons may drive the conversion between parahydrogen and orthohydrogen. • For moderators thinner than 11 cm, pure parahydrogen is inferior to mixtures containing some orthohydrogen. – High inelastic scattering cross-section of orthohydrogen lowers mean free path and improves slowing-down in thin moderators. • Reflection and premoderation with Be greatly increases performance. – Flux improvement is more pronounced with LH2 than with water moderators.
  • 39. 07/28/07 39 Acknowledgements I’d like to thank Guenter Muhrer for his mentorship. My work was financially supported through the generosity of the U.S. Department of Energy Nuclear Engineering Fellowship. Thanks to Eric Pitcher, Erich Schneider, Luc Daemen, Bernice Williams, John Seal, and others who have provided assistance.