SlideShare a Scribd company logo
1 of 54
Download to read offline
Modern methods forModern methods for 
(causal) modeling
in health and medical science:
Cautions and capabilitiesCautions and capabilities
Sander GreenlandSander Greenland
Epidemiology and Statistics Departments
U i i f C lif i L A lUniversity of California, Los Angeles
(UCLA)
5 June 2013 1Greenland, Modern methods
New(‐ish) tools to aid causal inference
• To aid identification of bias sources and sets 
of adjustment covariates DAGsof adjustment covariates: DAGs. 
• For adjustment of measured confounders: 
algorithmic treatment modeling (PS, IPTW, 
or OTW) combined with outcome modelingor OTW) combined with outcome modeling 
to achieve “double robustness”.   
T t f t i t b t• To account for uncertainty about 
unmeasured confounders and other 
uncontrolled bias sources: bias analysis.
5 June 2013 Greenland, Modern methods 2
I. Tools are not packaged with skills 
to use them well or safely
5 June 2013 Greenland, Modern methods 3
Background readings: 
G l d S (2010) O h i h• Greenland S (2010). Overthrowing the tyranny 
of null hypotheses hidden in causal diagrams. 
Ch 22 in: Dechter R Geffner H and HalpernCh. 22 in: Dechter, R., Geffner, H., and Halpern, 
J.Y. (eds.). Heuristics, Probabilities, and 
Causality: A Tribute to Judea Pearl. London:Causality: A Tribute to Judea Pearl. London: 
College Publications, 365‐382. 
• Greenland S (2012). Causal inference as aGreenland S (2012). Causal inference as a 
prediction problem: Assumptions, identification, 
and evidence synthesis. Ch. 5 in Berzuini C, y
Dawid AP, Bernardinelli L, eds. Causal Inference: 
Statistical Perspectives and Applications. Wiley, 
h hChichester, 43‐58.
5 June 2013 4Greenland, Modern methods
“Mathematics is one necessary tool [but] any 
i i i h ll i histatistician who actually practices his art
must possess many additional resources…the 
mathematical tail has been allowed to wag 
the statistical dog for far too long… I think g g
that the built‐in mathematical bias of many 
statistics departments and of much that westatistics departments and of much that we 
are presently teaching is not innocuous; it is 
in fact antiscientific ”in fact antiscientific.  
– George Box, Statistical Science 1990
5 June 2013 Greenland: Is causal inference more 5
Cautions (conclusions, 2011)
C t f l “ l i f ”• Current formal “causal inference” 
approaches are mostly about modeling 
effects in single studies, and projection to 
conditionally exchangeable populations. y g p p
• As technically sophisticated as current 
causal inference methods may seem theycausal‐inference methods may seem, they 
are far too simple to encompass the 
di it f id th t h t bdiversity of evidence that has to be 
synthesized in most real health and medical 
decision problems.
5 June 2013 6Greenland, Modern methods
• From both a purely logical and practical 
point of view, causal inference is about 
predicting outcomes under different p g
interventions or actions (or sometimes, 
with added ambiguity what would havewith added ambiguity, what would have 
happened under counterfactual actions).
• Any algorithm developed for prediction 
should thus be applicable, e.g., both 
classical fixed‐model inference and modern 
machine‐learning algorithms. However…machine learning algorithms.  However…
5 June 2013 Greenland: Is causal inference more 7
• Current “causal inference” research seeks 
algorithms that can automatically recognize 
causal structure (effective interventions) 
with human accuracy or better.
• As with models for visual other perceptual 
cognition, these algorithms can help within
causal inference but are not yet near the y
best human cognition derived from 
research synthesis. y
• Hence the human element enters into real 
causal inference – for better and for worse…causal inference  for better and for worse…
5 June 2013 Greenland: Is causal inference more 8
• Intuition is notoriously faulty, full of biases, 
i l d i d isome innate, some value driven, and is 
horrific at probability logic. 
• Cognitive psychology and behavioral 
economics provides books full of dramatic p
examples – which can be used to recognize 
biases (e g double counting confirmationbiases (e.g., double counting, confirmation 
bias, overconfidence, and wish bias): 
“My colleagues they study artificialMy colleagues, they study artificial 
intelligence; me, I study natural stupidity.” 
‐Amos Tversky
5 June 2013 9Greenland: Is causal inference more
Unfortunately, application of formal 
(statistical) methods are also full of human 
frailties because they require
• choice of fixed background assumptions 
(meta‐models theories) from an infinite set(meta‐models, theories) from an infinite set 
of possibilities, and
ll d l f d• potentially distortive simplifications and 
conventions to make them operational.
Values can and do influence these choices, 
hencehence…
5 June 2013 10Greenland: Is causal inference more
• Even in situations with clear risks, those 
ith t ti ti l hi ti ti h twith statistical sophistication have not 
outperformed those without (Susser, AJE 
1977 i l i h lth i l )1977 gives classic health‐science examples).
• Similar lessons are seen in econometrics, 
where pseudo‐Nobel laureates with 
impressive mathematical skills have lost 
fortunes for investors (e.g., the 1998 LTCM 
fund disaster in which Merton and Scholes
lost nearly $5 billion; the 2009 Trinsum
bankruptcy; etc.): do(X=x), X= buy, sell
5 June 2013 11Greenland: Is causal inference more
Subjective elements and values play a 
decisive role in all statistical analysesdecisive role in all statistical analyses
• There is an illusory sense of objectivity 
induced when there is great overconfidence, 
as when individuals feel infallible or there is 
strong social agreement. 
• Feelings of objectivity in turn feed back toFeelings of objectivity in turn feed back to 
create overconfidence. This is well illustrated 
historically by scientists, statisticians, andhistorically by scientists, statisticians, and 
often entire fields being certain of 
hypotheses later refuted.hypotheses later refuted. 
5 June 2013 Greenland ‐ Bayes Workshop 12
Classic statistician examples: 
• Fisher against smoking causing lung cancer 
• Jeffreys against continental drifty g
Classic clinician‐researcher examples:
F i t i & H it i t t• Feinstein & Horwitz against estrogen 
therapy causing much endometrial cancer
• Indiscriminate promotion of trans‐fat 
margarine and low‐fat diets in the 1970s andmargarine and low fat diets in the 1970s and 
1980s for weight loss and CHD prevention, 
along with dismissal of the sugar relationalong with dismissal of the sugar relation.
5 June 2013 Greenland ‐ Bayes Workshop 13
Some facts of statistical life:
• Data alone do not convey information; they• Data alone do not convey information; they 
are interpreted via models for their 
generationgeneration. 
• Models are sets of assumptions about the 
d t ti (DGP)data‐generation process (DGP).
• Models are analogous to language 
grammars: No model, no meaning. 
• Unfortunately, unlike bad grammar, bad stat y g
modeling may not produce gibberish, even 
if the models and outputs are very wrong. 
5 June 2013 Greenland, Modern methods 14
p y g
The classical tensions
• Bias vs. precision: Assumptions introduce 
bias to the extent they are incorrect butbias to the extent they are incorrect, but 
increase precision to the extent that they 
l d d i ht t lt tiexclude or down‐weight most alternatives.
• Procedures are “optimal” only under meta‐p y
assumptions, some untestable.
• Models for causal inference always include• Models for causal inference always include 
untestable terminal randomization (no 
id l f di “i bili ”)residual confounding, “ignorability”).
5 June 2013 15Greenland, Modern methods
II. Useful new tools 
from not so new ideas
5 June 2013 Greenland, Modern methods 16
Neyman’s (1923) potential‐outcome 
(“ t f t l”) l t d l(“counterfactual”) causal meta‐model:
• Say X and Y are the treatment and outcome 
variables of interest. Then Y is replaced by 
a list (vector) of the outcomes that would  
follow under different treatments. So if X = 
1 or 0, Y is replaced by the potential‐
outcome vector (Y1,Y0) where 
Y1 = outcome if X is 1, Y0 = outcome if X is 01 0
• Yx can be replaced by a parameter θx , e.g., 
the outcome probability (risk)the outcome probability (risk)
5 June 2013 Greenland, Modern methods 17
Causal inference under the potential‐outcome 
l b blmodel becomes a prediction problem:
• Causal‐inference (CI) problems are• Causal‐inference (CI) problems are 
isomorphic to missing‐data problems: 
At most only one potential outcome is 
observed; the rest are missing (Rubin, Ann 
Stat 1978). 
• Thus the vast predictive (imputational)• Thus the vast predictive (imputational) 
machinery of statistics can be used for 
i f b t l tinference about causal parameters. 
5 June 2013 Greenland, Modern methods 18
Further insights from potential outcomes:
The value of X tells us which potential 
outcome we can observe; for binary X, ; y ,
Yobs = XY1 + (1‐X)Y0 ,
ll d th l “ i t ” t (called the causal “consistency” property (a 
corollary of Pearl’s axiomatization of 
potential outcomes, but called an 
assumption by some epidemiologists)p y p g )
• Thus, for any set of covariates Z, we have
p(y |x z) p(y |x z)p(yobs|x,z) = p(yx|x,z)
5 June 2013 Greenland, Modern methods 19
From consistency, we get a precise definition 
of sufficiency for confounding control:of sufficiency for confounding control:
A set of covariates Z is sufficient for control 
f f di if h bof  confounding if the outcomes we observe 
when X=x follow the distribution of Yx given Z:
p(yobs|x,z) ≡ p(yx|x,z) = p(yx|z)
which is independence of X and Y given Z:which is independence of X and Yx given Z: 
For all x and z, X ╨ Yx | z, 
(“ id l f di ” “ d(“no residual confounding”, “no unmeasured 
confounding”, “weak ignorability”); Z is also 
minimal sufficient if no s bset of Z is s fficientminimal sufficient if no subset of Z is sufficient.
5 June 2013 Greenland, Modern methods 20
Further insights from potential outcomes:
B h 1960 h d l i• By the 1960s, methodologists were 
developing methods for summarizing 
f d i di i iconfounder sets using discriminant or 
regression scores. The performance of the 
i l l hvarious proposals was not clear, however.
• Rosenbaum & Rubin (1983) showed that, 
given a sufficient set Z, the conditional 
treatment distribution p(x|z) is itself 
sufficient to control confounding of marginal
(total‐population) X effects by covariates in Z. 
5 June 2013 Greenland, Modern methods 21
• For binary X, p(1|z) is usually called the  
“ it ” (PS) t l f thi“propensity score” (PS); control of this score 
will remove confounding when Z is sufficient. 
• For other X, Robins, Mark & Newey (1992) 
showed that, when Z is sufficient, control of 
the regression score E(X|z) is sufficient for 
control of confounding of additive effects of 
X on Y. (note: PS = E(X|z) when X is binary)
Nonetheless, the missing‐data viewpoint leads g p
to other, more general ways to adjust for 
confounding using treatment probabilities. g g p
5 June 2013 Greenland, Modern methods 22
• Inverse probability of treatment weighting 
(IPTW) was adapted from survey weighting(IPTW) was adapted from survey weighting 
ideas (Robins, Hernán, Brumback 2000). 
I l b d i d f l i l di• It can also be derived from classical direct 
standardization (Sato and Matsuyama 2003):
p(y|x) = ∑z p(y|x,z)p(z) = ∑z p(y,x,z)p(z)/p(x,z)
= ∑z p(y,x,z)/p(x|z) = ∑z wzp(y,x,z), ∑z p(y,x,z)/p(x|z)   ∑z wzp(y,x,z), 
where wz=1/p(x|z). 
Th if Z i ffi i t th IPTW• Thus, if Z is sufficient, then IPTW removes 
marginal confounding by averaging using the 
i ht f ll ( t d di ti )same weights for all x (standardization). 
5 June 2013 Greenland, Modern methods 23
Despite PO/PS/IPTW theory providing 
landmark insights it is far from completelandmark insights, it is far from complete 
for most health/med analyses:
I d h d l• It does not say how to model treatment, 
but mismodeling can render the estimated 
PS i ffi i d bi h ff iPS insufficient and bias the effect estimate; 
• It does not address sampling variation or 
how to balance bias vs. variance, e.g., in an 
RCT, the randomization indicator predicts p
treatment perfectly so controlling it yields 
infinite variance yet adjusts for no bias;y j
5 June 2013 Greenland, Modern methods 24
• It focuses on marginal (population‐
averaged) effects (ACE LATE CACE) It doesaveraged) effects (ACE, LATE, CACE). It does 
not guide accurate estimation of effect 
heterogeneity (modification) or conditionalheterogeneity (modification) or conditional
effects (e.g., effects in men vs. women), 
which are essential for clinical practice;which are essential for clinical practice;
• It defines but does not operationalize how 
f d ff l ffto find a sufficient or minimal sufficient Z. 
These deficiencies are largely traceable to g y
omitting the outcome from modeling 
(which Rubin AAS 2008 strongly advises).  ( g y )
5 June 2013 Greenland, Modern methods 25
A simple solution: Treatment modeling 
followed by outcome modelingfollowed by outcome modeling
Classical modeling for causal inference 
th t Y X d Z f if Zregresses the outcome Y on X and Z, for if Z
is sufficient, E(Yobs|x,z) ≡ E(Yx|x,z) = E(Yx|z).
• The model for potential means E(Yx|z) is 
called a structural model or structural 
equation.
• This approach estimates conditional effects pp
as well as marginal effects (by averaging 
over Z). As with PS, however, it will be ) , ,
biased by mismodeling. 
5 June 2013 Greenland, Modern methods 26
By combining treatment modeling with 
outcome modeling we can create estimatesoutcome modeling, we can create estimates 
that are at least approximately doubly 
robust (DR): If Z is sufficient the estimatedrobust (DR): If Z is sufficient, the estimated 
effect of X on Y will be unconfounded if 
either of the models is correcteither of the models is correct.
The simplest DR approaches either 
• regress Y on X, Z, and PS as a covariate,
• regress Y on X, Z in a PS‐matched sample, orregress Y on X, Z  in a PS matched sample, or
• regress Y on X, Z using IPT or OT weights. 
E h f th h h dEach of these approaches have pros and cons. 
5 June 2013 Greenland, Modern methods 27
Treating PS as a covariate:
Th l i f h PS i k b hi hl• The relation of the PS to risk can be highly 
nonlinear and can be discontinuous when 
i di Th i h PScovariates are discrete. Thus entering the PS 
as a few  terms may not retain sufficiency. 
Hi hl fl ibl f l i b d dHighly flexible formulations may be needed 
(e.g., many category indicators for the PS, or 
h l d )machine‐learning procedures). 
• The PS is a composite of Z; it thus can be p
highly collinear with Z terms in the outcome 
model, leading to imprecision.g p
5 June 2013 Greenland, Modern methods 28
Outcome regression after PS matching:
• Almost all PS matching is to the treated 
(X=1). This alters the distribution of effect ( )
modifiers to that seen in the exposed, which 
in turn changes the target parameter to thein turn changes the target parameter to the 
effect in the treated rather than in the total 
(Kurth et al AJE 2006) This may be a good(Kurth et al., AJE 2006). This may be a good 
change if the exposed are the target. But,
• Typical PS matching tends to discard many 
subjects, harming efficiency.  j , g y
5 June 2013 Greenland, Modern methods 29
Weighted outcome regression:
• Ordinary fitting methods for estimating 
treatment probabilities tend to produce very p p y
small values for some subjects, resulting in 
huge highly unstable weights There arehuge, highly unstable weights. There are 
several approaches to weight stabilization:
h b d1. Restore the X margin: Robins and crew 
use wz = p(x)/p(x|z), but this weight may still 
be too unstable, leading to crude fixes like 
weight trimming to obtain sensible results. g g
5 June 2013 Greenland, Modern methods 30
2. Ridgeway & McCaffrey (2004, 2007) 
weight by the odds of X=1 vs X=X :weight by the odds of X=1 vs. X=Xobs: 
wz=1 if X=1, wz= p(1|z)/p(0|z) if X=0. 
• This odds‐of‐treatment weighting (OTW) 
standardizes to the treated (X=1), as in PS 
matching to the exposed. 
• They fit these odds with a machine‐learningThey fit these odds with a machine learning 
algorithm (boosted lasso). 
Their approach eliminates stability problemsTheir approach eliminates stability problems. 
Similar results have been reported using 
related algorithms to fit probabilities for IPTWrelated algorithms to fit probabilities for IPTW.
5 June 2013 Greenland, Modern methods 31
Now, what does and doesn’t belong in Z?
• The answers were known intuitively to 
some and demonstrated using potential g p
outcomes well before the ascendance of 
causal diagrams but the explanationscausal diagrams, but the explanations 
were opaque to many (e.g., see Robins & 
Greenland 1992)Greenland, 1992).
• The development of formal causal graphs 
in the 1980s opened the way to fast 
screening algorithms for Z candidates.screening algorithms for Z candidates. 
5 June 2013 Greenland, Modern methods 32
Graphical models predate causal models
• Graph theory began in the 1700s and was 
used for circuit analysis in the 19th century. 
Applications in probability and computer 
science date back at least to the 1960s.science date back at least to the 1960s.
• Causal path diagrams appeared circa 1920. 
• By the 1980s, AI research merged directed 
acyclic graph (DAG) models for probabilities y g p ( ) p
(Bayes nets) with path diagrams, to produce 
causal DAGs (causal Bayesian networks).
Greenland  Pearlfest 2010 33
causal DAGs (causal Bayesian networks).
Example DAGExample DAG
A BA B
CC
FF
E D
2 Feb 2012 Greenland 34
Directed acyclic graphs and causal diagrams
• A DAG shows the factors in the problem as 
nodes linked by arrows only, with no y y,
feedback loops.
• A graph is a causal diagram if the arrowsA graph is a causal diagram if the arrows 
are interpreted as links in causal chains 
(formalization is a bit controversial; R&R)(formalization is a bit controversial; R&R).
• Causal effects of one variable on another 
are transmitted by causal sequences whichare transmitted by causal sequences, which 
are directed (head‐tail) paths: X→Y→Z 
means X can affect Z
2 Feb 2012 Greenland 35
means X can affect Z
Assumptions inherent in causal diagrams
Assumptions of a causal diagram are of two 
forms:forms: 
1) Arrow direction: resolvable by time order
2) Arrow absence: No directed path from X 
to Y corresponds to a null hypothesis that,to Y corresponds to a null hypothesis that, 
upon stratifying on all direct causes 
(“parents”) of X X and Y would be( parents ) of X, X and Y would be 
independent (“Causal Markov Condition”)
2 Feb 2012 Greenland 36
Thus: Most DAGs are full of null hypotheses!
Colliders vs. noncolliders on a path
P th l d (bl k d) t llid• Paths are closed (blocked) at colliders: 
Associations cannot be transmitted across 
a collider (→C←) on a path unless we 
stratify (condition) on it or something it y ( ) g
affects (such as F in C→F). 
• Paths are open (unblocked) at noncolliders:• Paths are open (unblocked) at noncolliders: 
Associations can be transmitted across a 
llid ( di →C→ f knoncollider (a mediator →C→ or a fork
←C→) on a path unless we stratify on it 
2 Feb 2012 Greenland 37
completely.
Think of associations as signals flowing 
h h h hthrough the graph
• A variable can transmit associations along g
some open (unblocked) directions but not 
along closed (blocked) directionsalong closed (blocked) directions.
• The open and closed directions are 
h d d b dswitched around by conditioning 
(stratifying) on the variable, and are 
partially switched by partially or indirectly 
conditioning.
2 Feb 2012 Greenland 38
co d t o g
Example DAG: A diagram with an 
embedded M path from E to D, E‐A‐C‐B‐D
A BA B
CC
FF
E D
2 Feb 2012 Greenland 39
“Control” of bias in causal modeling
• Target path: A path that transmits some of 
the effect we want to estimate; it is athe effect we want to estimate; it is a 
directed path from cause to effect.
Bi i h A h h b• Biasing path: Any other open path between 
the cause and effect variables. 
• By judicious conditioning, we must close all 
biasing paths without closing target pathsbiasing paths without closing target paths 
or opening new biasing paths. (This isn’t 
always possible with available data )
2 Feb 2012 Greenland 40
always possible with available data.)
Graphical sufficiency
• If conditioning on Z closes all biasing paths 
while leaving all target paths open Z iswhile leaving all target paths open, Z is 
sufficient for control of bias.
• If Z is sufficient (for control of bias) but no 
subset is sufficient, Z is minimal sufficient. 
Like almost all graphical concepts and results, 
these are qualitative (topological); they dothese are qualitative (topological); they do 
not address extent of bias. But they can aid 
i i i l i i dinitial covariate screening and more.
5 June 2013 Greenland, Modern methods 41
Example: inadequacy of statistical criteria
Among traditional statistical criteria for 
defining or detecting confounders are:defining or detecting confounders are: 
• C is associated with E and with D given E
Adj t t f C h th E D• Adjustment for C changes the E‐D 
association (noncollapsibility). 
These are equivalent in linear systems.
(Often added: C must precede E and D.)( p )
Graphs illustrate how both criteria can fail, 
leading to adjustment that increases biasleading to adjustment that increases bias.
5 June 2013 Greenland, Modern methods 42
Pure M‐bias: C assoc with E and D|E, 
yet no bias unless you adjust for C or F
(A) (B)(A) (B)
CC
FF
E D
2 Feb 2012 Greenland 43
Instrumental variables in a linear system: 
A and F assoc with E and D|E yet worse bias if youA and F assoc with E and D|E, yet worse bias if you 
adjust conventionally for A or F
A (B)A (B)
F E
A may be intent‐to‐treat D
2 Feb 2012 Greenland 44
Estimation of direct effects by adjustment for 
intermediates (Judd‐Kenny 1981 Robins‐Greenlandintermediates (Judd‐Kenny 1981, Robins‐Greenland 
1992 by POs, Hernan‐Cole 2002 by cDAG)
E (B)E (B)
[C]
D
E associated with D|C yet no direct effect
2 Feb 2012 Greenland 45
What do graphs say about complex cases?
• Traditional statistical criteria need 
refinement: When we add adjustment j
variables, we have to weigh potential bias 
eliminated against potential bias added.g p
• Complex graphs inherit all biases in their 
simple subgraphs (like M‐bias) so simplesimple subgraphs (like M bias), so simple 
graphs are great warning devices, but… 
• Due to their qualitative nature graphs give• Due to their qualitative nature, graphs give 
us only clues about the balance of bias, and 
say nothing about bias variance tradeoffssay nothing about bias‐variance tradeoffs. 
5 June 2013 Greenland, Modern methods 46
Confounding paths from E to D:
EACD, ECBD, ECD
A BA B
CC
FF
E D
2 Feb 2012 Greenland 47
Confounding paths from E to D after 
conditioning on C: EACBD
A BA B
[C][C]
FF
E D
2 Feb 2012 Greenland 48
Confounding paths from E to D: None!Confounding paths from E to D: None!
A [B]A [B]
[C][C]
FF
E D
2 Feb 2012 Greenland 49
What if essential variables are not 
d ( ff l bl )measured? (no sufficient Z available)
We then have to turn to sensitivity analysis ofWe then have to turn to sensitivity analysis of 
bias (bias analysis; see Ch. 19 of ME3) to 
get an idea of how much bias is left afterget an idea of how much bias is left after 
adjustment for measured covariates, and 
how much uncertainty is appropriatehow much uncertainty is appropriate.
• Ordinary statistics ignore uncertainty about 
unmeasured or mismeasured variables andunmeasured or mismeasured variables, and 
so are grossly overconfident (intervals much 
too narrow P values much too small)too narrow, P‐values much too small). 
5 June 2013 Greenland, Modern methods 50
All the usual validity problems 
can be viewed bias due to missing datacan be viewed bias due to missing data
• Confounding: nonrandomly missing 
potential outcomes
• Selection bias: nonrandomly missingSelection bias: nonrandomly missing 
subjects
M i i l• Measurement error: missing actual 
variables of interest, so we use proxies in 
their place (which may produce bias even if 
the error is random)
5 June 2013 Greenland ‐ Bayes Workshop 51
)
This view enables use of imputation methods 
for bias analysis (Greenland, 2009):
Completed data = observed + imputed dataCompleted data   observed + imputed data
• To make any inference beyond what we see  
(th b d) t h d l th t(the observed), we must have a model that 
projects from the observed data to the 
missing data (or to aspects of the data, like 
means) to get the completed data.) g p
• In bias analysis, however, key parameters 
are not identified by the observations
5 June 2013 Greenland ‐ Bayes Workshop 52
are not identified by the observations. 
As a result, bias analysis can have far more 
impact on results than other methods Yet itimpact on results than other methods. Yet it 
has seen the least adoption. Possible reasons: 
It i f i ti t ff t t• It requires far more investigator effort to 
specify the model and inputs (one group is 
t i t f l t id li t thi )trying to formulate guidelines to ease this),
• Once specified, it is nowhere near as easy to 
run with commercial software as other 
methods,
• It can completely ruin any hint of 
decisiveness or “significance” of results.g
5 June 2013 Greenland, Modern methods 53
III. Conclusion: 
Some modern tools you should know
• For identification of bias sources and• For identification of bias sources and 
sufficient adjustment sets: DAGs. 
• For adjustment of measured confounders: 
algorithmic treatment modeling (PS, IPTW, 
or OTW) combined with outcome modeling 
to achieve double robustness.to achieve double robustness.   
• To account for uncertainty about 
t ll d bi bi l iuncontrolled bias: bias analysis.
5 June 2013 Greenland, Modern methods 54

More Related Content

What's hot

AMWA-MAC 2015 Conference Presention MJSpiering
AMWA-MAC 2015 Conference Presention MJSpieringAMWA-MAC 2015 Conference Presention MJSpiering
AMWA-MAC 2015 Conference Presention MJSpiering
Martin Spiering
 
Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...
Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...
Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...
Barbara Osimani
 
Ap psych stats methods revised 12 13
Ap psych stats methods revised 12 13 Ap psych stats methods revised 12 13
Ap psych stats methods revised 12 13
Bob Lochel
 
Oom not doom a novel method for improving psychological science, Bradley Woods
Oom not doom   a novel method for improving psychological science, Bradley WoodsOom not doom   a novel method for improving psychological science, Bradley Woods
Oom not doom a novel method for improving psychological science, Bradley Woods
NZ Psychological Society
 

What's hot (20)

How to calculate sample size for different study
How to calculate sample size for different studyHow to calculate sample size for different study
How to calculate sample size for different study
 
Resrach hypothesis
Resrach hypothesisResrach hypothesis
Resrach hypothesis
 
Da gs for_commonbiases2
Da gs for_commonbiases2Da gs for_commonbiases2
Da gs for_commonbiases2
 
Extrapolation Kent Feb10
Extrapolation Kent Feb10Extrapolation Kent Feb10
Extrapolation Kent Feb10
 
AMWA-MAC 2015 Conference Presention MJSpiering
AMWA-MAC 2015 Conference Presention MJSpieringAMWA-MAC 2015 Conference Presention MJSpiering
AMWA-MAC 2015 Conference Presention MJSpiering
 
Meta-analysis when the normality assumptions are violated (2008)
Meta-analysis when the normality assumptions are violated (2008)Meta-analysis when the normality assumptions are violated (2008)
Meta-analysis when the normality assumptions are violated (2008)
 
Dr. Obumneke Amadi-Onuoha Scripts- 7_project_rsch
Dr.  Obumneke Amadi-Onuoha Scripts- 7_project_rschDr.  Obumneke Amadi-Onuoha Scripts- 7_project_rsch
Dr. Obumneke Amadi-Onuoha Scripts- 7_project_rsch
 
Projecting ‘time to event’ outcomes in technology assessment: an alternative ...
Projecting ‘time to event’ outcomes in technology assessment: an alternative ...Projecting ‘time to event’ outcomes in technology assessment: an alternative ...
Projecting ‘time to event’ outcomes in technology assessment: an alternative ...
 
Hypotheses
HypothesesHypotheses
Hypotheses
 
Russo unam-1
Russo unam-1Russo unam-1
Russo unam-1
 
Controversy Over the Significance Test Controversy
Controversy Over the Significance Test ControversyControversy Over the Significance Test Controversy
Controversy Over the Significance Test Controversy
 
Detecting flawed meta analyses
Detecting flawed meta analysesDetecting flawed meta analyses
Detecting flawed meta analyses
 
The book of Why
The book of WhyThe book of Why
The book of Why
 
Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...
Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...
Barbara Osimani, Problems with Evidence of Pharmaceutical Harm. King's Colleg...
 
Ap psych stats methods revised 12 13
Ap psych stats methods revised 12 13 Ap psych stats methods revised 12 13
Ap psych stats methods revised 12 13
 
Analysis and Interpretation
Analysis and InterpretationAnalysis and Interpretation
Analysis and Interpretation
 
Russo urbino presentazione
Russo urbino presentazioneRusso urbino presentazione
Russo urbino presentazione
 
Mechanisms and the evidence hierarchy
Mechanisms and the evidence hierarchyMechanisms and the evidence hierarchy
Mechanisms and the evidence hierarchy
 
SOC2002 Lecture 4
SOC2002 Lecture 4SOC2002 Lecture 4
SOC2002 Lecture 4
 
Oom not doom a novel method for improving psychological science, Bradley Woods
Oom not doom   a novel method for improving psychological science, Bradley WoodsOom not doom   a novel method for improving psychological science, Bradley Woods
Oom not doom a novel method for improving psychological science, Bradley Woods
 

Similar to WEON preconference Greenland

Running head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docx
Running head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docxRunning head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docx
Running head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docx
todd271
 
MAKING SENSE OFSTATISTICSWhat statistics tell you an.docx
MAKING SENSE OFSTATISTICSWhat statistics tell you an.docxMAKING SENSE OFSTATISTICSWhat statistics tell you an.docx
MAKING SENSE OFSTATISTICSWhat statistics tell you an.docx
smile790243
 
Percepcao dos pais diag pre e pos natal de cc
Percepcao dos pais diag pre e pos natal de ccPercepcao dos pais diag pre e pos natal de cc
Percepcao dos pais diag pre e pos natal de cc
gisa_legal
 
Dr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptx
Dr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptxDr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptx
Dr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptx
PriyankaSharma89719
 
07 construção e validação de questionário fatores de risco cv em crianças
07   construção e validação de questionário fatores de risco cv em crianças07   construção e validação de questionário fatores de risco cv em crianças
07 construção e validação de questionário fatores de risco cv em crianças
gisa_legal
 
Farmacoepi Course Leiden 0210 Part 2
Farmacoepi Course Leiden 0210   Part 2Farmacoepi Course Leiden 0210   Part 2
Farmacoepi Course Leiden 0210 Part 2
RobHeerdink
 
Khoury ashg2014
Khoury ashg2014Khoury ashg2014
Khoury ashg2014
muink
 

Similar to WEON preconference Greenland (20)

1_Intro to Research.pdf
1_Intro to Research.pdf1_Intro to Research.pdf
1_Intro to Research.pdf
 
Dichotomania and other challenges for the collaborating biostatistician
Dichotomania and other challenges for the collaborating biostatisticianDichotomania and other challenges for the collaborating biostatistician
Dichotomania and other challenges for the collaborating biostatistician
 
Dark Side of AI in Healthcare
Dark Side of AI in HealthcareDark Side of AI in Healthcare
Dark Side of AI in Healthcare
 
CLASSIFICATION OF CERVICAL CANCER DATASET
CLASSIFICATION OF CERVICAL CANCER DATASETCLASSIFICATION OF CERVICAL CANCER DATASET
CLASSIFICATION OF CERVICAL CANCER DATASET
 
Surviving statistics lecture 1
Surviving statistics lecture 1Surviving statistics lecture 1
Surviving statistics lecture 1
 
Bioinformatics Strategies for Exposome 100416
Bioinformatics Strategies for Exposome 100416Bioinformatics Strategies for Exposome 100416
Bioinformatics Strategies for Exposome 100416
 
Running head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docx
Running head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docxRunning head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docx
Running head CRITIQUE QUANTITATIVE, QUALITATIVE, OR MIXED METHODS.docx
 
MAKING SENSE OFSTATISTICSWhat statistics tell you an.docx
MAKING SENSE OFSTATISTICSWhat statistics tell you an.docxMAKING SENSE OFSTATISTICSWhat statistics tell you an.docx
MAKING SENSE OFSTATISTICSWhat statistics tell you an.docx
 
Glymour aaai
Glymour aaaiGlymour aaai
Glymour aaai
 
Chirag patel unite for sight 041418
Chirag patel unite for sight 041418Chirag patel unite for sight 041418
Chirag patel unite for sight 041418
 
Percepcao dos pais diag pre e pos natal de cc
Percepcao dos pais diag pre e pos natal de ccPercepcao dos pais diag pre e pos natal de cc
Percepcao dos pais diag pre e pos natal de cc
 
STUDY DESIGNS IN PERIODONTOLOGY.pptx
STUDY DESIGNS IN PERIODONTOLOGY.pptxSTUDY DESIGNS IN PERIODONTOLOGY.pptx
STUDY DESIGNS IN PERIODONTOLOGY.pptx
 
Nursing research design
Nursing research designNursing research design
Nursing research design
 
Data Visualization in Biomedical Sciences: More than Meets the Eye
Data Visualization in Biomedical Sciences: More than Meets the EyeData Visualization in Biomedical Sciences: More than Meets the Eye
Data Visualization in Biomedical Sciences: More than Meets the Eye
 
Dr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptx
Dr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptxDr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptx
Dr. RM Pandey -Importance of Biostatistics in Biomedical Research.pptx
 
Fuller et al-2015-head_&_neck
Fuller et al-2015-head_&_neckFuller et al-2015-head_&_neck
Fuller et al-2015-head_&_neck
 
07 construção e validação de questionário fatores de risco cv em crianças
07   construção e validação de questionário fatores de risco cv em crianças07   construção e validação de questionário fatores de risco cv em crianças
07 construção e validação de questionário fatores de risco cv em crianças
 
Farmacoepi Course Leiden 0210 Part 2
Farmacoepi Course Leiden 0210   Part 2Farmacoepi Course Leiden 0210   Part 2
Farmacoepi Course Leiden 0210 Part 2
 
Khoury ashg2014
Khoury ashg2014Khoury ashg2014
Khoury ashg2014
 
BIOSTATISTICS AND GENITICS
BIOSTATISTICS AND GENITICSBIOSTATISTICS AND GENITICS
BIOSTATISTICS AND GENITICS
 

More from Bsie

Poster eurostroke 2013 Siegerink et al P255
Poster eurostroke 2013 Siegerink et al P255Poster eurostroke 2013 Siegerink et al P255
Poster eurostroke 2013 Siegerink et al P255
Bsie
 
Mtv studie volkskrant 30 oktober
Mtv studie   volkskrant 30 oktoberMtv studie   volkskrant 30 oktober
Mtv studie volkskrant 30 oktober
Bsie
 
Mtv studie Spits 30 oktober
Mtv studie   Spits 30 oktoberMtv studie   Spits 30 oktober
Mtv studie Spits 30 oktober
Bsie
 
Mtv studie spits 30 oktober
Mtv studie   spits 30 oktoberMtv studie   spits 30 oktober
Mtv studie spits 30 oktober
Bsie
 
Commentary Kaufman
Commentary  KaufmanCommentary  Kaufman
Commentary Kaufman
Bsie
 
Groenwold causality leiden - 5 oct2012
Groenwold   causality leiden - 5 oct2012Groenwold   causality leiden - 5 oct2012
Groenwold causality leiden - 5 oct2012
Bsie
 
Kick off meeting gijsbers
Kick off meeting gijsbersKick off meeting gijsbers
Kick off meeting gijsbers
Bsie
 
Kickoff meeting Le Cessie
Kickoff meeting  Le CessieKickoff meeting  Le Cessie
Kickoff meeting Le Cessie
Bsie
 

More from Bsie (9)

Poster eurostroke 2013 Siegerink et al P255
Poster eurostroke 2013 Siegerink et al P255Poster eurostroke 2013 Siegerink et al P255
Poster eurostroke 2013 Siegerink et al P255
 
Causaltalk handout andrew gelman
Causaltalk handout andrew gelmanCausaltalk handout andrew gelman
Causaltalk handout andrew gelman
 
Mtv studie volkskrant 30 oktober
Mtv studie   volkskrant 30 oktoberMtv studie   volkskrant 30 oktober
Mtv studie volkskrant 30 oktober
 
Mtv studie Spits 30 oktober
Mtv studie   Spits 30 oktoberMtv studie   Spits 30 oktober
Mtv studie Spits 30 oktober
 
Mtv studie spits 30 oktober
Mtv studie   spits 30 oktoberMtv studie   spits 30 oktober
Mtv studie spits 30 oktober
 
Commentary Kaufman
Commentary  KaufmanCommentary  Kaufman
Commentary Kaufman
 
Groenwold causality leiden - 5 oct2012
Groenwold   causality leiden - 5 oct2012Groenwold   causality leiden - 5 oct2012
Groenwold causality leiden - 5 oct2012
 
Kick off meeting gijsbers
Kick off meeting gijsbersKick off meeting gijsbers
Kick off meeting gijsbers
 
Kickoff meeting Le Cessie
Kickoff meeting  Le CessieKickoff meeting  Le Cessie
Kickoff meeting Le Cessie
 

Recently uploaded

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 

WEON preconference Greenland

  • 1. Modern methods forModern methods for  (causal) modeling in health and medical science: Cautions and capabilitiesCautions and capabilities Sander GreenlandSander Greenland Epidemiology and Statistics Departments U i i f C lif i L A lUniversity of California, Los Angeles (UCLA) 5 June 2013 1Greenland, Modern methods
  • 2. New(‐ish) tools to aid causal inference • To aid identification of bias sources and sets  of adjustment covariates DAGsof adjustment covariates: DAGs.  • For adjustment of measured confounders:  algorithmic treatment modeling (PS, IPTW,  or OTW) combined with outcome modelingor OTW) combined with outcome modeling  to achieve “double robustness”.    T t f t i t b t• To account for uncertainty about  unmeasured confounders and other  uncontrolled bias sources: bias analysis. 5 June 2013 Greenland, Modern methods 2
  • 4. Background readings:  G l d S (2010) O h i h• Greenland S (2010). Overthrowing the tyranny  of null hypotheses hidden in causal diagrams.  Ch 22 in: Dechter R Geffner H and HalpernCh. 22 in: Dechter, R., Geffner, H., and Halpern,  J.Y. (eds.). Heuristics, Probabilities, and  Causality: A Tribute to Judea Pearl. London:Causality: A Tribute to Judea Pearl. London:  College Publications, 365‐382.  • Greenland S (2012). Causal inference as aGreenland S (2012). Causal inference as a  prediction problem: Assumptions, identification,  and evidence synthesis. Ch. 5 in Berzuini C, y Dawid AP, Bernardinelli L, eds. Causal Inference:  Statistical Perspectives and Applications. Wiley,  h hChichester, 43‐58. 5 June 2013 4Greenland, Modern methods
  • 5. “Mathematics is one necessary tool [but] any  i i i h ll i histatistician who actually practices his art must possess many additional resources…the  mathematical tail has been allowed to wag  the statistical dog for far too long… I think g g that the built‐in mathematical bias of many  statistics departments and of much that westatistics departments and of much that we  are presently teaching is not innocuous; it is  in fact antiscientific ”in fact antiscientific.   – George Box, Statistical Science 1990 5 June 2013 Greenland: Is causal inference more 5
  • 6. Cautions (conclusions, 2011) C t f l “ l i f ”• Current formal “causal inference”  approaches are mostly about modeling  effects in single studies, and projection to  conditionally exchangeable populations. y g p p • As technically sophisticated as current  causal inference methods may seem theycausal‐inference methods may seem, they  are far too simple to encompass the  di it f id th t h t bdiversity of evidence that has to be  synthesized in most real health and medical  decision problems. 5 June 2013 6Greenland, Modern methods
  • 7. • From both a purely logical and practical  point of view, causal inference is about  predicting outcomes under different p g interventions or actions (or sometimes,  with added ambiguity what would havewith added ambiguity, what would have  happened under counterfactual actions). • Any algorithm developed for prediction  should thus be applicable, e.g., both  classical fixed‐model inference and modern  machine‐learning algorithms. However…machine learning algorithms.  However… 5 June 2013 Greenland: Is causal inference more 7
  • 9. • Intuition is notoriously faulty, full of biases,  i l d i d isome innate, some value driven, and is  horrific at probability logic.  • Cognitive psychology and behavioral  economics provides books full of dramatic p examples – which can be used to recognize  biases (e g double counting confirmationbiases (e.g., double counting, confirmation  bias, overconfidence, and wish bias):  “My colleagues they study artificialMy colleagues, they study artificial  intelligence; me, I study natural stupidity.”  ‐Amos Tversky 5 June 2013 9Greenland: Is causal inference more
  • 10. Unfortunately, application of formal  (statistical) methods are also full of human  frailties because they require • choice of fixed background assumptions  (meta‐models theories) from an infinite set(meta‐models, theories) from an infinite set  of possibilities, and ll d l f d• potentially distortive simplifications and  conventions to make them operational. Values can and do influence these choices,  hencehence… 5 June 2013 10Greenland: Is causal inference more
  • 11. • Even in situations with clear risks, those  ith t ti ti l hi ti ti h twith statistical sophistication have not  outperformed those without (Susser, AJE  1977 i l i h lth i l )1977 gives classic health‐science examples). • Similar lessons are seen in econometrics,  where pseudo‐Nobel laureates with  impressive mathematical skills have lost  fortunes for investors (e.g., the 1998 LTCM  fund disaster in which Merton and Scholes lost nearly $5 billion; the 2009 Trinsum bankruptcy; etc.): do(X=x), X= buy, sell 5 June 2013 11Greenland: Is causal inference more
  • 12. Subjective elements and values play a  decisive role in all statistical analysesdecisive role in all statistical analyses • There is an illusory sense of objectivity  induced when there is great overconfidence,  as when individuals feel infallible or there is  strong social agreement.  • Feelings of objectivity in turn feed back toFeelings of objectivity in turn feed back to  create overconfidence. This is well illustrated  historically by scientists, statisticians, andhistorically by scientists, statisticians, and  often entire fields being certain of  hypotheses later refuted.hypotheses later refuted.  5 June 2013 Greenland ‐ Bayes Workshop 12
  • 13. Classic statistician examples:  • Fisher against smoking causing lung cancer  • Jeffreys against continental drifty g Classic clinician‐researcher examples: F i t i & H it i t t• Feinstein & Horwitz against estrogen  therapy causing much endometrial cancer • Indiscriminate promotion of trans‐fat  margarine and low‐fat diets in the 1970s andmargarine and low fat diets in the 1970s and  1980s for weight loss and CHD prevention,  along with dismissal of the sugar relationalong with dismissal of the sugar relation. 5 June 2013 Greenland ‐ Bayes Workshop 13
  • 14. Some facts of statistical life: • Data alone do not convey information; they• Data alone do not convey information; they  are interpreted via models for their  generationgeneration.  • Models are sets of assumptions about the  d t ti (DGP)data‐generation process (DGP). • Models are analogous to language  grammars: No model, no meaning.  • Unfortunately, unlike bad grammar, bad stat y g modeling may not produce gibberish, even  if the models and outputs are very wrong.  5 June 2013 Greenland, Modern methods 14 p y g
  • 15. The classical tensions • Bias vs. precision: Assumptions introduce  bias to the extent they are incorrect butbias to the extent they are incorrect, but  increase precision to the extent that they  l d d i ht t lt tiexclude or down‐weight most alternatives. • Procedures are “optimal” only under meta‐p y assumptions, some untestable. • Models for causal inference always include• Models for causal inference always include  untestable terminal randomization (no  id l f di “i bili ”)residual confounding, “ignorability”). 5 June 2013 15Greenland, Modern methods
  • 17. Neyman’s (1923) potential‐outcome  (“ t f t l”) l t d l(“counterfactual”) causal meta‐model: • Say X and Y are the treatment and outcome  variables of interest. Then Y is replaced by  a list (vector) of the outcomes that would   follow under different treatments. So if X =  1 or 0, Y is replaced by the potential‐ outcome vector (Y1,Y0) where  Y1 = outcome if X is 1, Y0 = outcome if X is 01 0 • Yx can be replaced by a parameter θx , e.g.,  the outcome probability (risk)the outcome probability (risk) 5 June 2013 Greenland, Modern methods 17
  • 18. Causal inference under the potential‐outcome  l b blmodel becomes a prediction problem: • Causal‐inference (CI) problems are• Causal‐inference (CI) problems are  isomorphic to missing‐data problems:  At most only one potential outcome is  observed; the rest are missing (Rubin, Ann  Stat 1978).  • Thus the vast predictive (imputational)• Thus the vast predictive (imputational)  machinery of statistics can be used for  i f b t l tinference about causal parameters.  5 June 2013 Greenland, Modern methods 18
  • 19. Further insights from potential outcomes: The value of X tells us which potential  outcome we can observe; for binary X, ; y , Yobs = XY1 + (1‐X)Y0 , ll d th l “ i t ” t (called the causal “consistency” property (a  corollary of Pearl’s axiomatization of  potential outcomes, but called an  assumption by some epidemiologists)p y p g ) • Thus, for any set of covariates Z, we have p(y |x z) p(y |x z)p(yobs|x,z) = p(yx|x,z) 5 June 2013 Greenland, Modern methods 19
  • 20. From consistency, we get a precise definition  of sufficiency for confounding control:of sufficiency for confounding control: A set of covariates Z is sufficient for control  f f di if h bof  confounding if the outcomes we observe  when X=x follow the distribution of Yx given Z: p(yobs|x,z) ≡ p(yx|x,z) = p(yx|z) which is independence of X and Y given Z:which is independence of X and Yx given Z:  For all x and z, X ╨ Yx | z,  (“ id l f di ” “ d(“no residual confounding”, “no unmeasured  confounding”, “weak ignorability”); Z is also  minimal sufficient if no s bset of Z is s fficientminimal sufficient if no subset of Z is sufficient. 5 June 2013 Greenland, Modern methods 20
  • 21. Further insights from potential outcomes: B h 1960 h d l i• By the 1960s, methodologists were  developing methods for summarizing  f d i di i iconfounder sets using discriminant or  regression scores. The performance of the  i l l hvarious proposals was not clear, however. • Rosenbaum & Rubin (1983) showed that,  given a sufficient set Z, the conditional  treatment distribution p(x|z) is itself  sufficient to control confounding of marginal (total‐population) X effects by covariates in Z.  5 June 2013 Greenland, Modern methods 21
  • 22. • For binary X, p(1|z) is usually called the   “ it ” (PS) t l f thi“propensity score” (PS); control of this score  will remove confounding when Z is sufficient.  • For other X, Robins, Mark & Newey (1992)  showed that, when Z is sufficient, control of  the regression score E(X|z) is sufficient for  control of confounding of additive effects of  X on Y. (note: PS = E(X|z) when X is binary) Nonetheless, the missing‐data viewpoint leads g p to other, more general ways to adjust for  confounding using treatment probabilities. g g p 5 June 2013 Greenland, Modern methods 22
  • 23. • Inverse probability of treatment weighting  (IPTW) was adapted from survey weighting(IPTW) was adapted from survey weighting  ideas (Robins, Hernán, Brumback 2000).  I l b d i d f l i l di• It can also be derived from classical direct  standardization (Sato and Matsuyama 2003): p(y|x) = ∑z p(y|x,z)p(z) = ∑z p(y,x,z)p(z)/p(x,z) = ∑z p(y,x,z)/p(x|z) = ∑z wzp(y,x,z), ∑z p(y,x,z)/p(x|z)   ∑z wzp(y,x,z),  where wz=1/p(x|z).  Th if Z i ffi i t th IPTW• Thus, if Z is sufficient, then IPTW removes  marginal confounding by averaging using the  i ht f ll ( t d di ti )same weights for all x (standardization).  5 June 2013 Greenland, Modern methods 23
  • 24. Despite PO/PS/IPTW theory providing  landmark insights it is far from completelandmark insights, it is far from complete  for most health/med analyses: I d h d l• It does not say how to model treatment,  but mismodeling can render the estimated  PS i ffi i d bi h ff iPS insufficient and bias the effect estimate;  • It does not address sampling variation or  how to balance bias vs. variance, e.g., in an  RCT, the randomization indicator predicts p treatment perfectly so controlling it yields  infinite variance yet adjusts for no bias;y j 5 June 2013 Greenland, Modern methods 24
  • 25. • It focuses on marginal (population‐ averaged) effects (ACE LATE CACE) It doesaveraged) effects (ACE, LATE, CACE). It does  not guide accurate estimation of effect  heterogeneity (modification) or conditionalheterogeneity (modification) or conditional effects (e.g., effects in men vs. women),  which are essential for clinical practice;which are essential for clinical practice; • It defines but does not operationalize how  f d ff l ffto find a sufficient or minimal sufficient Z.  These deficiencies are largely traceable to g y omitting the outcome from modeling  (which Rubin AAS 2008 strongly advises).  ( g y ) 5 June 2013 Greenland, Modern methods 25
  • 26. A simple solution: Treatment modeling  followed by outcome modelingfollowed by outcome modeling Classical modeling for causal inference  th t Y X d Z f if Zregresses the outcome Y on X and Z, for if Z is sufficient, E(Yobs|x,z) ≡ E(Yx|x,z) = E(Yx|z). • The model for potential means E(Yx|z) is  called a structural model or structural  equation. • This approach estimates conditional effects pp as well as marginal effects (by averaging  over Z). As with PS, however, it will be ) , , biased by mismodeling.  5 June 2013 Greenland, Modern methods 26
  • 27. By combining treatment modeling with  outcome modeling we can create estimatesoutcome modeling, we can create estimates  that are at least approximately doubly  robust (DR): If Z is sufficient the estimatedrobust (DR): If Z is sufficient, the estimated  effect of X on Y will be unconfounded if  either of the models is correcteither of the models is correct. The simplest DR approaches either  • regress Y on X, Z, and PS as a covariate, • regress Y on X, Z in a PS‐matched sample, orregress Y on X, Z  in a PS matched sample, or • regress Y on X, Z using IPT or OT weights.  E h f th h h dEach of these approaches have pros and cons.  5 June 2013 Greenland, Modern methods 27
  • 28. Treating PS as a covariate: Th l i f h PS i k b hi hl• The relation of the PS to risk can be highly  nonlinear and can be discontinuous when  i di Th i h PScovariates are discrete. Thus entering the PS  as a few  terms may not retain sufficiency.  Hi hl fl ibl f l i b d dHighly flexible formulations may be needed  (e.g., many category indicators for the PS, or  h l d )machine‐learning procedures).  • The PS is a composite of Z; it thus can be p highly collinear with Z terms in the outcome  model, leading to imprecision.g p 5 June 2013 Greenland, Modern methods 28
  • 29. Outcome regression after PS matching: • Almost all PS matching is to the treated  (X=1). This alters the distribution of effect ( ) modifiers to that seen in the exposed, which  in turn changes the target parameter to thein turn changes the target parameter to the  effect in the treated rather than in the total  (Kurth et al AJE 2006) This may be a good(Kurth et al., AJE 2006). This may be a good  change if the exposed are the target. But, • Typical PS matching tends to discard many  subjects, harming efficiency.  j , g y 5 June 2013 Greenland, Modern methods 29
  • 30. Weighted outcome regression: • Ordinary fitting methods for estimating  treatment probabilities tend to produce very p p y small values for some subjects, resulting in  huge highly unstable weights There arehuge, highly unstable weights. There are  several approaches to weight stabilization: h b d1. Restore the X margin: Robins and crew  use wz = p(x)/p(x|z), but this weight may still  be too unstable, leading to crude fixes like  weight trimming to obtain sensible results. g g 5 June 2013 Greenland, Modern methods 30
  • 31. 2. Ridgeway & McCaffrey (2004, 2007)  weight by the odds of X=1 vs X=X :weight by the odds of X=1 vs. X=Xobs:  wz=1 if X=1, wz= p(1|z)/p(0|z) if X=0.  • This odds‐of‐treatment weighting (OTW)  standardizes to the treated (X=1), as in PS  matching to the exposed.  • They fit these odds with a machine‐learningThey fit these odds with a machine learning  algorithm (boosted lasso).  Their approach eliminates stability problemsTheir approach eliminates stability problems.  Similar results have been reported using  related algorithms to fit probabilities for IPTWrelated algorithms to fit probabilities for IPTW. 5 June 2013 Greenland, Modern methods 31
  • 32. Now, what does and doesn’t belong in Z? • The answers were known intuitively to  some and demonstrated using potential g p outcomes well before the ascendance of  causal diagrams but the explanationscausal diagrams, but the explanations  were opaque to many (e.g., see Robins &  Greenland 1992)Greenland, 1992). • The development of formal causal graphs  in the 1980s opened the way to fast  screening algorithms for Z candidates.screening algorithms for Z candidates.  5 June 2013 Greenland, Modern methods 32
  • 33. Graphical models predate causal models • Graph theory began in the 1700s and was  used for circuit analysis in the 19th century.  Applications in probability and computer  science date back at least to the 1960s.science date back at least to the 1960s. • Causal path diagrams appeared circa 1920.  • By the 1980s, AI research merged directed  acyclic graph (DAG) models for probabilities y g p ( ) p (Bayes nets) with path diagrams, to produce  causal DAGs (causal Bayesian networks). Greenland  Pearlfest 2010 33 causal DAGs (causal Bayesian networks).
  • 34. Example DAGExample DAG A BA B CC FF E D 2 Feb 2012 Greenland 34
  • 35. Directed acyclic graphs and causal diagrams • A DAG shows the factors in the problem as  nodes linked by arrows only, with no y y, feedback loops. • A graph is a causal diagram if the arrowsA graph is a causal diagram if the arrows  are interpreted as links in causal chains  (formalization is a bit controversial; R&R)(formalization is a bit controversial; R&R). • Causal effects of one variable on another  are transmitted by causal sequences whichare transmitted by causal sequences, which  are directed (head‐tail) paths: X→Y→Z  means X can affect Z 2 Feb 2012 Greenland 35 means X can affect Z
  • 36. Assumptions inherent in causal diagrams Assumptions of a causal diagram are of two  forms:forms:  1) Arrow direction: resolvable by time order 2) Arrow absence: No directed path from X  to Y corresponds to a null hypothesis that,to Y corresponds to a null hypothesis that,  upon stratifying on all direct causes  (“parents”) of X X and Y would be( parents ) of X, X and Y would be  independent (“Causal Markov Condition”) 2 Feb 2012 Greenland 36 Thus: Most DAGs are full of null hypotheses!
  • 37. Colliders vs. noncolliders on a path P th l d (bl k d) t llid• Paths are closed (blocked) at colliders:  Associations cannot be transmitted across  a collider (→C←) on a path unless we  stratify (condition) on it or something it y ( ) g affects (such as F in C→F).  • Paths are open (unblocked) at noncolliders:• Paths are open (unblocked) at noncolliders:  Associations can be transmitted across a  llid ( di →C→ f knoncollider (a mediator →C→ or a fork ←C→) on a path unless we stratify on it  2 Feb 2012 Greenland 37 completely.
  • 38. Think of associations as signals flowing  h h h hthrough the graph • A variable can transmit associations along g some open (unblocked) directions but not  along closed (blocked) directionsalong closed (blocked) directions. • The open and closed directions are  h d d b dswitched around by conditioning  (stratifying) on the variable, and are  partially switched by partially or indirectly  conditioning. 2 Feb 2012 Greenland 38 co d t o g
  • 40. “Control” of bias in causal modeling • Target path: A path that transmits some of  the effect we want to estimate; it is athe effect we want to estimate; it is a  directed path from cause to effect. Bi i h A h h b• Biasing path: Any other open path between  the cause and effect variables.  • By judicious conditioning, we must close all  biasing paths without closing target pathsbiasing paths without closing target paths  or opening new biasing paths. (This isn’t  always possible with available data ) 2 Feb 2012 Greenland 40 always possible with available data.)
  • 41. Graphical sufficiency • If conditioning on Z closes all biasing paths  while leaving all target paths open Z iswhile leaving all target paths open, Z is  sufficient for control of bias. • If Z is sufficient (for control of bias) but no  subset is sufficient, Z is minimal sufficient.  Like almost all graphical concepts and results,  these are qualitative (topological); they dothese are qualitative (topological); they do  not address extent of bias. But they can aid  i i i l i i dinitial covariate screening and more. 5 June 2013 Greenland, Modern methods 41
  • 42. Example: inadequacy of statistical criteria Among traditional statistical criteria for  defining or detecting confounders are:defining or detecting confounders are:  • C is associated with E and with D given E Adj t t f C h th E D• Adjustment for C changes the E‐D  association (noncollapsibility).  These are equivalent in linear systems. (Often added: C must precede E and D.)( p ) Graphs illustrate how both criteria can fail,  leading to adjustment that increases biasleading to adjustment that increases bias. 5 June 2013 Greenland, Modern methods 42
  • 44. Instrumental variables in a linear system:  A and F assoc with E and D|E yet worse bias if youA and F assoc with E and D|E, yet worse bias if you  adjust conventionally for A or F A (B)A (B) F E A may be intent‐to‐treat D 2 Feb 2012 Greenland 44
  • 45. Estimation of direct effects by adjustment for  intermediates (Judd‐Kenny 1981 Robins‐Greenlandintermediates (Judd‐Kenny 1981, Robins‐Greenland  1992 by POs, Hernan‐Cole 2002 by cDAG) E (B)E (B) [C] D E associated with D|C yet no direct effect 2 Feb 2012 Greenland 45
  • 46. What do graphs say about complex cases? • Traditional statistical criteria need  refinement: When we add adjustment j variables, we have to weigh potential bias  eliminated against potential bias added.g p • Complex graphs inherit all biases in their  simple subgraphs (like M‐bias) so simplesimple subgraphs (like M bias), so simple  graphs are great warning devices, but…  • Due to their qualitative nature graphs give• Due to their qualitative nature, graphs give  us only clues about the balance of bias, and  say nothing about bias variance tradeoffssay nothing about bias‐variance tradeoffs.  5 June 2013 Greenland, Modern methods 46
  • 49. Confounding paths from E to D: None!Confounding paths from E to D: None! A [B]A [B] [C][C] FF E D 2 Feb 2012 Greenland 49
  • 50. What if essential variables are not  d ( ff l bl )measured? (no sufficient Z available) We then have to turn to sensitivity analysis ofWe then have to turn to sensitivity analysis of  bias (bias analysis; see Ch. 19 of ME3) to  get an idea of how much bias is left afterget an idea of how much bias is left after  adjustment for measured covariates, and  how much uncertainty is appropriatehow much uncertainty is appropriate. • Ordinary statistics ignore uncertainty about  unmeasured or mismeasured variables andunmeasured or mismeasured variables, and  so are grossly overconfident (intervals much  too narrow P values much too small)too narrow, P‐values much too small).  5 June 2013 Greenland, Modern methods 50
  • 51. All the usual validity problems  can be viewed bias due to missing datacan be viewed bias due to missing data • Confounding: nonrandomly missing  potential outcomes • Selection bias: nonrandomly missingSelection bias: nonrandomly missing  subjects M i i l• Measurement error: missing actual  variables of interest, so we use proxies in  their place (which may produce bias even if  the error is random) 5 June 2013 Greenland ‐ Bayes Workshop 51 )
  • 52. This view enables use of imputation methods  for bias analysis (Greenland, 2009): Completed data = observed + imputed dataCompleted data   observed + imputed data • To make any inference beyond what we see   (th b d) t h d l th t(the observed), we must have a model that  projects from the observed data to the  missing data (or to aspects of the data, like  means) to get the completed data.) g p • In bias analysis, however, key parameters  are not identified by the observations 5 June 2013 Greenland ‐ Bayes Workshop 52 are not identified by the observations. 
  • 53. As a result, bias analysis can have far more  impact on results than other methods Yet itimpact on results than other methods. Yet it  has seen the least adoption. Possible reasons:  It i f i ti t ff t t• It requires far more investigator effort to  specify the model and inputs (one group is  t i t f l t id li t thi )trying to formulate guidelines to ease this), • Once specified, it is nowhere near as easy to  run with commercial software as other  methods, • It can completely ruin any hint of  decisiveness or “significance” of results.g 5 June 2013 Greenland, Modern methods 53
  • 54. III. Conclusion:  Some modern tools you should know • For identification of bias sources and• For identification of bias sources and  sufficient adjustment sets: DAGs.  • For adjustment of measured confounders:  algorithmic treatment modeling (PS, IPTW,  or OTW) combined with outcome modeling  to achieve double robustness.to achieve double robustness.    • To account for uncertainty about  t ll d bi bi l iuncontrolled bias: bias analysis. 5 June 2013 Greenland, Modern methods 54