SlideShare a Scribd company logo
1 of 4
488 CHAP. 11 Fourier Analysis
n ∫ p
p
Fig. 269. Partial sums S1, S2, S3, S20 in Example 5
Solution. We have f = f1 + f2, where f1 = x and f2 = p. The Fourier coefficients of f2 are zero, except for
the first one (the constant term), which is p. Hence, by Theorem 1, the Fourier coefficients an, bn are those of
f1, except for a0, which is p. Since f1 is odd, an = 0 for n = 1, 2, Á , and
b =
2
p f1 (x) sin nx dx =
2
∫ x sin nx dx.
Integrating by parts, we obtain
2
0 0
p
—x cos nx 1 2
bn = p c n
2 +
n
0 0
cos nx dx d = — n cos np.
Hence b1 = 2, b2 = —2, b3 = 2, b4 = —2, Á , and the Fourier series of f(x) is
2 3 4
f(x) = p + 2 asin x —
1
sin 2x +
1
sin 3x — + Áb. (Fig. 269) ■
2 3
3. Half-Range Expansions
Half-range expansions are Fourier series. The idea is simple and useful. Figure 270
explains it. We want to represent f (x) in Fig. 270.0 by a Fourier series, where f (x)
may be the shape of a distorted violin string or the temperature in a metal bar of length
L, for example. (Corresponding problems will be discussed in Chap. 12.) Now comes
the idea.
We could extend f (x) as a function of period L and develop the extended function into
a Fourier series. But this series would, in general, contain both cosine and sine terms. We
can do better and get simpler series. Indeed, for our given f we can calculate Fourier
coefficients from (6*) or from (6**). And we have a choice and can take what seems
more practical. If we use (6*), we get (5*). This is the even periodic extension f1 of f
in Fig. 270a. If we choose (6**) instead, we get (5**), the odd periodic extension f2 of
f in Fig. 270b.
Both extensions have period 2L. This motivates the name half-range expansions: f is
given (and of physical interest) only on half the range, that is, on half the interval of
periodicity of length 2L.
Let us illustrate these ideas with an example that we shall also need in Chap. 12.
y S20
5
S3
S2
S1
y
– 0  x
∫
p p
SEC. 11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions 489
0 L
L
L L
∫
f2(x)
–L L x
f(x)
L x
(0) The given function f(x)
–L L x
(a) f (x) continued as an even periodic function of period 2L
(b) f(x) continued as an odd periodic function of period 2L
Fig. 270. Even and odd extensions of period 2L
E X A M P L E 6 “Triangle” and Its Half-Range Expansions
k Find the two half-range expansions of the function (Fig. 271)
2k L
0 L/2 L x x if 0 < x <
L 2
Fig. 271. The given
function in Example 6
f(x) = e
2k
(L — x) if
L
< x < L.
L 2
Solution. (a) Even periodic extension. From (6*) we obtain
1 2k L>2 2k L k
a0 =
L
c
L ∫ x dx + ∫
L>2
(L — x) dx d =
2
,
2 2k L>2
np 2k L np
an =
L
c
L ∫ x cos x dx + ∫
L>2
(L — x) cos
L
x dx d .
We consider an. For the first integral we obtain by integration by parts
∫
L>2
x cos
np
x dx = Lx
sin
np
L>2
x 2 — L
∫
L>2
sin
np
x dx
L np
0
L2
L 0 np 0
L
np L2 np
= sin
2np
Similarly, for the second integral we obtain
2
+
n2
p2
acos
2
— 1b .
∫
L
(L — x) cos
np
x dx =
L
(L — x) sin
np
x 2
L
L L np
+ sin x dx
L>2 L np
L
L L>2
L np
np L>2
L
L2 np
= a0 —
np
aL —
2
b sin
2
b —
n2
p2
acos np — cos
2
b.
f1(x)
490 CHAP. 11 Fourier Analysis
a b
–L 0 L x
We insert these two results into the formula for an. The sine terms cancel and so does a factor L2. This gives
4k np
a = 2 cos — cos np — 1 .
Thus,
n
n2p2 2
a2 = —16k>(22p2), a6 = —16k>(62p2), a10 = —16k>(102p2), Á
and an = 0 if n G 2, 6, 10, 14, Á . Hence the first half-range expansion of f(x) is (Fig. 272a)
f(x) =
k
—
16k
a
1
cos
2p
x +
1
cos
6p
x + Áb .
2 p2 22 L 62 L
This Fourier cosine series represents the even periodic extension of the given function f(x), of period 2L.
(b) Odd periodic extension. Similarly, from (6**) we obtain
(5)
8k
bn =
n2
p2
sin
np
.
2
Hence the other half-range expansion of f(x) is (Fig. 272b)
f(x) =
8k
a
1
sin
p
x —
1
sin
3p
x +
1
sin
5p
x — + Á b.
p2 12 L 32 L 52 L
The series represents the odd periodic extension of f(x), of period 2L.
Basic applications of these results will be shown in Secs. 12.3 and 12.5. ■
–L 0 L x
(a) Even extension
(b) Odd extension
Fig. 272. Periodic extensions of f(x) in Example 6
EVEN AND ODD FUNCTIONS
Are the following functions even or odd or neither even nor
odd?
1. ex, e—ƒ x ƒ, x3 cos nx, x2 tan px, sinh x — cosh x
2. sin2 x, sin (x2), ln x, x>(x2 + 1), x cot x
3. Sums and products of even functions
4. Sums and products of odd functions
5. Absolute values of odd functions
6. Product of an odd times an even function
7. Find all functions that are both even and odd.
FOURIER SERIES FOR PERIOD p = 2L
Is the given function even or odd or neither even nor
odd? Find its Fourier series. Show details of your
work.
8.
–1 0 1
P R O B L E M SET 11.2
1
8–17
1–7
SEC. 11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions 491
4
4
9.
10.
(b) Apply the program to Probs. 8–11, graphing the first
few partial sums of each of the four series on common
axes. Choose the first five or more partial sums until
they approximate the given function reasonably well.
Compare and comment.
22. Obtain the Fourier series in Prob. 8 from that in
Prob. 17.
11. f(x) = x2 (—1 < x < 1), p = 2
HALF-RANGE EXPANSIONS
Find (a) the Fourier cosine series, (b) the Fourier sine series.
Sketch f (x) and its two periodic extensions. Show the
details.
23.
12. f(x) = 1 — x2>4 (—2 < x < 2), p = 4
13. 1
2
24.
–1 1
2 2
14. f(x) = cos px (—1 < x < 1), p = 1
2 2
15.
16.
17.
f(x) = x ƒ x ƒ (—1 < x < 1), p = 2
26. 
–
2
–
18. Rectifier. Find the Fourier series of the function
obtained by passing the voltage v(t) = V0 cos 100pt
through a half-wave rectifier that clips the negative
half-waves.
19. Trigonometric Identities. Show that the familiar
identities cos3 x = 3 cos x + 1 cos 3x and sin3 x = 3
27. 
–
2
28.

– 
2

– 
2
4 4 4
sin x — 1 sin 3x can be interpreted as Fourier series
expansions. Develop cos4 x.
20. Numeric Values. Using Prob. 11, show that 1 + 1 +
1
+ 1
+ Á = 1
p2
.
9 16 6
21. CAS PROJECT. Fourier Series of 2L-Periodic
Functions. (a) Write a program for obtaining partial
sums of a Fourier series (5).
29. f(x) = sin x (0 < x < p)
30. Obtain the solution to Prob. 26 from that of
Prob. 27.
2

–
– 
– 
–
2
4
–4 4
–4
1
–2 2
–1
L
L
25. 

1
2 4
1
4
23–29
1
1 1

More Related Content

Similar to Advanced_Engineering_Mathematics_10th_Ed-514-517.docx

Unit vii
Unit viiUnit vii
Unit vii
mrecedu
 
2.3 new functions from old functions
2.3 new functions from old functions2.3 new functions from old functions
2.3 new functions from old functions
BarojReal1
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Mahmood Adel
 
Famous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdfFamous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdf
AbdulHannif2
 
01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdf01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdf
RajuSingh806014
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
Amr Mohamed
 

Similar to Advanced_Engineering_Mathematics_10th_Ed-514-517.docx (20)

exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
senior seminar
senior seminarsenior seminar
senior seminar
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
Unit vii
Unit viiUnit vii
Unit vii
 
Graph a function
Graph a functionGraph a function
Graph a function
 
Fourier series 2.ppt
Fourier series 2.pptFourier series 2.ppt
Fourier series 2.ppt
 
Functions
FunctionsFunctions
Functions
 
math camp
math campmath camp
math camp
 
Convexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfConvexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdf
 
2.3 new functions from old functions
2.3 new functions from old functions2.3 new functions from old functions
2.3 new functions from old functions
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
3_1 Exponential functions and their graphs (1).ppt
3_1 Exponential functions and their graphs (1).ppt3_1 Exponential functions and their graphs (1).ppt
3_1 Exponential functions and their graphs (1).ppt
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Math for 800 09 functions
Math for 800   09 functionsMath for 800   09 functions
Math for 800 09 functions
 
Famous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdfFamous problem IMO 1988 Q6.pdf
Famous problem IMO 1988 Q6.pdf
 
01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdf01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdf
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 

Recently uploaded

Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Pooja Nehwal
 
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
ZurliaSoop
 
Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
amitlee9823
 
Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
amitlee9823
 
Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...
Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...
Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...
only4webmaster01
 
➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men 🔝Mirzapur🔝 Escor...
➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men  🔝Mirzapur🔝   Escor...➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men  🔝Mirzapur🔝   Escor...
➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men 🔝Mirzapur🔝 Escor...
amitlee9823
 
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
Call Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night StandCall Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night StandCall Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...
amitlee9823
 

Recently uploaded (20)

Resumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineResumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying Online
 
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
 
Solution Manual for First Course in Abstract Algebra A, 8th Edition by John B...
Solution Manual for First Course in Abstract Algebra A, 8th Edition by John B...Solution Manual for First Course in Abstract Algebra A, 8th Edition by John B...
Solution Manual for First Course in Abstract Algebra A, 8th Edition by John B...
 
Hyderabad 💫✅💃 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATIS...
Hyderabad 💫✅💃 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATIS...Hyderabad 💫✅💃 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATIS...
Hyderabad 💫✅💃 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATIS...
 
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
 
Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Chikkabanavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
 
Toxicokinetics studies.. (toxicokinetics evaluation in preclinical studies)
Toxicokinetics studies.. (toxicokinetics evaluation in preclinical studies)Toxicokinetics studies.. (toxicokinetics evaluation in preclinical studies)
Toxicokinetics studies.. (toxicokinetics evaluation in preclinical studies)
 
Miletti Gabriela_Vision Plan for artist Jahzel.pdf
Miletti Gabriela_Vision Plan for artist Jahzel.pdfMiletti Gabriela_Vision Plan for artist Jahzel.pdf
Miletti Gabriela_Vision Plan for artist Jahzel.pdf
 
Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Devanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
 
Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...
Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...
Call Girls Jayanagar Just Call 👗 9155563397 👗 Top Class Call Girl Service Ban...
 
➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men 🔝Mirzapur🔝 Escor...
➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men  🔝Mirzapur🔝   Escor...➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men  🔝Mirzapur🔝   Escor...
➥🔝 7737669865 🔝▻ Mirzapur Call-girls in Women Seeking Men 🔝Mirzapur🔝 Escor...
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
 
Résumé (2 pager - 12 ft standard syntax)
Résumé (2 pager -  12 ft standard syntax)Résumé (2 pager -  12 ft standard syntax)
Résumé (2 pager - 12 ft standard syntax)
 
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Booking open Available Pune Call Girls Ambegaon Khurd 6297143586 Call Hot In...
Booking open Available Pune Call Girls Ambegaon Khurd  6297143586 Call Hot In...Booking open Available Pune Call Girls Ambegaon Khurd  6297143586 Call Hot In...
Booking open Available Pune Call Girls Ambegaon Khurd 6297143586 Call Hot In...
 
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
 
Call Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night StandCall Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Kengeri Satellite Town ☎ 7737669865 🥵 Book Your One night Stand
 
TEST BANK For Evidence-Based Practice for Nurses Appraisal and Application of...
TEST BANK For Evidence-Based Practice for Nurses Appraisal and Application of...TEST BANK For Evidence-Based Practice for Nurses Appraisal and Application of...
TEST BANK For Evidence-Based Practice for Nurses Appraisal and Application of...
 
Call Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night StandCall Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Sarjapur Road ☎ 7737669865 🥵 Book Your One night Stand
 
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...
 

Advanced_Engineering_Mathematics_10th_Ed-514-517.docx

  • 1. 488 CHAP. 11 Fourier Analysis n ∫ p p Fig. 269. Partial sums S1, S2, S3, S20 in Example 5 Solution. We have f = f1 + f2, where f1 = x and f2 = p. The Fourier coefficients of f2 are zero, except for the first one (the constant term), which is p. Hence, by Theorem 1, the Fourier coefficients an, bn are those of f1, except for a0, which is p. Since f1 is odd, an = 0 for n = 1, 2, Á , and b = 2 p f1 (x) sin nx dx = 2 ∫ x sin nx dx. Integrating by parts, we obtain 2 0 0 p —x cos nx 1 2 bn = p c n 2 + n 0 0 cos nx dx d = — n cos np. Hence b1 = 2, b2 = —2, b3 = 2, b4 = —2, Á , and the Fourier series of f(x) is 2 3 4 f(x) = p + 2 asin x — 1 sin 2x + 1 sin 3x — + Áb. (Fig. 269) ■ 2 3 3. Half-Range Expansions Half-range expansions are Fourier series. The idea is simple and useful. Figure 270 explains it. We want to represent f (x) in Fig. 270.0 by a Fourier series, where f (x) may be the shape of a distorted violin string or the temperature in a metal bar of length L, for example. (Corresponding problems will be discussed in Chap. 12.) Now comes the idea. We could extend f (x) as a function of period L and develop the extended function into a Fourier series. But this series would, in general, contain both cosine and sine terms. We can do better and get simpler series. Indeed, for our given f we can calculate Fourier coefficients from (6*) or from (6**). And we have a choice and can take what seems more practical. If we use (6*), we get (5*). This is the even periodic extension f1 of f in Fig. 270a. If we choose (6**) instead, we get (5**), the odd periodic extension f2 of f in Fig. 270b. Both extensions have period 2L. This motivates the name half-range expansions: f is given (and of physical interest) only on half the range, that is, on half the interval of periodicity of length 2L. Let us illustrate these ideas with an example that we shall also need in Chap. 12. y S20 5 S3 S2 S1 y – 0  x ∫ p p
  • 2. SEC. 11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions 489 0 L L L L ∫ f2(x) –L L x f(x) L x (0) The given function f(x) –L L x (a) f (x) continued as an even periodic function of period 2L (b) f(x) continued as an odd periodic function of period 2L Fig. 270. Even and odd extensions of period 2L E X A M P L E 6 “Triangle” and Its Half-Range Expansions k Find the two half-range expansions of the function (Fig. 271) 2k L 0 L/2 L x x if 0 < x < L 2 Fig. 271. The given function in Example 6 f(x) = e 2k (L — x) if L < x < L. L 2 Solution. (a) Even periodic extension. From (6*) we obtain 1 2k L>2 2k L k a0 = L c L ∫ x dx + ∫ L>2 (L — x) dx d = 2 , 2 2k L>2 np 2k L np an = L c L ∫ x cos x dx + ∫ L>2 (L — x) cos L x dx d . We consider an. For the first integral we obtain by integration by parts ∫ L>2 x cos np x dx = Lx sin np L>2 x 2 — L ∫ L>2 sin np x dx L np 0 L2 L 0 np 0 L np L2 np = sin 2np Similarly, for the second integral we obtain 2 + n2 p2 acos 2 — 1b . ∫ L (L — x) cos np x dx = L (L — x) sin np x 2 L L L np + sin x dx L>2 L np L L L>2 L np np L>2 L L2 np = a0 — np aL — 2 b sin 2 b — n2 p2 acos np — cos 2 b. f1(x)
  • 3. 490 CHAP. 11 Fourier Analysis a b –L 0 L x We insert these two results into the formula for an. The sine terms cancel and so does a factor L2. This gives 4k np a = 2 cos — cos np — 1 . Thus, n n2p2 2 a2 = —16k>(22p2), a6 = —16k>(62p2), a10 = —16k>(102p2), Á and an = 0 if n G 2, 6, 10, 14, Á . Hence the first half-range expansion of f(x) is (Fig. 272a) f(x) = k — 16k a 1 cos 2p x + 1 cos 6p x + Áb . 2 p2 22 L 62 L This Fourier cosine series represents the even periodic extension of the given function f(x), of period 2L. (b) Odd periodic extension. Similarly, from (6**) we obtain (5) 8k bn = n2 p2 sin np . 2 Hence the other half-range expansion of f(x) is (Fig. 272b) f(x) = 8k a 1 sin p x — 1 sin 3p x + 1 sin 5p x — + Á b. p2 12 L 32 L 52 L The series represents the odd periodic extension of f(x), of period 2L. Basic applications of these results will be shown in Secs. 12.3 and 12.5. ■ –L 0 L x (a) Even extension (b) Odd extension Fig. 272. Periodic extensions of f(x) in Example 6 EVEN AND ODD FUNCTIONS Are the following functions even or odd or neither even nor odd? 1. ex, e—ƒ x ƒ, x3 cos nx, x2 tan px, sinh x — cosh x 2. sin2 x, sin (x2), ln x, x>(x2 + 1), x cot x 3. Sums and products of even functions 4. Sums and products of odd functions 5. Absolute values of odd functions 6. Product of an odd times an even function 7. Find all functions that are both even and odd. FOURIER SERIES FOR PERIOD p = 2L Is the given function even or odd or neither even nor odd? Find its Fourier series. Show details of your work. 8. –1 0 1 P R O B L E M SET 11.2 1 8–17 1–7
  • 4. SEC. 11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions 491 4 4 9. 10. (b) Apply the program to Probs. 8–11, graphing the first few partial sums of each of the four series on common axes. Choose the first five or more partial sums until they approximate the given function reasonably well. Compare and comment. 22. Obtain the Fourier series in Prob. 8 from that in Prob. 17. 11. f(x) = x2 (—1 < x < 1), p = 2 HALF-RANGE EXPANSIONS Find (a) the Fourier cosine series, (b) the Fourier sine series. Sketch f (x) and its two periodic extensions. Show the details. 23. 12. f(x) = 1 — x2>4 (—2 < x < 2), p = 4 13. 1 2 24. –1 1 2 2 14. f(x) = cos px (—1 < x < 1), p = 1 2 2 15. 16. 17. f(x) = x ƒ x ƒ (—1 < x < 1), p = 2 26.  – 2 – 18. Rectifier. Find the Fourier series of the function obtained by passing the voltage v(t) = V0 cos 100pt through a half-wave rectifier that clips the negative half-waves. 19. Trigonometric Identities. Show that the familiar identities cos3 x = 3 cos x + 1 cos 3x and sin3 x = 3 27.  – 2 28.  –  2  –  2 4 4 4 sin x — 1 sin 3x can be interpreted as Fourier series expansions. Develop cos4 x. 20. Numeric Values. Using Prob. 11, show that 1 + 1 + 1 + 1 + Á = 1 p2 . 9 16 6 21. CAS PROJECT. Fourier Series of 2L-Periodic Functions. (a) Write a program for obtaining partial sums of a Fourier series (5). 29. f(x) = sin x (0 < x < p) 30. Obtain the solution to Prob. 26 from that of Prob. 27. 2  – –  –  – 2 4 –4 4 –4 1 –2 2 –1 L L 25.   1 2 4 1 4 23–29 1 1 1