SlideShare a Scribd company logo
1 of 1
Download to read offline
Identification of Differentially Expressed Genes for Mummy Berry 
(Monilinia vaccinii‐corymbosi) Resistance in Blueberry
Ashley Yow1, Kathleen Burchhardt2 , Marc Cubeta2,	Hamid Ashrafi1
1North Carolina State University, Department of Horticulture
2North Carolina State University, Department of Entomology and Plant Pathology
BACKGROUND
• Molecular data for blueberries is severely lacking.
• Economic loss due to mummy berry has been repeatedly documented across N. 
America. 
• Molecular data is needed to truly understand the genetic mechanisms behind 
pathogen resistance.
• Next‐generation sequencing can generate large amounts of genomic data within a 
few weeks.
• RNA‐seq is a powerful tool for measuring differential gene expression.
• In this study, we used a susceptible cultivar, ‘Arlen’, for RNA‐seq analysis.
OBJECTIVES
• To develop transcriptome sequences of a blueberry cultivar (Arlen) from total RNA 
extracted from leaves, roots, and different developmental stages of flowers and 
fruit.
• Mapping cv. ‘Arlen’ transcriptome reads to the ‘W85‐20’ reference genome is a good 
indication of up‐ and down‐regulated genes.
• To develop transcriptome sequences of a blueberry cultivar (Arlen) for mature 
fruit both infected and uninfected with mummy berry.
• To make a transcriptome assembly of cv. ‘Arlen’ from Illumina short reads.
• To make a genome assembly of M. vaccinii‐corymbosi from Roche 454 reads.
• To identify candidate genes related to mummy berry resistance and genes related 
to the infection process.
METHODS
• Samples were freeze dried in the field and transferred to ‐80⁰C freezer on dry ice.
• RNA was extracted from leaves, flowers, and fruits.
• cDNA libraries were created using the KAPA mRNA‐Seq kit for Illumina platforms.
• 200‐300bp desired insert size
• Libraries were run using the Illumina Miseq
• 150bp read length, single‐end
• 454 read sequences for M. vaccinii‐corymbosi were obtained from Dr. Marc 
Cubeta. 
• CLC Genomics v. 9.0.1 was used for trimming reads, de Novo assembly, RNA‐seq
mapping, and expression analysis.
• Arlen sequences were mapped to both the ‘W85‐20’ blueberry reference genome and an 
assembled genome for an NC isolate of M. vaccinii‐corymbosi
• For de novo assembly of cv. ‘Arlen‘ we used a word size of 31, bubble size of 150, and 
minimum contig length of 300bp
• For de novo assembly of M. vaccinii‐corymbosi we used a word size of 19, bubble size of 
334, and minimum contig length of 200bp
• BLASTx v. 2.4.0+ was used in Linux terminal for blasting contigs to the full NCBI 
non‐redundant protein database.
RESULTS
• We were able to assemble 49,803 contigs from our cv. ‘Arlen’ transcriptome reads 
after filtering out reads associated with the M. vaccinii‐corymbosi fungus.
• The contig N50 for this assembly was 1,084 bp long and our largest contig was 15,731 bp
long.
• As expected, we had a higher percentage of transcriptome reads from our 
infected mature fruits that mapped to the M. vaccinii‐corymbosi genome 
assembly due to the presence of the pathogen in the fruit.
• 38.97% for mummy fruit rep 1 and 41.08% for mummy fruit rep 2.
• These two tissues also had the lowest percentage of reads map to the ‘W85‐20’ diploid 
blueberry reference genome.
• The Principal Component Analysis showed that our mummy infected fruits were 
clustered together and uninfected tissues were clustered together based on RPKM 
of scaffolds in the ‘W85‐20’ blueberry genome.
• Scaffolds in the ‘W85‐20’ blueberry genome with a high fold‐difference between 
our infected and non‐infected tissue groups are of interest because they may 
contain genes that play a role in mummy berry infection.
• Scaffold 66203; Scaffold 35130; Scaffold 88151; Scaffold 35999
CONCLUSIONS
• Some of the cv. ‘Arlen’ transcriptome reads did not map to either the M. vaccinii‐
corymbosi genome or the ‘W85‐20’ diploid blueberry reference genome. 
• The reason for this could be due to differences between cv. ‘Arlen’ and the ‘W85‐20’ 
accession, or it could be due to an incomplete blueberry reference genome.
• Annotation on our ‘W85‐20’ diploid blueberry reference genome will be needed in 
order to identify genes related to mummy berry infection. Currently, the genome 
is in the form of scaffolds, which could contain multiple genes.
• In the future, we will also include more cultivars on the extreme ends of the 
spectrum of resistance.
• In particular we are interested in performing analyses on cv. ‘Blue Gold’, which is known to 
be highly susceptible to mummy berry.
Arlen Transcriptome Reads Mapping Stats
CV. Arlen Location
Number of 
Reads
Reads Mapped 
to W85‐20
% of Reads 
Mapped
Reads Mapped 
to M. vaccinii‐
corymbosi
% of Reads
Mapped
Fruit Stage 1 Castle Hayne 1,257,005 767,816 61.08 7,283 0.58
Fruit Stage 2 Castle Hayne 1,271,969 789,008 62.03 3,084 0.24
Fruit Stage 3 Castle Hayne 1,487,476 855,195 57.49 6,573 0.44
Fruit Stage 4 Castle Hayne 1,206,255 731,511 60.64 3,164 0.26
Fruit Stage 4 
Rep 2
Castle Hayne 987,653 584,972 59.23 2,492 0.25
Mummy Fruit 
Stage 4
Castle Hayne 1,150,852 169,709 14.75 448,469 38.97
Mummy Fruit 
Stage 4 Rep 2
Castle Hayne 982,291 156,014 15.88 403,572 41.08
Fruit Stage 3 Sandhills 1,121,100 617,924 55.12 7,897 0.70
Fruit Stage 3 
Rep 2
Sandhills 1,139,034 681,415 59.82 4,895 0.43
Fruit Stage 4 Sandhills 1,104,765 680,120 61.56 3,267 0.30
Fruit Stage 4   
Rep 2
Sandhills 1,031,052 636,119 61.70 3,371 0.33
FL1 Castle Hayne 820,782 505,015 61.53 6,170 0.75
FL3 Castle Hayne 1,021,020 583,335 57.13 8,058 0.79
FL5 Castle Hayne 1,031,618 567,937 55.05 10,578 1.03
L Castle Hayne 893,901 502,060 56.17 5,898 0.66
R Castle Hayne 1,193,456 718,407 60.20 6,357 0.53
All Tissues ‐‐ 17,700,229 9,546,557 53.93 931,128 5.26
Table 2: Statistics for cv. ‘Arlen’ transcriptome reads mapping to the diploid blueberry ‘W85‐20’ reference genome as well as
M. vaccinii‐corymbosi genome assembly 
ACKNOWLEDGMENTS	
This research was partially supported by Southern Region Small Fruit Consortium Award No. 2016 R‐04 and North Carolina 
State University. 
The authors would like to thank Dr. Kathleen Burchhardt to collect and sequence one isolates of M. vaccinium corymbosi. 
The authors would like to acknowledge NCSU’s Genomic Sciences Lab for performing the sequencing using Illumina MiSeq.
The authors would like to thank Mr. Terry Bland for his help with tissue collection.
REFERENCES
CLC Genomics Workbench 9.0.1 (https://www.qiagenbioinformatics.com/)
American Phytopathological Society & Oregon State Univeristy
(http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/MummyBerry.aspx)
University of Georgia Plant Pathology , University of Georgia, Bugwood.org
Assembly Stats
Arlen 
Transcriptome
Assembly Contig
Measurements
M. vaccinii‐
corymbosi
Assembly Contig
Measurements
N50 1,084 bp 838 bp
Minimum 300 bp 200 bp
Maximum 15,731 bp 14,120 bp
Average 870 bp 754 bp
Count 49,803 contigs 18,988 contigs
Total 43,309,250 bp 14,320,408 bp
Table 1: Cv. ‘Arlen’ Transcriptome Assembly and M. 
vaccinii‐corymbosi Genome Assembly Summary 
Statistics
Figure 1: Tissues collected for RNA extraction
Figure 2: Workflow for performing RNA‐Seq analysis
Figure 3: Visualization of mummy berry infection in 
blueberry fruits
EDGE test for cv. ‘Arlen’ 
transcriptome reads mapped 
to blueberry genome
Principal Component Analysis 
for cv. ‘Arlen’ transcriptome 
reads mapped to blueberry 
genome
Figure 4: Hierarchical 
Clustering of Samples for cv. 
‘Arlen’ transcriptome reads 
mapped to ‘W85‐20’ blueberry 
reference genome

More Related Content

What's hot

Gene pyramiding in tomato
Gene pyramiding in tomatoGene pyramiding in tomato
Gene pyramiding in tomatoRashmi kumari
 
Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...Dr. Kaushik Kumar Panigrahi
 
Mas in Orpan/Underutilized Crops.
Mas in Orpan/Underutilized Crops.Mas in Orpan/Underutilized Crops.
Mas in Orpan/Underutilized Crops.Ashwani Kumar
 
Current trends in plant breeding
Current trends in plant breedingCurrent trends in plant breeding
Current trends in plant breedingAbdul GHAFOOR
 
Breeding for Drought resistance in Rice
Breeding for Drought resistance in RiceBreeding for Drought resistance in Rice
Breeding for Drought resistance in RiceRoshan Parihar
 
Alien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insightsAlien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insightsasmat ara
 
Basics of marker assisted background selection
Basics of marker assisted background selectionBasics of marker assisted background selection
Basics of marker assisted background selectionKarthikeyan Periyathambi
 
Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...
Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...
Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...CIAT
 
Candidate Gene Approach in Crop Improvement
Candidate Gene Approach in Crop ImprovementCandidate Gene Approach in Crop Improvement
Candidate Gene Approach in Crop ImprovementBonipasAntony2
 
MARKER ASSISTED BACKCROSS BREEDING
MARKER ASSISTED BACKCROSS BREEDINGMARKER ASSISTED BACKCROSS BREEDING
MARKER ASSISTED BACKCROSS BREEDINGsandeshGM
 
Marker assisted backcross breeding
Marker assisted backcross breedingMarker assisted backcross breeding
Marker assisted backcross breedingAnilkumar C
 
Barnase and bartar system
Barnase and bartar systemBarnase and bartar system
Barnase and bartar systemAlicia Tiny
 
marker assisted selection in breeding for nematode resistance
marker assisted selection in breeding for nematode resistancemarker assisted selection in breeding for nematode resistance
marker assisted selection in breeding for nematode resistanceBothwell Madhanzi
 
Backcross Breeding Method
 Backcross Breeding Method  Backcross Breeding Method
Backcross Breeding Method Naveen Kumar
 
Presentation on pedigree method and back-cross breeding method comparison
Presentation on pedigree method and back-cross breeding method comparisonPresentation on pedigree method and back-cross breeding method comparison
Presentation on pedigree method and back-cross breeding method comparisonDr. Kaushik Kumar Panigrahi
 
Gene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvementGene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvementShamlyGupta
 

What's hot (20)

Gene pyramiding in tomato
Gene pyramiding in tomatoGene pyramiding in tomato
Gene pyramiding in tomato
 
Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...
 
Gene pyramiding
Gene pyramidingGene pyramiding
Gene pyramiding
 
Mas in Orpan/Underutilized Crops.
Mas in Orpan/Underutilized Crops.Mas in Orpan/Underutilized Crops.
Mas in Orpan/Underutilized Crops.
 
Current trends in plant breeding
Current trends in plant breedingCurrent trends in plant breeding
Current trends in plant breeding
 
Breeding for Drought resistance in Rice
Breeding for Drought resistance in RiceBreeding for Drought resistance in Rice
Breeding for Drought resistance in Rice
 
Alien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insightsAlien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insights
 
Basics of marker assisted background selection
Basics of marker assisted background selectionBasics of marker assisted background selection
Basics of marker assisted background selection
 
Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...
Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...
Application of Marker Assisted Selection (MAS) for the improvement of Bean Co...
 
Candidate Gene Approach in Crop Improvement
Candidate Gene Approach in Crop ImprovementCandidate Gene Approach in Crop Improvement
Candidate Gene Approach in Crop Improvement
 
MARKER ASSISTED BACKCROSS BREEDING
MARKER ASSISTED BACKCROSS BREEDINGMARKER ASSISTED BACKCROSS BREEDING
MARKER ASSISTED BACKCROSS BREEDING
 
Ganesh gp 509
Ganesh gp 509Ganesh gp 509
Ganesh gp 509
 
Allele mining
Allele miningAllele mining
Allele mining
 
Marker assisted backcross breeding
Marker assisted backcross breedingMarker assisted backcross breeding
Marker assisted backcross breeding
 
Barnase and bartar system
Barnase and bartar systemBarnase and bartar system
Barnase and bartar system
 
marker assisted selection in breeding for nematode resistance
marker assisted selection in breeding for nematode resistancemarker assisted selection in breeding for nematode resistance
marker assisted selection in breeding for nematode resistance
 
Breeding rice for drought
Breeding rice for droughtBreeding rice for drought
Breeding rice for drought
 
Backcross Breeding Method
 Backcross Breeding Method  Backcross Breeding Method
Backcross Breeding Method
 
Presentation on pedigree method and back-cross breeding method comparison
Presentation on pedigree method and back-cross breeding method comparisonPresentation on pedigree method and back-cross breeding method comparison
Presentation on pedigree method and back-cross breeding method comparison
 
Gene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvementGene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvement
 

Viewers also liked

Genetically modified insects
Genetically modified insectsGenetically modified insects
Genetically modified insectsSushil Nyaupane
 
Software Entomology or Where Do Bugs Come From?
Software Entomology or Where Do Bugs Come From?Software Entomology or Where Do Bugs Come From?
Software Entomology or Where Do Bugs Come From?Noah Sussman
 
1st Rotation Presentation
1st Rotation Presentation1st Rotation Presentation
1st Rotation PresentationStella Kounadi
 
An introduction to the new generation pesticides 25 10-2013. new
An introduction to the new generation pesticides 25 10-2013. newAn introduction to the new generation pesticides 25 10-2013. new
An introduction to the new generation pesticides 25 10-2013. newDilin Sathyanath
 
Pests 2009
Pests   2009Pests   2009
Pests 2009cvadheim
 
MODE Of ACTION , FORMULATION & FACTORs AFFECTING
MODE Of ACTION , FORMULATION & FACTORs  AFFECTINGMODE Of ACTION , FORMULATION & FACTORs  AFFECTING
MODE Of ACTION , FORMULATION & FACTORs AFFECTINGarnab das
 
Biotechnological approaches in entomology
Biotechnological approaches in entomologyBiotechnological approaches in entomology
Biotechnological approaches in entomologykamalmatharu83
 
Genetic engineering in baculovirus, entomopathogenic fungi and bacteria
Genetic engineering in baculovirus, entomopathogenic fungi and bacteriaGenetic engineering in baculovirus, entomopathogenic fungi and bacteria
Genetic engineering in baculovirus, entomopathogenic fungi and bacteriaSuman Sanjta
 
Molecular basis of insecticides resistance in insects with special reference ...
Molecular basis of insecticides resistance in insects with special reference ...Molecular basis of insecticides resistance in insects with special reference ...
Molecular basis of insecticides resistance in insects with special reference ...Assam Agricultural University
 
Insecticide & Insectiside Resistance
Insecticide & Insectiside ResistanceInsecticide & Insectiside Resistance
Insecticide & Insectiside ResistanceKunal Modak
 
Molecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in InsectsMolecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in InsectsSaramita De Chakravarti
 
Pesticides and Biomagnification
Pesticides and BiomagnificationPesticides and Biomagnification
Pesticides and BiomagnificationOhMiss
 

Viewers also liked (20)

Spider Silk
Spider SilkSpider Silk
Spider Silk
 
Genetically modified insects
Genetically modified insectsGenetically modified insects
Genetically modified insects
 
Software Entomology or Where Do Bugs Come From?
Software Entomology or Where Do Bugs Come From?Software Entomology or Where Do Bugs Come From?
Software Entomology or Where Do Bugs Come From?
 
Rice Ipm Stout
Rice Ipm StoutRice Ipm Stout
Rice Ipm Stout
 
1st Rotation Presentation
1st Rotation Presentation1st Rotation Presentation
1st Rotation Presentation
 
An introduction to the new generation pesticides 25 10-2013. new
An introduction to the new generation pesticides 25 10-2013. newAn introduction to the new generation pesticides 25 10-2013. new
An introduction to the new generation pesticides 25 10-2013. new
 
Pests 2009
Pests   2009Pests   2009
Pests 2009
 
Spider silk
Spider silk Spider silk
Spider silk
 
MODE Of ACTION , FORMULATION & FACTORs AFFECTING
MODE Of ACTION , FORMULATION & FACTORs  AFFECTINGMODE Of ACTION , FORMULATION & FACTORs  AFFECTING
MODE Of ACTION , FORMULATION & FACTORs AFFECTING
 
Biotechnological approaches in entomology
Biotechnological approaches in entomologyBiotechnological approaches in entomology
Biotechnological approaches in entomology
 
Genetic engineering in baculovirus, entomopathogenic fungi and bacteria
Genetic engineering in baculovirus, entomopathogenic fungi and bacteriaGenetic engineering in baculovirus, entomopathogenic fungi and bacteria
Genetic engineering in baculovirus, entomopathogenic fungi and bacteria
 
Molecular basis of insecticides resistance in insects with special reference ...
Molecular basis of insecticides resistance in insects with special reference ...Molecular basis of insecticides resistance in insects with special reference ...
Molecular basis of insecticides resistance in insects with special reference ...
 
Spider silk
Spider silkSpider silk
Spider silk
 
Insecticide & Insectiside Resistance
Insecticide & Insectiside ResistanceInsecticide & Insectiside Resistance
Insecticide & Insectiside Resistance
 
New Chemistries For Insect Management
New Chemistries For Insect ManagementNew Chemistries For Insect Management
New Chemistries For Insect Management
 
BIO-PESTICIDE
BIO-PESTICIDEBIO-PESTICIDE
BIO-PESTICIDE
 
Molecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in InsectsMolecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in Insects
 
Pesticides and Biomagnification
Pesticides and BiomagnificationPesticides and Biomagnification
Pesticides and Biomagnification
 
Biopesticides in Integrated Pest Management
Biopesticides in Integrated Pest ManagementBiopesticides in Integrated Pest Management
Biopesticides in Integrated Pest Management
 
Pesticide
PesticidePesticide
Pesticide
 

Similar to ASHS_2016_AGY_v4

Application of molecular markers in Plant Breeding
Application of molecular markers in Plant BreedingApplication of molecular markers in Plant Breeding
Application of molecular markers in Plant BreedingShubhamYadu1
 
Germplasm characterization
Germplasm characterizationGermplasm characterization
Germplasm characterizationAjaykumarKarna
 
Genome Mapping And Biological Resources Slides.pptx
Genome Mapping And Biological Resources Slides.pptxGenome Mapping And Biological Resources Slides.pptx
Genome Mapping And Biological Resources Slides.pptxAqsaZakaria
 
Advance Plant Breeding Techniques
Advance Plant Breeding TechniquesAdvance Plant Breeding Techniques
Advance Plant Breeding TechniquesKhem Raj Pant
 
Dr. Jay Calvert - Viral genetics and application to vaccine development
Dr. Jay Calvert - Viral genetics and application to vaccine developmentDr. Jay Calvert - Viral genetics and application to vaccine development
Dr. Jay Calvert - Viral genetics and application to vaccine developmentJohn Blue
 
Post genomic tools for genetic enhancement of germplasm
Post genomic tools for genetic enhancement of germplasmPost genomic tools for genetic enhancement of germplasm
Post genomic tools for genetic enhancement of germplasmVishu1234567
 
Marker assisted selection (rice).pptx
Marker assisted selection (rice).pptxMarker assisted selection (rice).pptx
Marker assisted selection (rice).pptxElizabeth Philip
 
Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...UNIVERSITI MALAYSIA SABAH
 
B4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual Okogbenin
B4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual OkogbeninB4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual Okogbenin
B4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual Okogbeninb4fa
 
Diner_oyster
Diner_oysterDiner_oyster
Diner_oystersr320
 
Introduction to Plant Biotechnology- Durgashree Diwakar
Introduction to Plant Biotechnology- Durgashree DiwakarIntroduction to Plant Biotechnology- Durgashree Diwakar
Introduction to Plant Biotechnology- Durgashree DiwakarDurgashree Diwakar
 
Marker Assisted Selection in Crop Breeding
 Marker Assisted Selection in Crop Breeding Marker Assisted Selection in Crop Breeding
Marker Assisted Selection in Crop BreedingPawan Chauhan
 
431 Bioinformatics approaches and its application in plant science.pptx
431 Bioinformatics approaches and its application in plant science.pptx431 Bioinformatics approaches and its application in plant science.pptx
431 Bioinformatics approaches and its application in plant science.pptxjsvirbehal02
 
Allele mining in orphan underutilized crops
Allele mining in orphan underutilized cropsAllele mining in orphan underutilized crops
Allele mining in orphan underutilized cropsCCS HAU, HISAR
 

Similar to ASHS_2016_AGY_v4 (20)

Application of molecular markers in Plant Breeding
Application of molecular markers in Plant BreedingApplication of molecular markers in Plant Breeding
Application of molecular markers in Plant Breeding
 
Germplasm characterization
Germplasm characterizationGermplasm characterization
Germplasm characterization
 
Genome Mapping And Biological Resources Slides.pptx
Genome Mapping And Biological Resources Slides.pptxGenome Mapping And Biological Resources Slides.pptx
Genome Mapping And Biological Resources Slides.pptx
 
Advance Plant Breeding Techniques
Advance Plant Breeding TechniquesAdvance Plant Breeding Techniques
Advance Plant Breeding Techniques
 
O13 Kang
O13 KangO13 Kang
O13 Kang
 
MARKER ASSISTED SELECTION
MARKER ASSISTED SELECTIONMARKER ASSISTED SELECTION
MARKER ASSISTED SELECTION
 
Dr. Jay Calvert - Viral genetics and application to vaccine development
Dr. Jay Calvert - Viral genetics and application to vaccine developmentDr. Jay Calvert - Viral genetics and application to vaccine development
Dr. Jay Calvert - Viral genetics and application to vaccine development
 
Post genomic tools for genetic enhancement of germplasm
Post genomic tools for genetic enhancement of germplasmPost genomic tools for genetic enhancement of germplasm
Post genomic tools for genetic enhancement of germplasm
 
Biotechnological interventions for crop improvement in fruit crops.pptx
Biotechnological interventions for crop improvement in fruit crops.pptxBiotechnological interventions for crop improvement in fruit crops.pptx
Biotechnological interventions for crop improvement in fruit crops.pptx
 
cisgenesis and intragenesis by Saurabh
cisgenesis and intragenesis by Saurabhcisgenesis and intragenesis by Saurabh
cisgenesis and intragenesis by Saurabh
 
Marker assisted selection (rice).pptx
Marker assisted selection (rice).pptxMarker assisted selection (rice).pptx
Marker assisted selection (rice).pptx
 
Biotechnological interventions for fruit crops improvement
Biotechnological interventions for fruit crops improvementBiotechnological interventions for fruit crops improvement
Biotechnological interventions for fruit crops improvement
 
Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...
 
B4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual Okogbenin
B4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual OkogbeninB4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual Okogbenin
B4FA 2012 Nigeria: Cassava Research in Nigeria - Emmanual Okogbenin
 
Diner_oyster
Diner_oysterDiner_oyster
Diner_oyster
 
Introduction to Plant Biotechnology- Durgashree Diwakar
Introduction to Plant Biotechnology- Durgashree DiwakarIntroduction to Plant Biotechnology- Durgashree Diwakar
Introduction to Plant Biotechnology- Durgashree Diwakar
 
Marker Assisted Selection in Crop Breeding
 Marker Assisted Selection in Crop Breeding Marker Assisted Selection in Crop Breeding
Marker Assisted Selection in Crop Breeding
 
431 Bioinformatics approaches and its application in plant science.pptx
431 Bioinformatics approaches and its application in plant science.pptx431 Bioinformatics approaches and its application in plant science.pptx
431 Bioinformatics approaches and its application in plant science.pptx
 
Genome mapping
Genome mapping Genome mapping
Genome mapping
 
Allele mining in orphan underutilized crops
Allele mining in orphan underutilized cropsAllele mining in orphan underutilized crops
Allele mining in orphan underutilized crops
 

ASHS_2016_AGY_v4

  • 1. Identification of Differentially Expressed Genes for Mummy Berry  (Monilinia vaccinii‐corymbosi) Resistance in Blueberry Ashley Yow1, Kathleen Burchhardt2 , Marc Cubeta2, Hamid Ashrafi1 1North Carolina State University, Department of Horticulture 2North Carolina State University, Department of Entomology and Plant Pathology BACKGROUND • Molecular data for blueberries is severely lacking. • Economic loss due to mummy berry has been repeatedly documented across N.  America.  • Molecular data is needed to truly understand the genetic mechanisms behind  pathogen resistance. • Next‐generation sequencing can generate large amounts of genomic data within a  few weeks. • RNA‐seq is a powerful tool for measuring differential gene expression. • In this study, we used a susceptible cultivar, ‘Arlen’, for RNA‐seq analysis. OBJECTIVES • To develop transcriptome sequences of a blueberry cultivar (Arlen) from total RNA  extracted from leaves, roots, and different developmental stages of flowers and  fruit. • Mapping cv. ‘Arlen’ transcriptome reads to the ‘W85‐20’ reference genome is a good  indication of up‐ and down‐regulated genes. • To develop transcriptome sequences of a blueberry cultivar (Arlen) for mature  fruit both infected and uninfected with mummy berry. • To make a transcriptome assembly of cv. ‘Arlen’ from Illumina short reads. • To make a genome assembly of M. vaccinii‐corymbosi from Roche 454 reads. • To identify candidate genes related to mummy berry resistance and genes related  to the infection process. METHODS • Samples were freeze dried in the field and transferred to ‐80⁰C freezer on dry ice. • RNA was extracted from leaves, flowers, and fruits. • cDNA libraries were created using the KAPA mRNA‐Seq kit for Illumina platforms. • 200‐300bp desired insert size • Libraries were run using the Illumina Miseq • 150bp read length, single‐end • 454 read sequences for M. vaccinii‐corymbosi were obtained from Dr. Marc  Cubeta.  • CLC Genomics v. 9.0.1 was used for trimming reads, de Novo assembly, RNA‐seq mapping, and expression analysis. • Arlen sequences were mapped to both the ‘W85‐20’ blueberry reference genome and an  assembled genome for an NC isolate of M. vaccinii‐corymbosi • For de novo assembly of cv. ‘Arlen‘ we used a word size of 31, bubble size of 150, and  minimum contig length of 300bp • For de novo assembly of M. vaccinii‐corymbosi we used a word size of 19, bubble size of  334, and minimum contig length of 200bp • BLASTx v. 2.4.0+ was used in Linux terminal for blasting contigs to the full NCBI  non‐redundant protein database. RESULTS • We were able to assemble 49,803 contigs from our cv. ‘Arlen’ transcriptome reads  after filtering out reads associated with the M. vaccinii‐corymbosi fungus. • The contig N50 for this assembly was 1,084 bp long and our largest contig was 15,731 bp long. • As expected, we had a higher percentage of transcriptome reads from our  infected mature fruits that mapped to the M. vaccinii‐corymbosi genome  assembly due to the presence of the pathogen in the fruit. • 38.97% for mummy fruit rep 1 and 41.08% for mummy fruit rep 2. • These two tissues also had the lowest percentage of reads map to the ‘W85‐20’ diploid  blueberry reference genome. • The Principal Component Analysis showed that our mummy infected fruits were  clustered together and uninfected tissues were clustered together based on RPKM  of scaffolds in the ‘W85‐20’ blueberry genome. • Scaffolds in the ‘W85‐20’ blueberry genome with a high fold‐difference between  our infected and non‐infected tissue groups are of interest because they may  contain genes that play a role in mummy berry infection. • Scaffold 66203; Scaffold 35130; Scaffold 88151; Scaffold 35999 CONCLUSIONS • Some of the cv. ‘Arlen’ transcriptome reads did not map to either the M. vaccinii‐ corymbosi genome or the ‘W85‐20’ diploid blueberry reference genome.  • The reason for this could be due to differences between cv. ‘Arlen’ and the ‘W85‐20’  accession, or it could be due to an incomplete blueberry reference genome. • Annotation on our ‘W85‐20’ diploid blueberry reference genome will be needed in  order to identify genes related to mummy berry infection. Currently, the genome  is in the form of scaffolds, which could contain multiple genes. • In the future, we will also include more cultivars on the extreme ends of the  spectrum of resistance. • In particular we are interested in performing analyses on cv. ‘Blue Gold’, which is known to  be highly susceptible to mummy berry. Arlen Transcriptome Reads Mapping Stats CV. Arlen Location Number of  Reads Reads Mapped  to W85‐20 % of Reads  Mapped Reads Mapped  to M. vaccinii‐ corymbosi % of Reads Mapped Fruit Stage 1 Castle Hayne 1,257,005 767,816 61.08 7,283 0.58 Fruit Stage 2 Castle Hayne 1,271,969 789,008 62.03 3,084 0.24 Fruit Stage 3 Castle Hayne 1,487,476 855,195 57.49 6,573 0.44 Fruit Stage 4 Castle Hayne 1,206,255 731,511 60.64 3,164 0.26 Fruit Stage 4  Rep 2 Castle Hayne 987,653 584,972 59.23 2,492 0.25 Mummy Fruit  Stage 4 Castle Hayne 1,150,852 169,709 14.75 448,469 38.97 Mummy Fruit  Stage 4 Rep 2 Castle Hayne 982,291 156,014 15.88 403,572 41.08 Fruit Stage 3 Sandhills 1,121,100 617,924 55.12 7,897 0.70 Fruit Stage 3  Rep 2 Sandhills 1,139,034 681,415 59.82 4,895 0.43 Fruit Stage 4 Sandhills 1,104,765 680,120 61.56 3,267 0.30 Fruit Stage 4    Rep 2 Sandhills 1,031,052 636,119 61.70 3,371 0.33 FL1 Castle Hayne 820,782 505,015 61.53 6,170 0.75 FL3 Castle Hayne 1,021,020 583,335 57.13 8,058 0.79 FL5 Castle Hayne 1,031,618 567,937 55.05 10,578 1.03 L Castle Hayne 893,901 502,060 56.17 5,898 0.66 R Castle Hayne 1,193,456 718,407 60.20 6,357 0.53 All Tissues ‐‐ 17,700,229 9,546,557 53.93 931,128 5.26 Table 2: Statistics for cv. ‘Arlen’ transcriptome reads mapping to the diploid blueberry ‘W85‐20’ reference genome as well as M. vaccinii‐corymbosi genome assembly  ACKNOWLEDGMENTS This research was partially supported by Southern Region Small Fruit Consortium Award No. 2016 R‐04 and North Carolina  State University.  The authors would like to thank Dr. Kathleen Burchhardt to collect and sequence one isolates of M. vaccinium corymbosi.  The authors would like to acknowledge NCSU’s Genomic Sciences Lab for performing the sequencing using Illumina MiSeq. The authors would like to thank Mr. Terry Bland for his help with tissue collection. REFERENCES CLC Genomics Workbench 9.0.1 (https://www.qiagenbioinformatics.com/) American Phytopathological Society & Oregon State Univeristy (http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/MummyBerry.aspx) University of Georgia Plant Pathology , University of Georgia, Bugwood.org Assembly Stats Arlen  Transcriptome Assembly Contig Measurements M. vaccinii‐ corymbosi Assembly Contig Measurements N50 1,084 bp 838 bp Minimum 300 bp 200 bp Maximum 15,731 bp 14,120 bp Average 870 bp 754 bp Count 49,803 contigs 18,988 contigs Total 43,309,250 bp 14,320,408 bp Table 1: Cv. ‘Arlen’ Transcriptome Assembly and M.  vaccinii‐corymbosi Genome Assembly Summary  Statistics Figure 1: Tissues collected for RNA extraction Figure 2: Workflow for performing RNA‐Seq analysis Figure 3: Visualization of mummy berry infection in  blueberry fruits EDGE test for cv. ‘Arlen’  transcriptome reads mapped  to blueberry genome Principal Component Analysis  for cv. ‘Arlen’ transcriptome  reads mapped to blueberry  genome Figure 4: Hierarchical  Clustering of Samples for cv.  ‘Arlen’ transcriptome reads  mapped to ‘W85‐20’ blueberry  reference genome