SlideShare a Scribd company logo
1 of 25
Oscillation: an effect that repeatedly and
regularly fluctuates about the mean value
Oscillator: circuit that produces oscillation
Characteristics: wave-shape, frequency,
amplitude, distortion, stability
•Ref:06103104HKN
•EE3110 Oscillator •1
 Oscillators are used to generate signals, e.g.
◦ Used as a local oscillator to transform the RF
signals to IF signals in a receiver;
◦ Used to generate RF carrier in a transmitter
◦ Used to generate clocks in digital systems;
◦ Used as sweep circuits in TV sets and CRO.
•Ref:06103104HKN
•EE3110 Oscillator •2
1. Wien Bridge Oscillators
2. RC Phase-Shift Oscillators
3. LC Oscillators
4. Stability
•Ref:06103104HKN
•EE3110 Oscillator •3
•Ref:06103104HKN
•EE3110 Oscillator •4
For sinusoidal input is connected
“Linear” because the output is approximately sinusoidal
A linear oscillator contains:
- a frequency selection feedback network
- an amplifier to maintain the loop gain at unity

+
+
Amplifier (A)
Frequency-Selective
Feedback Network ()
Vf
Vs Vo
V
Positive
Feedback
•Ref:06103104HKN
•EE3110 Oscillator •5

+
+
SelectiveNetwork
(f)
Vf
Vs Vo
V
A(f)
)
( f
s
o V
V
A
AV
V 

  and o
f V
V 


A
A
V
V
s
o



1
If Vs = 0, the only way that Vo can be nonzero
is that loop gain A=1 which implies that
0
1
|
|





A
A (Barkhausen Criterion)
•Ref:06103104HKN
•EE3110 Oscillator •6
Frequency Selection Network
Let
1
1
1
C
XC

 and
1
1
1 C
jX
R
Z 

2
2
1
C
XC


2
2
2
2
1
2
2
2
1
1
C
C
C jX
R
X
jR
jX
R
Z













Therefore, the feedback factor,
)
/
(
)
(
)
/
(
2
2
2
2
1
1
2
2
2
2
2
1
2
C
C
C
C
C
i
o
jX
R
X
jR
jX
R
jX
R
X
jR
Z
Z
Z
V
V











2
2
2
2
1
1
2
2
)
)(
( C
C
C
C
X
jR
jX
R
jX
R
X
jR






Vi Vo
R1 C1
R2
C2
Z1
Z2
•Ref:06103104HKN
•EE3110 Oscillator •7
 can be rewritten as:
)
( 2
1
2
1
2
2
1
2
2
1
2
2
C
C
C
C
C
C
X
X
R
R
j
X
R
X
R
X
R
X
R






For Barkhausen Criterion, imaginary part = 0, i.e.,
0
2
1
2
1 
 C
C X
X
R
R
Supposing,
R1=R2=R and XC1= XC2=XC,
2
1
2
1
2
1
2
1
/
1
1
1
or
C
C
R
R
C
C
R
R






)
(
3 2
2
C
C
C
X
R
j
RX
RX




0.2
0.22
0.24
0.26
0.28
0.3
0.32
0.34
Feedback
factor

-1
-0.5
0
0.5
1
Phase
Frequency
=1/3
Phase=0
f(R=Xc)
•Ref:06103104HKN
•EE3110 Oscillator •8
Rf
+

R
R
C
C
Z1
Z2
R1
Vo
By setting , we get
Imaginary part = 0 and
RC
1


3
1


Due to Barkhausen Criterion,
Loop gain Av=1
where
Av : Gain of the amplifier
1
1
3
1
R
R
A
A
f
v
v 





2
1

R
Rf
Therefore, Wien Bridge Oscillator
•Ref:06103104HKN
•EE3110 Oscillator •9
+

Rf
R1
R R R
C C C
 Using an inverting amplifier
 The additional 180o phase shift is provided by an RC
phase-shift network
•Ref:06103104HKN
•EE3110 Oscillator •10
R R R
C C C
V1 Vo
I1 I2 I3
Solve for I3, we get
)
2
(
0
)
2
(
0
)
(
3
2
3
2
1
2
1
1
C
C
C
jX
R
I
R
I
R
I
jX
R
I
R
I
R
I
jX
R
I
V












C
C
C
C
C
jX
R
R
R
jX
R
R
R
jX
R
R
jX
R
R
V
R
jX
R
I













2
0
2
0
0
0
0
2
3
1
)
2
(
]
)
2
)[(
( 2
2
2
2
1
3
C
C
C jX
R
R
R
jX
R
jX
R
R
V
I






Or
•Ref:06103104HKN
•EE3110 Oscillator •11
The output voltage,
)
2
(
]
)
2
)[(
( 2
2
2
3
1
3
C
C
C
o
jX
R
R
R
jX
R
jX
R
R
V
R
I
V







Hence the transfer function of the phase-shift network is given by,
)
6
(
)
5
( 2
3
2
3
3
1 C
C
C
o
X
R
X
j
RX
R
R
V
V






For 180o phase shift, the imaginary part = 0, i.e.,
RC
R
X
X
R
X C
C
C
6
1
6
X
(Rejected)
0
or
0
6
2
2
C
2
3







and,
29
1



Note: The –ve sign mean the
phase inversion from the
voltage
•Ref:06103104HKN
•EE3110 Oscillator •12
+

~
Av Ro
Z1 Z2
Z3
1
2
Zp
 The frequency selection
network (Z1, Z2 and Z3)
provides a phase shift of
180o
 The amplifier provides an
addition shift of 180o
Two well-known Oscillators:
• Colpitts Oscillator
• Harley Oscillator
•Ref:06103104HKN
•EE3110 Oscillator •13
+
~
Av Ro
Z1 Z2
Z3
Zp
Vf Vo
3
2
1
3
1
2
3
1
2
)
(
)
//(
Z
Z
Z
Z
Z
Z
Z
Z
Z
Zp






For the equivalent circuit from the output
p
o
p
v
i
o
p
o
p
o
i
v
Z
R
Z
A
V
V
Z
V
Z
R
V
A






or
Therefore, the amplifier gain is obtained,
)
(
)
(
)
(
3
1
2
3
2
1
3
1
2
Z
Z
Z
Z
Z
Z
R
Z
Z
Z
A
V
V
A
o
v
i
o








o
o
f V
Z
Z
Z
V
V
3
1
1


 
Zp
AvVi
Ro
+


+
Vo
Io
•Ref:06103104HKN
•EE3110 Oscillator •14
The loop gain,
)
(
)
( 3
1
2
3
2
1
2
1
Z
Z
Z
Z
Z
Z
R
Z
Z
A
A
o
v







If the impedance are all pure reactances, i.e.,
3
3
2
2
1
1 and
, jX
Z
jX
Z
jX
Z 


The loop gain becomes,
)
(
)
( 3
1
2
3
2
1
2
1
X
X
X
X
X
X
jR
X
X
A
A
o
v






The imaginary part = 0 only when X1+ X2+ X3=0
 It indicates that at least one reactance must be –ve (capacitor)
 X1 and X2 must be of same type and X3 must be of opposite type
2
1
3
1
1
X
X
A
X
X
X
A
A v
v





With imaginary part = 0,
For Unit Gain & 180o Phase-shift,
1
2
1
X
X
A
A v 



•Ref:06103104HKN
•EE3110 Oscillator •15
R L1
L2
C
R
C1
C2
L
Hartley Oscillator Colpitts Oscillator
T
o
LC
1


1
2
RC
C
gm 
2
1
2
1
C
C
C
C
CT


C
L
L
o
)
(
1
2
1 


2
1
RL
L
gm 
•Ref:06103104HKN
•EE3110 Oscillator •16
R
C1
C2
L
Equivalent circuit
In the equivalent circuit, it is assumed that:
 Linear small signal model of transistor is used
 The transistor capacitances are neglected
 Input resistance of the transistor is large enough
+

V
gmV
R C1
C2
L
•Ref:06103104HKN
•EE3110 Oscillator •17
)
(
1
1 L
j
i
V
V 
 

At node 1,
where,

 V
C
j
i 2
1 
)
1
( 2
2
1 LC
V
V 
 


Apply KCL at node 1, we have
0
1
1
1
2 


 V
C
j
R
V
V
g
V
C
j m 
 

0
1
)
1
( 1
2
2
2 









 C
j
R
LC
V
V
g
V
C
j m 

 


  0
)
(
1
2
1
3
2
1
2
2













 C
LC
C
C
j
R
LC
R
gm 


For Oscillator V must not be zero, therefore it enforces,
+

V
gmV
R C1
C2
L
node 1
I1
I2
I3
I4
V
•Ref:06103104HKN
•EE3110 Oscillator •18
Imaginary part = 0, we have
  0
)
(
1
2
1
3
2
1
2
2













 C
LC
C
C
j
R
LC
R
gm 


T
o
LC
1


1
2
RC
C
gm 
2
1
2
1
C
C
C
C
CT


Real part = 0, yields
 The frequency stability of an oscillator is
defined as
 Use high stability capacitors, e.g. silver
mica, polystyrene, or teflon capacitors and
low temperature coefficient inductors for
high stable oscillators.
•Ref:06103104HKN
•EE3110 Oscillator •19
C
ppm/
T
o
o
o d
d



 







1
 In order to start the oscillation, the loop
gain is usually slightly greater than unity.
 LC oscillators in general do not require
amplitude stabilization circuits because of
the selectivity of the LC circuits.
 In RC oscillators, some non-linear devices,
e.g. NTC/PTC resistors, FET or zener
diodes can be used to stabilized the
amplitude
•Ref:06103104HKN
•EE3110 Oscillator •20
•Ref:06103104HKN
•EE3110 Oscillator •21
Vrms
irms
Operating
point
+

R
R
C
C
R2
Blub
•Ref:06103104HKN
•EE3110 Oscillator •22
Rf
+

R
R
C
C
R1
Vo
•Ref:06103104HKN
•EE3110 Oscillator •23
+

low pass filter
high pass filter
low pass region high pass region
fr f
Filter output
•Ref:06103104HKN
•EE3110 Oscillator •24
+

vo
v1
v+
Vth
+Vcc
-Vcc
vo
v1
-Vth
+Vcc
-Vcc
vo
v1
Vth
+Vcc
-Vcc
vo
v1
-Vth
•Ref:06103104HKN
•EE3110 Oscillator •25
+

vo
vc
vf
vc
vo
+vf
¡Ð
vf
+vmax
¡Ð
vmax

More Related Content

Similar to Oscillators.ppt

Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillators
Touqeer Jumani
 

Similar to Oscillators.ppt (20)

Oscillator
OscillatorOscillator
Oscillator
 
Wein bridge oscillator old rev
Wein bridge oscillator old revWein bridge oscillator old rev
Wein bridge oscillator old rev
 
Phase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptxPhase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptx
 
Phase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptxPhase Shift, Collpitt's and Crystal oscillators.pptx
Phase Shift, Collpitt's and Crystal oscillators.pptx
 
Op amp application as Oscillator
Op amp application as Oscillator Op amp application as Oscillator
Op amp application as Oscillator
 
NEET coaching class in Mumbai
NEET coaching class in MumbaiNEET coaching class in Mumbai
NEET coaching class in Mumbai
 
Oscillator
OscillatorOscillator
Oscillator
 
Colpitts Oscillator
Colpitts OscillatorColpitts Oscillator
Colpitts Oscillator
 
transistor oscillators
transistor oscillators transistor oscillators
transistor oscillators
 
Oscillators
OscillatorsOscillators
Oscillators
 
Electrical Engineering
Electrical EngineeringElectrical Engineering
Electrical Engineering
 
Oscillators
OscillatorsOscillators
Oscillators
 
Pdc ppt
Pdc pptPdc ppt
Pdc ppt
 
Study of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled OscillatorStudy of vco_Voltage controlled Oscillator
Study of vco_Voltage controlled Oscillator
 
ADE_U 1_S 12.ppt.pdf
ADE_U 1_S 12.ppt.pdfADE_U 1_S 12.ppt.pdf
ADE_U 1_S 12.ppt.pdf
 
Differentiator
DifferentiatorDifferentiator
Differentiator
 
OSCILLATOR Chapter+12
OSCILLATOR Chapter+12OSCILLATOR Chapter+12
OSCILLATOR Chapter+12
 
Oscillators
OscillatorsOscillators
Oscillators
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillators
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.ppt
 

Recently uploaded

Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 

Recently uploaded (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 

Oscillators.ppt

  • 1. Oscillation: an effect that repeatedly and regularly fluctuates about the mean value Oscillator: circuit that produces oscillation Characteristics: wave-shape, frequency, amplitude, distortion, stability •Ref:06103104HKN •EE3110 Oscillator •1
  • 2.  Oscillators are used to generate signals, e.g. ◦ Used as a local oscillator to transform the RF signals to IF signals in a receiver; ◦ Used to generate RF carrier in a transmitter ◦ Used to generate clocks in digital systems; ◦ Used as sweep circuits in TV sets and CRO. •Ref:06103104HKN •EE3110 Oscillator •2
  • 3. 1. Wien Bridge Oscillators 2. RC Phase-Shift Oscillators 3. LC Oscillators 4. Stability •Ref:06103104HKN •EE3110 Oscillator •3
  • 4. •Ref:06103104HKN •EE3110 Oscillator •4 For sinusoidal input is connected “Linear” because the output is approximately sinusoidal A linear oscillator contains: - a frequency selection feedback network - an amplifier to maintain the loop gain at unity  + + Amplifier (A) Frequency-Selective Feedback Network () Vf Vs Vo V Positive Feedback
  • 5. •Ref:06103104HKN •EE3110 Oscillator •5  + + SelectiveNetwork (f) Vf Vs Vo V A(f) ) ( f s o V V A AV V     and o f V V    A A V V s o    1 If Vs = 0, the only way that Vo can be nonzero is that loop gain A=1 which implies that 0 1 | |      A A (Barkhausen Criterion)
  • 6. •Ref:06103104HKN •EE3110 Oscillator •6 Frequency Selection Network Let 1 1 1 C XC   and 1 1 1 C jX R Z   2 2 1 C XC   2 2 2 2 1 2 2 2 1 1 C C C jX R X jR jX R Z              Therefore, the feedback factor, ) / ( ) ( ) / ( 2 2 2 2 1 1 2 2 2 2 2 1 2 C C C C C i o jX R X jR jX R jX R X jR Z Z Z V V            2 2 2 2 1 1 2 2 ) )( ( C C C C X jR jX R jX R X jR       Vi Vo R1 C1 R2 C2 Z1 Z2
  • 7. •Ref:06103104HKN •EE3110 Oscillator •7  can be rewritten as: ) ( 2 1 2 1 2 2 1 2 2 1 2 2 C C C C C C X X R R j X R X R X R X R       For Barkhausen Criterion, imaginary part = 0, i.e., 0 2 1 2 1   C C X X R R Supposing, R1=R2=R and XC1= XC2=XC, 2 1 2 1 2 1 2 1 / 1 1 1 or C C R R C C R R       ) ( 3 2 2 C C C X R j RX RX     0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 Feedback factor  -1 -0.5 0 0.5 1 Phase Frequency =1/3 Phase=0 f(R=Xc)
  • 8. •Ref:06103104HKN •EE3110 Oscillator •8 Rf +  R R C C Z1 Z2 R1 Vo By setting , we get Imaginary part = 0 and RC 1   3 1   Due to Barkhausen Criterion, Loop gain Av=1 where Av : Gain of the amplifier 1 1 3 1 R R A A f v v       2 1  R Rf Therefore, Wien Bridge Oscillator
  • 9. •Ref:06103104HKN •EE3110 Oscillator •9 +  Rf R1 R R R C C C  Using an inverting amplifier  The additional 180o phase shift is provided by an RC phase-shift network
  • 10. •Ref:06103104HKN •EE3110 Oscillator •10 R R R C C C V1 Vo I1 I2 I3 Solve for I3, we get ) 2 ( 0 ) 2 ( 0 ) ( 3 2 3 2 1 2 1 1 C C C jX R I R I R I jX R I R I R I jX R I V             C C C C C jX R R R jX R R R jX R R jX R R V R jX R I              2 0 2 0 0 0 0 2 3 1 ) 2 ( ] ) 2 )[( ( 2 2 2 2 1 3 C C C jX R R R jX R jX R R V I       Or
  • 11. •Ref:06103104HKN •EE3110 Oscillator •11 The output voltage, ) 2 ( ] ) 2 )[( ( 2 2 2 3 1 3 C C C o jX R R R jX R jX R R V R I V        Hence the transfer function of the phase-shift network is given by, ) 6 ( ) 5 ( 2 3 2 3 3 1 C C C o X R X j RX R R V V       For 180o phase shift, the imaginary part = 0, i.e., RC R X X R X C C C 6 1 6 X (Rejected) 0 or 0 6 2 2 C 2 3        and, 29 1    Note: The –ve sign mean the phase inversion from the voltage
  • 12. •Ref:06103104HKN •EE3110 Oscillator •12 +  ~ Av Ro Z1 Z2 Z3 1 2 Zp  The frequency selection network (Z1, Z2 and Z3) provides a phase shift of 180o  The amplifier provides an addition shift of 180o Two well-known Oscillators: • Colpitts Oscillator • Harley Oscillator
  • 13. •Ref:06103104HKN •EE3110 Oscillator •13 + ~ Av Ro Z1 Z2 Z3 Zp Vf Vo 3 2 1 3 1 2 3 1 2 ) ( ) //( Z Z Z Z Z Z Z Z Z Zp       For the equivalent circuit from the output p o p v i o p o p o i v Z R Z A V V Z V Z R V A       or Therefore, the amplifier gain is obtained, ) ( ) ( ) ( 3 1 2 3 2 1 3 1 2 Z Z Z Z Z Z R Z Z Z A V V A o v i o         o o f V Z Z Z V V 3 1 1     Zp AvVi Ro +   + Vo Io
  • 14. •Ref:06103104HKN •EE3110 Oscillator •14 The loop gain, ) ( ) ( 3 1 2 3 2 1 2 1 Z Z Z Z Z Z R Z Z A A o v        If the impedance are all pure reactances, i.e., 3 3 2 2 1 1 and , jX Z jX Z jX Z    The loop gain becomes, ) ( ) ( 3 1 2 3 2 1 2 1 X X X X X X jR X X A A o v       The imaginary part = 0 only when X1+ X2+ X3=0  It indicates that at least one reactance must be –ve (capacitor)  X1 and X2 must be of same type and X3 must be of opposite type 2 1 3 1 1 X X A X X X A A v v      With imaginary part = 0, For Unit Gain & 180o Phase-shift, 1 2 1 X X A A v    
  • 15. •Ref:06103104HKN •EE3110 Oscillator •15 R L1 L2 C R C1 C2 L Hartley Oscillator Colpitts Oscillator T o LC 1   1 2 RC C gm  2 1 2 1 C C C C CT   C L L o ) ( 1 2 1    2 1 RL L gm 
  • 16. •Ref:06103104HKN •EE3110 Oscillator •16 R C1 C2 L Equivalent circuit In the equivalent circuit, it is assumed that:  Linear small signal model of transistor is used  The transistor capacitances are neglected  Input resistance of the transistor is large enough +  V gmV R C1 C2 L
  • 17. •Ref:06103104HKN •EE3110 Oscillator •17 ) ( 1 1 L j i V V     At node 1, where,   V C j i 2 1  ) 1 ( 2 2 1 LC V V      Apply KCL at node 1, we have 0 1 1 1 2     V C j R V V g V C j m     0 1 ) 1 ( 1 2 2 2            C j R LC V V g V C j m         0 ) ( 1 2 1 3 2 1 2 2               C LC C C j R LC R gm    For Oscillator V must not be zero, therefore it enforces, +  V gmV R C1 C2 L node 1 I1 I2 I3 I4 V
  • 18. •Ref:06103104HKN •EE3110 Oscillator •18 Imaginary part = 0, we have   0 ) ( 1 2 1 3 2 1 2 2               C LC C C j R LC R gm    T o LC 1   1 2 RC C gm  2 1 2 1 C C C C CT   Real part = 0, yields
  • 19.  The frequency stability of an oscillator is defined as  Use high stability capacitors, e.g. silver mica, polystyrene, or teflon capacitors and low temperature coefficient inductors for high stable oscillators. •Ref:06103104HKN •EE3110 Oscillator •19 C ppm/ T o o o d d             1
  • 20.  In order to start the oscillation, the loop gain is usually slightly greater than unity.  LC oscillators in general do not require amplitude stabilization circuits because of the selectivity of the LC circuits.  In RC oscillators, some non-linear devices, e.g. NTC/PTC resistors, FET or zener diodes can be used to stabilized the amplitude •Ref:06103104HKN •EE3110 Oscillator •20
  • 23. •Ref:06103104HKN •EE3110 Oscillator •23 +  low pass filter high pass filter low pass region high pass region fr f Filter output