SlideShare a Scribd company logo
1 of 28
1
NMR-Investigation of Structure of
Polymeric Multilayer Membranes and
Fluid Mobility inside Membranes
Results of NMR-diffusometry
2
Aims:
 To show that NMR-diffusometry can
be applied as a microscopic method
for studying some structural
properties of polymeric membranes
 To study features of fluid behavior
imbedded inside membrane
3
Why can NMR-diffusometry be
used as a microscopy?
introduction
4
Methodical basics of microscopy of
solid matrices…
Collection of particles
with well-known
characterizations
Interactions with
solid matrix
Collection of particles
with new
characterizations
SOLID MATRIX
5
Diffusometry as a microscopy
‘Free-moving’ fluid
molecules
(gas, liquid)
Interactions with solid
matrix (restrictions)
Fluid molecules
interacted with wall of
solid matrix
SOLID MATRIX
(porous medium)
6
Free diffusion: Time Dependence of
Mean Square Displacement
0 100 200 300 400 500 600
0
20
40
60
80
100
120
140
Monte-Carlo result
Einstein formula
experimental time
m.s.d.
Results of computer simulation (Monte-Carlo Method)
exp
2
exp
2
...,6 trdsmDtr 
x
z
y
Diffusion coefficient Experimental time
7
Free diffusion: Time Dependence of
Diffusion Coefficient D
exp
2
6Dtr 
0 100 200 300 400 500 600
20
30
40
50
D ( t exp
) = const ( t exp
)
DiffusionCoefficient,D
experimental time
Results of computer simulation (Monte-Carlo Method)
x
z
y
8
Restricted Diffusion: Time Dependence
of Mean Square Displacement
0 100 200 300 400 500 600
0
10
20
30
40
50
60
0
20
40
60
80
100
120
140
0 100 200 300 400 500 600
m.s.d.
experimental time
free diffusion
restricted diffusion
experimental time
m.s.d.
Results of computer simulation (Monte-Carlo Method)
x
z
y
d
9
Restricted Diffusion: Time
Dependence of D
x
Results of computer simulation (Monte-Carlo Method)
10
1
10
2
10
310
0
10
1
10
2
10
2
10
3
10
1
D
(texp
)~
texp
1
DiffusionCoefficient,D
experimental time
Free diffusion
Restricted diffusion
  1
expexpexp
2
exp
2
~,6
6








ttDDtd
dr
Dtr
z
y
d
10
NMR-Diffusometry:
Initial Information Is in Diffusion Decays
0 1 2 3 4 5 6
10
-6
10
-4
10
-2
10
0
SINGLE-exponential
diffusion decay
NormilizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
 
 
 Dtq
qA
DtqA
A
A
exp
2exp
2
0 0
lnln 















0 1 2 3 4 5 6
0.4
0.5
0.6
0.7
0.8
0.9
1
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
DOUBLE-exp. decay:
D 1
= 2.7 x 10
-9
, D 2
= 7 x 10
-11
THREE-exp. decay:
D 1
= 2.7 x 10
-9
, D 2
= 7 x 10
-11
D 2
= 2 x 10
-13
SINGLE-exp. decay
D = 2.7 x 10
-9
  ii i Dtqp
A
A
exp
2
0
ln 






D
11
NMR-Diffusometry:
Decay for Free Diffusion
Results of computer simulation (Monte-Carlo Method)
x
z
y
0 1 2 3
10
-4
10
-3
10
-2
10
-1
10
0
q
2
t exp
NormalizedAmplitude,A/A0
 Dtq
A
A
exp
2
0
ln 





12
0.0 0.5 1.0 1.5 2.0
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
Free Diffusion
Restricted Diffusion
NMR-Diffusometry:
Decay for Restricted Diffusion
Results of computer simulation (Monte-Carlo Method)
z
y
d
  ii i Dtqp
A
A
exp
2
0
ln 






13
NMR-Diffusometry:
Average Propagator
     
   exp..exp
....exp..exp
,,
2exp,,
trPFTinversetqA
drqritrPtqA
dsm
dsmdsmdsm

  
0.000 0.005 0.010
0.02
0.04
0.06
0.08
0.10
0.12
0.14
DisplacementProbabilityDistribution
Displasement
Free Diffusion
Restricted Diffusion
0.0 0.5 1.0 1.5 2.0
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
Free Diffusion
Restricted Diffusion
FFT
PROPAGATOR
14
NMR-Diffusometry: Remarks
 q = g,
 is gyromagnetic ratio of resonant nuclear;
 and g – duration and amplitude of pulsed field
gradient, respectively;
 it is unnecessary to have a transparent sample (like
for optic methods) or sample with specially prepared
surface, and so on…
 NMR does not produce sufficient changes in sample
(remaining radiation, damaged pore structure…)
 typical limits for application of NMR are
extremely short relaxation times
 NMR experiment may take a few days
15
NMR-Investigation of
Polymeric Porous Materials
experimental
16
Samples:
 Porous PA-6 filled with water
 Porous polyelectrolyte complex
PEI / PAAc (multilayers) filled with
water
 Porous polyelectrolyte complex
PEI / PAAc (multilayers) produced in
NaCl solution, filled with water
17
Equipment
 NMR spectrometer
Bruker AVANCE 500
operating on frequency 1H 500 MHz
 Diffusion probe Diff30
maximum g = 11.6 T/m
 t° = 22°C
18
PA-6: Shape of Diffusion Decays
0 20 40 60 80 100
10
-2
10
-1
10
0
D 1
= 7 x 10
-12
m
2
/ s
p 1
= 0.011
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
= 400 ms
  ii i Dtqp
A
A
exp
2
0
ln 






10
-11
10
-10
10
-9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
freewaterD
free water part
relativepopulation,pi
,
takenbycomponentwithDi
Diffusion Coefficient, D i
, m
2
/ s
19
PA-6: Time Dependence of D
0 20 40 60 80 100
10
-2
10
-1
10
0
50 60 70 80 90
0.005
0.006
0.007
0.008
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
300 ms
400 ms
500 ms
q
2
t exp
[ x 10
9
, m
2
s ]
A/A0
10
-1
10
02x10
-12
10
-11
d = ( 6 D texp
)
1/2
d = ( 4.2 ± 0.1 ) m
D ~ t exp
1
DiffusionCoefficient,D,m
2
/s
experimental time, t exp
, s
20
PA-6: Molecular Exchange between
Water in Pores and Water outside Pores
0 10 20 30 40
0.01
0.02
0.03
0.04
Propagator,
DisplacementProbabilityDistribution
Displacement, m
t exp
400 ms
750 ms
900 ms
0.0 0.2 0.4 0.6 0.8 1.0
e
-5
e
-4
mean life-time of water inside pores
 = 1.1 s
water in pores
~ 2.5 %
relativepartofparticleslocatedinpores,pi
t exp
, s
21
PEI / PAAc: Shape of Diffusion Decay
0 50 100 150 200 250 300
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
PEI / PAA, t exp
= 400 ms
PA-6, t exp
= 400 ms
0 100 200 300
10
-3
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
400
600
800
22
PEI / PAAc: Time-Dependence of
Diffusion Coefficient
0.1 1
10
-11
d = ( 6 D t exp
)
1/2
d = ( 5.6 ± 0.1 ) m
D ~ t exp
1
DiffusionCoefficient,D[m
2
/s]
Experimental Time, t exp
, s
23
PEI / PAAc: To Question about
Molecular Exchange
0 10 20 30
0.00
0.01
0.02
0.03
0.04
0.05
0.06
Propagator,
DisplacementProbabilityDistribution
Displacement, m
PEI / PAAc, t exp
= 400 ms
PA-6, t exp
= 400 ms
0 10 20 30
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Displacement, m
Propagator,
DisplacementProbabilityDistribution
t exp
400 ms
600 ms
800 ms
Life-time of water molecules in the pore of PEI / PAAc is lager than
that for PA-6, at least, in a few times.
24
PEI / PAAc Produced in Salt Solution:
Diffusion Decays and Dependence D(t)
100 400
1
2
3
4
5
6
7
8
9
10
d = ( 6 D t exp
)
1/2
=
= ( 5.8 ± 0.1 ) m
D ~ t exp
1
DiffusionCoefficient,D,[x10
11
,m
2
/s]
Experimental Time, t exp
, ms
0 10 20 30 40
10
-2
10
-1
10
0
NormalizedAmplitude,A/A0
q
2
t exp
[ x 10
9
, m
2
s ]
t exp
100 ms
150 ms
200 ms
25
PEI / PAAc: To Question about
Molecular Exchange
0 10 20 30 40
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Propagator,
DisplacementProbabilityDistribution
Displacement, m
t exp
100 ms
150 ms
200 ms
0 5 10 15 20
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0 5 10 15 20
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Propagator,
DisplacementProbabilityDistribution
Displacement, m
t exp
= 200 ms
PEI / PAAc
PEI / PAAc
in Salt-Solution
NormalizedPropagators
Displacement
26
Conclusions
 NMR-diffusometry permits:
a) to obtain information about pore size;
b) to characterize features of translational
mobility of fluid molecules inside porous
medium and interaction between solid
matrix and fluid trough the study of
molecular exchange.
27
Conclusions:
 polymeric membranes were studied:
a) the pore sizes were measured:
Material
Pore size,
μm
PA-6
PEI / PAAc
PEI / PAAc + NaCl
4.2±0.1
5.6±0.1
5.8±0.1
28
Conclusions:
b) the materials produced on basis of PEI /
PAAc complex are characterized by the
lager relative part of water located in
pores than porous PA-6;
c) for PA-6, the molecular exchange
between water in pores and water
outside pores were found;
for material PEI / PAAc this effect was
not registered, for material PEI / PAAc
produced in salt-solution molecular
exchange may exist.

More Related Content

Similar to Diffusometry in polyelectrolyte membranes IPFDD2003

Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Ruo-Qian (Roger) Wang
 
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...IJCI JOURNAL
 
Shale eera fleury
Shale eera fleuryShale eera fleury
Shale eera fleuryPomcert
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsMauritz van den Worm
 
FT-IR & Phase Behavior Studies of Polymer-Surfactant Interactions
FT-IR & Phase Behavior Studies of Polymer-Surfactant InteractionsFT-IR & Phase Behavior Studies of Polymer-Surfactant Interactions
FT-IR & Phase Behavior Studies of Polymer-Surfactant InteractionsDavid Scheuing
 
Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...Crimsonpublishers-Mechanicalengineering
 
Phase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte ComplexesPhase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte ComplexesDavid Scheuing
 
Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2Mark Baevsky
 
Shale eera fleury
Shale eera fleuryShale eera fleury
Shale eera fleuryPomcert
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ FilmsAlokmay Datta
 
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Amro Elfeki
 
lectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statusticslectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statusticstfoutz991
 
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Reducing Concentration Uncertainty Using the Coupled Markov Chain ApproachAmro Elfeki
 

Similar to Diffusometry in polyelectrolyte membranes IPFDD2003 (20)

Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...
 
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
 
Shale eera fleury
Shale eera fleuryShale eera fleury
Shale eera fleury
 
Nmr Spwla Carbonates
Nmr  Spwla CarbonatesNmr  Spwla Carbonates
Nmr Spwla Carbonates
 
Pushkar N Patil
Pushkar N PatilPushkar N Patil
Pushkar N Patil
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice models
 
FT-IR & Phase Behavior Studies of Polymer-Surfactant Interactions
FT-IR & Phase Behavior Studies of Polymer-Surfactant InteractionsFT-IR & Phase Behavior Studies of Polymer-Surfactant Interactions
FT-IR & Phase Behavior Studies of Polymer-Surfactant Interactions
 
physics lab manual.pdf
physics lab manual.pdfphysics lab manual.pdf
physics lab manual.pdf
 
Topic 4 kft 131
Topic 4 kft 131Topic 4 kft 131
Topic 4 kft 131
 
Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...Determination of the Probability Size Distribution of Solid Particles in a Te...
Determination of the Probability Size Distribution of Solid Particles in a Te...
 
Phase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte ComplexesPhase behavior and characterization of Polyelectrolyte Complexes
Phase behavior and characterization of Polyelectrolyte Complexes
 
Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2
 
PhD slides
PhD slidesPhD slides
PhD slides
 
Shale eera fleury
Shale eera fleuryShale eera fleury
Shale eera fleury
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ Films
 
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
 
lectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statusticslectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statustics
 
lec18.pptx
lec18.pptxlec18.pptx
lec18.pptx
 
577hw2s
577hw2s577hw2s
577hw2s
 
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 

Diffusometry in polyelectrolyte membranes IPFDD2003

  • 1. 1 NMR-Investigation of Structure of Polymeric Multilayer Membranes and Fluid Mobility inside Membranes Results of NMR-diffusometry
  • 2. 2 Aims:  To show that NMR-diffusometry can be applied as a microscopic method for studying some structural properties of polymeric membranes  To study features of fluid behavior imbedded inside membrane
  • 3. 3 Why can NMR-diffusometry be used as a microscopy? introduction
  • 4. 4 Methodical basics of microscopy of solid matrices… Collection of particles with well-known characterizations Interactions with solid matrix Collection of particles with new characterizations SOLID MATRIX
  • 5. 5 Diffusometry as a microscopy ‘Free-moving’ fluid molecules (gas, liquid) Interactions with solid matrix (restrictions) Fluid molecules interacted with wall of solid matrix SOLID MATRIX (porous medium)
  • 6. 6 Free diffusion: Time Dependence of Mean Square Displacement 0 100 200 300 400 500 600 0 20 40 60 80 100 120 140 Monte-Carlo result Einstein formula experimental time m.s.d. Results of computer simulation (Monte-Carlo Method) exp 2 exp 2 ...,6 trdsmDtr  x z y Diffusion coefficient Experimental time
  • 7. 7 Free diffusion: Time Dependence of Diffusion Coefficient D exp 2 6Dtr  0 100 200 300 400 500 600 20 30 40 50 D ( t exp ) = const ( t exp ) DiffusionCoefficient,D experimental time Results of computer simulation (Monte-Carlo Method) x z y
  • 8. 8 Restricted Diffusion: Time Dependence of Mean Square Displacement 0 100 200 300 400 500 600 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 m.s.d. experimental time free diffusion restricted diffusion experimental time m.s.d. Results of computer simulation (Monte-Carlo Method) x z y d
  • 9. 9 Restricted Diffusion: Time Dependence of D x Results of computer simulation (Monte-Carlo Method) 10 1 10 2 10 310 0 10 1 10 2 10 2 10 3 10 1 D (texp )~ texp 1 DiffusionCoefficient,D experimental time Free diffusion Restricted diffusion   1 expexpexp 2 exp 2 ~,6 6         ttDDtd dr Dtr z y d
  • 10. 10 NMR-Diffusometry: Initial Information Is in Diffusion Decays 0 1 2 3 4 5 6 10 -6 10 -4 10 -2 10 0 SINGLE-exponential diffusion decay NormilizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ]      Dtq qA DtqA A A exp 2exp 2 0 0 lnln                 0 1 2 3 4 5 6 0.4 0.5 0.6 0.7 0.8 0.9 1 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] DOUBLE-exp. decay: D 1 = 2.7 x 10 -9 , D 2 = 7 x 10 -11 THREE-exp. decay: D 1 = 2.7 x 10 -9 , D 2 = 7 x 10 -11 D 2 = 2 x 10 -13 SINGLE-exp. decay D = 2.7 x 10 -9   ii i Dtqp A A exp 2 0 ln        D
  • 11. 11 NMR-Diffusometry: Decay for Free Diffusion Results of computer simulation (Monte-Carlo Method) x z y 0 1 2 3 10 -4 10 -3 10 -2 10 -1 10 0 q 2 t exp NormalizedAmplitude,A/A0  Dtq A A exp 2 0 ln      
  • 12. 12 0.0 0.5 1.0 1.5 2.0 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp Free Diffusion Restricted Diffusion NMR-Diffusometry: Decay for Restricted Diffusion Results of computer simulation (Monte-Carlo Method) z y d   ii i Dtqp A A exp 2 0 ln       
  • 13. 13 NMR-Diffusometry: Average Propagator          exp..exp ....exp..exp ,, 2exp,, trPFTinversetqA drqritrPtqA dsm dsmdsmdsm     0.000 0.005 0.010 0.02 0.04 0.06 0.08 0.10 0.12 0.14 DisplacementProbabilityDistribution Displasement Free Diffusion Restricted Diffusion 0.0 0.5 1.0 1.5 2.0 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp Free Diffusion Restricted Diffusion FFT PROPAGATOR
  • 14. 14 NMR-Diffusometry: Remarks  q = g,  is gyromagnetic ratio of resonant nuclear;  and g – duration and amplitude of pulsed field gradient, respectively;  it is unnecessary to have a transparent sample (like for optic methods) or sample with specially prepared surface, and so on…  NMR does not produce sufficient changes in sample (remaining radiation, damaged pore structure…)  typical limits for application of NMR are extremely short relaxation times  NMR experiment may take a few days
  • 16. 16 Samples:  Porous PA-6 filled with water  Porous polyelectrolyte complex PEI / PAAc (multilayers) filled with water  Porous polyelectrolyte complex PEI / PAAc (multilayers) produced in NaCl solution, filled with water
  • 17. 17 Equipment  NMR spectrometer Bruker AVANCE 500 operating on frequency 1H 500 MHz  Diffusion probe Diff30 maximum g = 11.6 T/m  t° = 22°C
  • 18. 18 PA-6: Shape of Diffusion Decays 0 20 40 60 80 100 10 -2 10 -1 10 0 D 1 = 7 x 10 -12 m 2 / s p 1 = 0.011 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp = 400 ms   ii i Dtqp A A exp 2 0 ln        10 -11 10 -10 10 -9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 freewaterD free water part relativepopulation,pi , takenbycomponentwithDi Diffusion Coefficient, D i , m 2 / s
  • 19. 19 PA-6: Time Dependence of D 0 20 40 60 80 100 10 -2 10 -1 10 0 50 60 70 80 90 0.005 0.006 0.007 0.008 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp 300 ms 400 ms 500 ms q 2 t exp [ x 10 9 , m 2 s ] A/A0 10 -1 10 02x10 -12 10 -11 d = ( 6 D texp ) 1/2 d = ( 4.2 ± 0.1 ) m D ~ t exp 1 DiffusionCoefficient,D,m 2 /s experimental time, t exp , s
  • 20. 20 PA-6: Molecular Exchange between Water in Pores and Water outside Pores 0 10 20 30 40 0.01 0.02 0.03 0.04 Propagator, DisplacementProbabilityDistribution Displacement, m t exp 400 ms 750 ms 900 ms 0.0 0.2 0.4 0.6 0.8 1.0 e -5 e -4 mean life-time of water inside pores  = 1.1 s water in pores ~ 2.5 % relativepartofparticleslocatedinpores,pi t exp , s
  • 21. 21 PEI / PAAc: Shape of Diffusion Decay 0 50 100 150 200 250 300 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] PEI / PAA, t exp = 400 ms PA-6, t exp = 400 ms 0 100 200 300 10 -3 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp 400 600 800
  • 22. 22 PEI / PAAc: Time-Dependence of Diffusion Coefficient 0.1 1 10 -11 d = ( 6 D t exp ) 1/2 d = ( 5.6 ± 0.1 ) m D ~ t exp 1 DiffusionCoefficient,D[m 2 /s] Experimental Time, t exp , s
  • 23. 23 PEI / PAAc: To Question about Molecular Exchange 0 10 20 30 0.00 0.01 0.02 0.03 0.04 0.05 0.06 Propagator, DisplacementProbabilityDistribution Displacement, m PEI / PAAc, t exp = 400 ms PA-6, t exp = 400 ms 0 10 20 30 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Displacement, m Propagator, DisplacementProbabilityDistribution t exp 400 ms 600 ms 800 ms Life-time of water molecules in the pore of PEI / PAAc is lager than that for PA-6, at least, in a few times.
  • 24. 24 PEI / PAAc Produced in Salt Solution: Diffusion Decays and Dependence D(t) 100 400 1 2 3 4 5 6 7 8 9 10 d = ( 6 D t exp ) 1/2 = = ( 5.8 ± 0.1 ) m D ~ t exp 1 DiffusionCoefficient,D,[x10 11 ,m 2 /s] Experimental Time, t exp , ms 0 10 20 30 40 10 -2 10 -1 10 0 NormalizedAmplitude,A/A0 q 2 t exp [ x 10 9 , m 2 s ] t exp 100 ms 150 ms 200 ms
  • 25. 25 PEI / PAAc: To Question about Molecular Exchange 0 10 20 30 40 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Propagator, DisplacementProbabilityDistribution Displacement, m t exp 100 ms 150 ms 200 ms 0 5 10 15 20 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 5 10 15 20 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Propagator, DisplacementProbabilityDistribution Displacement, m t exp = 200 ms PEI / PAAc PEI / PAAc in Salt-Solution NormalizedPropagators Displacement
  • 26. 26 Conclusions  NMR-diffusometry permits: a) to obtain information about pore size; b) to characterize features of translational mobility of fluid molecules inside porous medium and interaction between solid matrix and fluid trough the study of molecular exchange.
  • 27. 27 Conclusions:  polymeric membranes were studied: a) the pore sizes were measured: Material Pore size, μm PA-6 PEI / PAAc PEI / PAAc + NaCl 4.2±0.1 5.6±0.1 5.8±0.1
  • 28. 28 Conclusions: b) the materials produced on basis of PEI / PAAc complex are characterized by the lager relative part of water located in pores than porous PA-6; c) for PA-6, the molecular exchange between water in pores and water outside pores were found; for material PEI / PAAc this effect was not registered, for material PEI / PAAc produced in salt-solution molecular exchange may exist.