SlideShare a Scribd company logo
1 of 16
Download to read offline
Flavor Symmetry and Its Collider
Signatures
Alexander Natale
Korea Institute for Advanced Study
In collaboration with:
Ernest Ma
E. Ma, and A. Natale, Phys. Lett. B740 (2015) 80-82,
arXiv:1410.2902
ICHEP 2016
Chicago, IL, USA
August 3-10 2016
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
1/16
Introduction
Dark Matters & ν mass: evidence for DM and mν = 0 is strong, can’t
be minimal SM particles → new physics (NP)
Radiative Connection: Long history of radiative mν mechanisms →
maybe DM and mν are related radiatvely
Flavor/Horizontal Symmetries: Non-Abelian discrete symmetries still of
continued interest to explain PMNS values
Compliments: Use direct detection, colliders, and precision to constrain
models of DM/BSM physics, and the connection between DM-ν to probe
nature of mν and the horizontal symmetry
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
2/16
Radiative Neutrino Mass and DM
Paritlces in loop odd under
dark Z2
Neutral fermion (N), SU(2)
scalar doublet η (no VEV)
Majorana mass of N completes
loop
Mass splitting (λ5(η†
Φ)2
)
makes loop finite
Either η0
or N are DM
candidate
ν νN
η0
η0
φ0
φ0
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
3/16
Flavor/Horizontal Symmetries
Non-Abelian discrete groups (S3,A4, ∆(27), ∆(54), etc.) have been
used to describe PMNS in models of mν
Produce correlations between angles in PMNS, leads to specific
patterns for L − N coupling in Ma-like models
In the minimal Ma model:
N and (e, ν)L are given non-trivial reps under the Horizontal symmetry
(often add copies of N ie N1,2,3 ∼ 3A4 ), Ni now carries flavor information.
In many A4 models this yields N3 → τη, N2 → µη.
For example (Bhattacharya, Ma, AN, Rashed 2013): if mN1 ≈ mN2 then
η±η → e±µ N1N2 with a BR ∼ 2/9, where OSSF dilepton signals have
a BR ∼ 1/9.
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
4/16
Scotogenic Extensions to Ma Model
×
uL uRNR NL
ξ2/3
ζ2/3
φ0
×
dL dRNR NL
ξ−1/3
ζ−1/3
φ0
×
lL lRNR NL
η+
χ+
φ0
Expanded particle content yield scotogenic quark & lepton masses.
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
5/16
The ’Simplified’ Scotogenic Model
Usual minimal scotogenic content: η, Ni (now a Dirac fermion)
Non-minimal particles:
χ+ singlet, scalar
(ξ2/3, ξ−1/3) color-triplet, SU(2) doublet, scalar
ζ−1/3 color-triplet, singlet, scalar
New Yukawa interactions:
L = f( ¯dRN1L + ¯sRN2L)ζ−1/3
+ f (¯eRN1L + ¯µRN2L)χ−
+ h.c.,
where mζ > mN2 > mχ > mN1
ζ → dN1, sN2, and N2 → eµN1 via χ+
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
6/16
Relic Density
Relic density for DM with color-triplet, scalar, mediator previously
calculated (for instance see Y.Bai & J.Berger arXiv:1308.0612):
σv =
1
2
3f4m2
N1
32π(m2
N1
+ m2
ζ)2
+ v2
f4m2
N1
(11m4
ζ − 5m4
N1
− 18m2
N1
m2
ζ
256π(m2
N1
+ m2
ζ)4
→ with mass choices cannot fit Ω0h2 for DM unless f > 0.5, however f
also needed to radiatively generate mu. To get correct mu values
f ≈ 0.01.
Solution: N1N1 → e+e−, using MicrOMEGAs with f ≈ 0.5, f ≈ 0.01,
yields correct Ω0h2. f is partially constrained by ml → possible
consequences for η Yukawa couplings to produce observed ml, however
possible direct detection/cosmological constraints on this channel.
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
7/16
Direct Detection
LUX results from: arXiv:1405.5906.
m
WIMP
(GeV/c2
)
WIMP−nucleoncrosssection(cm2
)
5 6 7 8 9 10 12
10
−44
10
−43
10
−42
10
−41
10
−40
mWIMP
(GeV/c
2
)
WIMP−nucleoncrosssection(cm2
)
10
1
10
2
10
3
10
−46
10
−45
10
−44
10
−43
10
−42
10
−41
10
−40
f ≈ 0.01, mζ = (600) 750 GeV, mN1 = 120 (160) GeV
σSI = 1.808 (1.164) × 10−11 pb = 1.808 (1.164) × 10−47 cm2
→ lower than LUX 2016 bounds
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
8/16
Collider Production
Main collider production:
g
g
ζ−1/3
ζ−1/3
g
g
g
ζ−1/3
ζ−1/3
Other diagrams include quarks, t-channel, etc. but dominated by gg → ζζ
In this model mN1 = mN2 and ζ → dN1 or ζ → sN2 with approx. equal
BR:
collider signature with dileptons is always OSOF This is important
because off-Z OF events are used to estimate SUSY backgrounds.
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
9/16
Collider Signatures
L = f( ¯dRN1L + ¯sRN2L)ζ−1/3
+ f (¯eRN1L + ¯µRN2L)χ−
+ h.c.
Generic Signatures:
mono-X + Emiss
T ← same as simplified models (cf P.Ko, A.N.,
M.Park, & H.Yokoya arXiv:1605.07058)
2 jets + Emiss
T ← same as SUSY searches
2 jets + 2 leptons (opposite-sign opposite-flavor) + Emiss
T
2 jets + four leptons + Emiss
T
A common SUSY signature is opposite-sign same-flavor, positive signals
(even < 5σ) yield constrains/rule out this scotogenic model (OSOF
estimates flavor symmetric background so signal constrains excess OSOF)
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
10/16
Constraints from 13 TeV squark searches
From yesterday’s CMS talk (SUS-16-014, SUS-16-015, SUS-16-016):
MT2: → 400 < mζ < 700 GeV & mN1
> 100 GeV HT : mζ > 450 GeV
And from ATLAS (ATLAS-CONF-2016-078):
Simplified model two degenerate squarks generations mq > 1.35 TeV, but
scotogenic model is closest to ”one light squark”
mζ 675 GeV (∼ 1/2 reported limit?)
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
11/16
Methods
SUSY Simplified topology production compared to LO calculation in
CalcHEP to scale to NLO values.
Main background from ¯tt decays, calculated & scaled to NLO.
Various cuts and masses tried, final analysis uses mN2 = 400 GeV,
mχ = 200 GeV, mζ > 400 GeV, 180 GeV ≥ mN1 ≥ 100 GeV
6 cut regions used, only 4 cuts produce large enough
signal-to-background
Cuts on scalar sum of hadronic transverse momentum (HT ) utilized
For simulation: ECM = 13 TeV, CTEQ6M, CalcHEP → PYTHIA 8
Cuts used:
R2: MET: 200 GeV, HT : 600, p
j(l)
T : 30 (20) GeV
R3: MET: 275 GeV, HT : 600, p
j(l)
T : 30 (20) GeV
R5: MET: 200 GeV, HT : 350, p
j(l)
T : 30 (20) GeV
R6: MET: 200 GeV, HT : 350, p
j(l)
T : 150 (25) GeV
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
12/16
Results
400 500 600 700 800 900
100
120
140
160
180
mΖ GeV
mN1
GeV
R2
R3
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
13/16
Results
400 500 600 700 800 900
100
120
140
160
180
mΖ GeV
mN1
GeV
R5
R6
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
14/16
Summary & Conclusions
DM and mν could be connected through radiative quark & lepton
mass
Interesting collider searches with some overlap with SUSY but major
differences
Detailed look at recent CMS and ATLAS results required to
determine constraints on scotogenic models with colored scalars
Some questions worth studying:
EW SUSY searches and the Ma model?
How would a horizontal/flavor symmetry signal affect SUSY SF
estimates?
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
15/16
Thank you!
Thank you!
A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902
16/16

More Related Content

Viewers also liked

[1분보험] 자동차보험_대물배상
[1분보험] 자동차보험_대물배상[1분보험] 자동차보험_대물배상
[1분보험] 자동차보험_대물배상MinuteInsurance
 
2016 Hot Firm & A/E Industry Awards: Analysis of Awards Winners
2016 Hot Firm & A/E Industry Awards: Analysis of Awards Winners2016 Hot Firm & A/E Industry Awards: Analysis of Awards Winners
2016 Hot Firm & A/E Industry Awards: Analysis of Awards WinnersChristina Zweig
 
Teoría de la modificabilidad cognitiva estructural
Teoría de la modificabilidad cognitiva estructuralTeoría de la modificabilidad cognitiva estructural
Teoría de la modificabilidad cognitiva estructuralmarcela ramirez
 
[MinuteInsurance] 1분보험 자동차보험 소개
[MinuteInsurance] 1분보험 자동차보험 소개[MinuteInsurance] 1분보험 자동차보험 소개
[MinuteInsurance] 1분보험 자동차보험 소개MinuteInsurance
 

Viewers also liked (7)

l.o
l.ol.o
l.o
 
[1분보험] 자동차보험_대물배상
[1분보험] 자동차보험_대물배상[1분보험] 자동차보험_대물배상
[1분보험] 자동차보험_대물배상
 
January2015Newsletter
January2015NewsletterJanuary2015Newsletter
January2015Newsletter
 
2016 Hot Firm & A/E Industry Awards: Analysis of Awards Winners
2016 Hot Firm & A/E Industry Awards: Analysis of Awards Winners2016 Hot Firm & A/E Industry Awards: Analysis of Awards Winners
2016 Hot Firm & A/E Industry Awards: Analysis of Awards Winners
 
Teoría de la modificabilidad cognitiva estructural
Teoría de la modificabilidad cognitiva estructuralTeoría de la modificabilidad cognitiva estructural
Teoría de la modificabilidad cognitiva estructural
 
[MinuteInsurance] 1분보험 자동차보험 소개
[MinuteInsurance] 1분보험 자동차보험 소개[MinuteInsurance] 1분보험 자동차보험 소개
[MinuteInsurance] 1분보험 자동차보험 소개
 
Defense
DefenseDefense
Defense
 

Similar to ACN-ICHEP-2016

42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...Cristian Randieri PhD
 
OrthoPositronium_in_DoubleChooz
OrthoPositronium_in_DoubleChoozOrthoPositronium_in_DoubleChooz
OrthoPositronium_in_DoubleChoozStefano Perasso
 
Tunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptxTunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptxSivaGovind2
 
Non-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldNon-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldAnkurDas60
 
Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...
Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...
Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...idescitation
 
Constraining photon dispersion relation from observations of the Vela pulsar ...
Constraining photon dispersion relation from observations of the Vela pulsar ...Constraining photon dispersion relation from observations of the Vela pulsar ...
Constraining photon dispersion relation from observations of the Vela pulsar ...Mathieu Chrétien
 
Presentation lab meeting NRE
Presentation lab meeting NREPresentation lab meeting NRE
Presentation lab meeting NREfarnaznojavan
 
Tunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptxTunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptxTPOVITSKARIMNAGAR
 
Neutron Star Powered Nebulae
Neutron Star Powered NebulaeNeutron Star Powered Nebulae
Neutron Star Powered Nebulaejoshualande
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE Sujitlal Bhakta
 
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...Cristian Randieri PhD
 
49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...
49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...
49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...Cristian Randieri PhD
 
BlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelBlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelKyusonLim
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
15.30 o4 c aguergaray
15.30 o4 c aguergaray15.30 o4 c aguergaray
15.30 o4 c aguergarayNZIP
 
Ferromagnetism in the SU(n) Hubbard Model with nearly flat band
Ferromagnetism in the SU(n) Hubbard Model with nearly flat bandFerromagnetism in the SU(n) Hubbard Model with nearly flat band
Ferromagnetism in the SU(n) Hubbard Model with nearly flat bandKensukeTamura
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...Cristian Randieri PhD
 

Similar to ACN-ICHEP-2016 (20)

42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
 
OrthoPositronium_in_DoubleChooz
OrthoPositronium_in_DoubleChoozOrthoPositronium_in_DoubleChooz
OrthoPositronium_in_DoubleChooz
 
Tunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptxTunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptx
 
Non-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldNon-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic field
 
Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...
Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...
Accurate Evaluation of Interharmonics of a Six Pulse, Full Wave - Three Phase...
 
Constraining photon dispersion relation from observations of the Vela pulsar ...
Constraining photon dispersion relation from observations of the Vela pulsar ...Constraining photon dispersion relation from observations of the Vela pulsar ...
Constraining photon dispersion relation from observations of the Vela pulsar ...
 
Presentation lab meeting NRE
Presentation lab meeting NREPresentation lab meeting NRE
Presentation lab meeting NRE
 
Tunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptxTunnel_FET_-_Learning_Module_Draft.pptx
Tunnel_FET_-_Learning_Module_Draft.pptx
 
final_exam
final_examfinal_exam
final_exam
 
Neutron Star Powered Nebulae
Neutron Star Powered NebulaeNeutron Star Powered Nebulae
Neutron Star Powered Nebulae
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE
 
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...
49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...
49 First Measurement of the Σ Beam Asymmetry in η' Photoproduction off the Pr...
 
BlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelBlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed model
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
15.30 o4 c aguergaray
15.30 o4 c aguergaray15.30 o4 c aguergaray
15.30 o4 c aguergaray
 
Ferromagnetism in the SU(n) Hubbard Model with nearly flat band
Ferromagnetism in the SU(n) Hubbard Model with nearly flat bandFerromagnetism in the SU(n) Hubbard Model with nearly flat band
Ferromagnetism in the SU(n) Hubbard Model with nearly flat band
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
 

ACN-ICHEP-2016

  • 1. Flavor Symmetry and Its Collider Signatures Alexander Natale Korea Institute for Advanced Study In collaboration with: Ernest Ma E. Ma, and A. Natale, Phys. Lett. B740 (2015) 80-82, arXiv:1410.2902 ICHEP 2016 Chicago, IL, USA August 3-10 2016 A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 1/16
  • 2. Introduction Dark Matters & ν mass: evidence for DM and mν = 0 is strong, can’t be minimal SM particles → new physics (NP) Radiative Connection: Long history of radiative mν mechanisms → maybe DM and mν are related radiatvely Flavor/Horizontal Symmetries: Non-Abelian discrete symmetries still of continued interest to explain PMNS values Compliments: Use direct detection, colliders, and precision to constrain models of DM/BSM physics, and the connection between DM-ν to probe nature of mν and the horizontal symmetry A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 2/16
  • 3. Radiative Neutrino Mass and DM Paritlces in loop odd under dark Z2 Neutral fermion (N), SU(2) scalar doublet η (no VEV) Majorana mass of N completes loop Mass splitting (λ5(η† Φ)2 ) makes loop finite Either η0 or N are DM candidate ν νN η0 η0 φ0 φ0 A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 3/16
  • 4. Flavor/Horizontal Symmetries Non-Abelian discrete groups (S3,A4, ∆(27), ∆(54), etc.) have been used to describe PMNS in models of mν Produce correlations between angles in PMNS, leads to specific patterns for L − N coupling in Ma-like models In the minimal Ma model: N and (e, ν)L are given non-trivial reps under the Horizontal symmetry (often add copies of N ie N1,2,3 ∼ 3A4 ), Ni now carries flavor information. In many A4 models this yields N3 → τη, N2 → µη. For example (Bhattacharya, Ma, AN, Rashed 2013): if mN1 ≈ mN2 then η±η → e±µ N1N2 with a BR ∼ 2/9, where OSSF dilepton signals have a BR ∼ 1/9. A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 4/16
  • 5. Scotogenic Extensions to Ma Model × uL uRNR NL ξ2/3 ζ2/3 φ0 × dL dRNR NL ξ−1/3 ζ−1/3 φ0 × lL lRNR NL η+ χ+ φ0 Expanded particle content yield scotogenic quark & lepton masses. A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 5/16
  • 6. The ’Simplified’ Scotogenic Model Usual minimal scotogenic content: η, Ni (now a Dirac fermion) Non-minimal particles: χ+ singlet, scalar (ξ2/3, ξ−1/3) color-triplet, SU(2) doublet, scalar ζ−1/3 color-triplet, singlet, scalar New Yukawa interactions: L = f( ¯dRN1L + ¯sRN2L)ζ−1/3 + f (¯eRN1L + ¯µRN2L)χ− + h.c., where mζ > mN2 > mχ > mN1 ζ → dN1, sN2, and N2 → eµN1 via χ+ A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 6/16
  • 7. Relic Density Relic density for DM with color-triplet, scalar, mediator previously calculated (for instance see Y.Bai & J.Berger arXiv:1308.0612): σv = 1 2 3f4m2 N1 32π(m2 N1 + m2 ζ)2 + v2 f4m2 N1 (11m4 ζ − 5m4 N1 − 18m2 N1 m2 ζ 256π(m2 N1 + m2 ζ)4 → with mass choices cannot fit Ω0h2 for DM unless f > 0.5, however f also needed to radiatively generate mu. To get correct mu values f ≈ 0.01. Solution: N1N1 → e+e−, using MicrOMEGAs with f ≈ 0.5, f ≈ 0.01, yields correct Ω0h2. f is partially constrained by ml → possible consequences for η Yukawa couplings to produce observed ml, however possible direct detection/cosmological constraints on this channel. A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 7/16
  • 8. Direct Detection LUX results from: arXiv:1405.5906. m WIMP (GeV/c2 ) WIMP−nucleoncrosssection(cm2 ) 5 6 7 8 9 10 12 10 −44 10 −43 10 −42 10 −41 10 −40 mWIMP (GeV/c 2 ) WIMP−nucleoncrosssection(cm2 ) 10 1 10 2 10 3 10 −46 10 −45 10 −44 10 −43 10 −42 10 −41 10 −40 f ≈ 0.01, mζ = (600) 750 GeV, mN1 = 120 (160) GeV σSI = 1.808 (1.164) × 10−11 pb = 1.808 (1.164) × 10−47 cm2 → lower than LUX 2016 bounds A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 8/16
  • 9. Collider Production Main collider production: g g ζ−1/3 ζ−1/3 g g g ζ−1/3 ζ−1/3 Other diagrams include quarks, t-channel, etc. but dominated by gg → ζζ In this model mN1 = mN2 and ζ → dN1 or ζ → sN2 with approx. equal BR: collider signature with dileptons is always OSOF This is important because off-Z OF events are used to estimate SUSY backgrounds. A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 9/16
  • 10. Collider Signatures L = f( ¯dRN1L + ¯sRN2L)ζ−1/3 + f (¯eRN1L + ¯µRN2L)χ− + h.c. Generic Signatures: mono-X + Emiss T ← same as simplified models (cf P.Ko, A.N., M.Park, & H.Yokoya arXiv:1605.07058) 2 jets + Emiss T ← same as SUSY searches 2 jets + 2 leptons (opposite-sign opposite-flavor) + Emiss T 2 jets + four leptons + Emiss T A common SUSY signature is opposite-sign same-flavor, positive signals (even < 5σ) yield constrains/rule out this scotogenic model (OSOF estimates flavor symmetric background so signal constrains excess OSOF) A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 10/16
  • 11. Constraints from 13 TeV squark searches From yesterday’s CMS talk (SUS-16-014, SUS-16-015, SUS-16-016): MT2: → 400 < mζ < 700 GeV & mN1 > 100 GeV HT : mζ > 450 GeV And from ATLAS (ATLAS-CONF-2016-078): Simplified model two degenerate squarks generations mq > 1.35 TeV, but scotogenic model is closest to ”one light squark” mζ 675 GeV (∼ 1/2 reported limit?) A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 11/16
  • 12. Methods SUSY Simplified topology production compared to LO calculation in CalcHEP to scale to NLO values. Main background from ¯tt decays, calculated & scaled to NLO. Various cuts and masses tried, final analysis uses mN2 = 400 GeV, mχ = 200 GeV, mζ > 400 GeV, 180 GeV ≥ mN1 ≥ 100 GeV 6 cut regions used, only 4 cuts produce large enough signal-to-background Cuts on scalar sum of hadronic transverse momentum (HT ) utilized For simulation: ECM = 13 TeV, CTEQ6M, CalcHEP → PYTHIA 8 Cuts used: R2: MET: 200 GeV, HT : 600, p j(l) T : 30 (20) GeV R3: MET: 275 GeV, HT : 600, p j(l) T : 30 (20) GeV R5: MET: 200 GeV, HT : 350, p j(l) T : 30 (20) GeV R6: MET: 200 GeV, HT : 350, p j(l) T : 150 (25) GeV A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 12/16
  • 13. Results 400 500 600 700 800 900 100 120 140 160 180 mΖ GeV mN1 GeV R2 R3 A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 13/16
  • 14. Results 400 500 600 700 800 900 100 120 140 160 180 mΖ GeV mN1 GeV R5 R6 A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 14/16
  • 15. Summary & Conclusions DM and mν could be connected through radiative quark & lepton mass Interesting collider searches with some overlap with SUSY but major differences Detailed look at recent CMS and ATLAS results required to determine constraints on scotogenic models with colored scalars Some questions worth studying: EW SUSY searches and the Ma model? How would a horizontal/flavor symmetry signal affect SUSY SF estimates? A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 15/16
  • 16. Thank you! Thank you! A. Natale | Flavor Symmetry & Its Collider Signatures | E.Ma, A.N., Phys. Lett. B740 (2015) 80-82. arXiv:1410.2902 16/16