SlideShare a Scribd company logo
1 of 41
Download to read offline
Predicting phase diagrams of fluids combining
Thermodynamic Perturbation Theory
and
Monte Carlo computer simulations.
Alejandro Gil Villegas
Department of Physical Engineering
University of Guanajuato
México
Thomas Young Centre
November 2015
University of Guanajuato
Department of Physical Engineering
Sciences and Engineering Division
Sciences and Engineering
Division
Physics
Physical
Engineering
Chemical, Electronic
and Biomedical
Engineering
Bachelor Programs:
Physics (1998)
Physical Engineering (1998)
Chemical Engineering (2010)
Biomedical Engineering (2011)
Postgraduate Programs:
M. Sc. and Ph. D. Physics (1988)
M. Sc. Applied Sciences (2013)
Molecular Thermodynamics
Molecular
Simulation
Theory Experiments
Associating Fluids
Ludwig Boltzmann, Lectures in gas theory (1895)
Modelos de sistemas asociativos
Michael Wertheim, “Fluids with highly directional attractive forces”
J. Stat. Phys. 35, 19 (1984)
Conclusiones
To exclude all knowledge but that which has already been applied
to immediate utility, would be to reduce our faculties to a state of
servitude, and to frustrate the very purposes which we are laboring
to accomplish. No discovery, however remote in its nature from the
subjects of daily observation, can with reason be declared wholly
inapplicable to the benefit of mankind.
Thomas Young
A course of lectures on Natural Philosophy and the Mechanical Arts (1807).
RIFUG 2013 Hooke,Young & Gibbs
W. Chapman, K. Gubbins, G. Jackson, M. Radosz, Fluid Phase Equil. 52, 31 (1989)
W. Chapman, K. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29, 1709 (1990)
SAFT: Statistical Associating Fluid Theory
Fluidos Asociativ
Michael Wertheim:
Fluids with highly directional attractive
J. Stat. Phys. (1984-1986)
A
NkT
=
Aideal
NkT

Amonomers
NkT

Achain
NkT

Aassoc
NkT
Yukawa:Yukawa:
SAFT-VRSAFT-VR
Asphaltenes Biodiesel
Hydrogen
OH
σ
Buenrostro, Lira, Gil-Villegas & WuBuenrostro, Lira, Gil-Villegas & Wu
AIChE JAIChE J 50, 255250, 2552 (2004)(2004)
SAFT-VR prediction for asphaltene precipitationSAFT-VR prediction for asphaltene precipitation
from titration data of oil Y3 with n-heptane. Values of the new
parameters are ␺AA/k ϭ 2062.21 K and ␺AR/k ϭ 2359.43 K. No
other assumptions or parameter modifications were used.
The predicted precipitation curves for oil Y3 resulted within
10% error of the experimental data for precipitant/oil ratios Ն 10.
However, for lower ratios, there are larger deviations from the
experimental values, even though the model reproduces the de-
crease of the precipitation as the carbon number of the precipitant
increases. As mentioned earlier, for the prediction of the precipi-
tation in oil Y3, it was not necessary to refit the parameters related
to the mean-attractive energy (the Hamaker constants and the
range of the mean-force potentials). These results can be explained
in terms of the similar properties and composition of C1 and Y3
crude oils and the use of the same values for the asphaltene and
resin properties (Table 1), considering that both oils are produced
To model asphaltene precipitation in
certain T and P conditions, the vapor–liqu
culation of the reservoir fluid is first perfo
equation of state, to obtain the composition
of the liquid phase at equilibrium. Then, us
resin–oil model system described before,
analysis is applied to find out the onset of
tation. When asphaltene precipitation appe
precipitated material is calculated by solvi
equilibrium equations.
Calculation of Medium Properties. F
(2000), the volume-shifted Peng–Robinson
al., 1982; Peng and Robinson, 1976) was
vapor–liquid–equilibrium to obtain the de
tion of the liquid phase. Recommended va
Figure 10. Comparison between experimental and predicted APE for live oil C1.E. Buenrostro, C. Lira, A. Gil-Villegas and J. Wu, AIChE J 50, 2552 (2004).
effective spherical potential given by the following
expression:16
where r is the distance between the centers of mass
(CM) of each molecule with facing parallel aromatic
regions, and Z1, Z2 are the number of atoms in each
molecule. The parameters C1, C2, R, β, and γ were
obtained by fitting eq 1 to the corresponding MM
numerical values (T ) 0 K, in vacuum). Figure 2
displays the A-A, A-R, and R-R intermolecular po-
tentials generated according to the previous discus-
sion.16 The symbols correspond to the MM numerical
values and the continuous curves to the best over-all
fit found with eq 1. Note that within this spherical
approximation for the interactions, asphaltenes and
resins are considered as entities without internal struc-
ture in the MD simulations described further below.
Thus we shall be only concerned with the A-A, A-R,
and R-R spatial distributions in terms of the molecular
CM positions.
The embedding medium is accounted for through a
mean field approximation given by its dielectric con-
stant, ϵ, affecting only the Coulomb and London con-
tributions. The use of an effective medium through its
dielectric constant is known to be questionable for
intermolecular distances of the order of the molecular
size, mainly because it is at these distances where
atomic detail becomes important.18 However, it is still
a valuable first exploratory means to account for the
screening of Coulomb and London interactions due to
the embedding medium for intermediate to large inter-
molecular distances. It is deemed that the initial stages
of aggregation will correlate strongly with the long-
range interactions. As the interacting molecules become
closer to each other the molecular structure of the
solvent is more apparent and local effects become
important. These local interactions may be dominant
in defining the structure of an aggregate, solvation free
energies, possible chemical reactions, etc. Hence, the use
of an effective medium in our case has its aim in looking
at the evolution of aggregation from its initial stages
and extrapolating the behavior of the system in its final
“gross” equilibration (see further below).
Molecular Dynamics Simulations. The intermo-
lecular potentials described in the previous section were
used in a canonical molecular dynamics (MD) simula-
tion for mixtures of asphaltene/resin in different host
media. Our model system consists of NAs and NRe
(18) Smith, P. E.; Pettitt, M. B. J. Phys. Chem. 1994, 98, 9700.
Figure 1. Molecular models used in this work. (a) 3D diagram
of the MM-optimized asphaltene structure (C57H63N1S1) re-
ported in ref 7 showing an aromatic region (continuous lines)
and its aliphatic chain (dashed lines). (b) Transverse view of
the asphaltene structure showing the aromatic region in more
detail. (c) Diagram showing the resin structure (C13H10S1)
reported in ref 5.
V(r) )
Z1Z2
ϵr
(e-Rr
+ C1ϵre-βr
) -
C2
ϵ2
r6
e-γ/r4
(1)
Figure 2. Intermolecular potential curves in a vacuum for
the most favorable relative orientation (see text) between
asphaltene-asphaltene (A-A), asphaltene-resin (A-R), and
resin-resin (R-R). Symbols correspond to MM calculations.
Continuous curve: best fit using eq 1 according to ref 16.
Lauric Acid
+ Methanol + Water
Methy Laureate
F. Perdomo, B. Millán, G. Mendoza & A. Gil-VillegasF. Perdomo, B. Millán, G. Mendoza & A. Gil-Villegas
J. Mol. Liq.J. Mol. Liq. 185, 8 (2013).185, 8 (2013).
F. Perdomo, B. Millan, G. Mendoza, A. Gil-Villegas, J. Mol. Liq. 185, 8 (2013)
respect to the theoretical predictions a
with water, since integrals are inaccurate.
compounds: circles for lauric acid, square
for methyl laurate. From Figs. 2B and 3A w
reacting method is consistent with the exp
viations are noted for the biodiesel compo
tailed study, both experimental and the
case. With exception of this point, the agr
experiment is very good.
An expanded version of Fig. 2B is give
retical predictions are given for higher va
this figure, the molar fraction for lauric
R=6. The production of methyl laurate
that enable us to determine the optimal r
tive compositions. This information is of g
of an esterification reactor, and these re
tage of a molecular thermodynamic theor
predictions for compositions that maxim
6. Conclusions
We have presented in this article a the
proach for the prediction of reactive equ
compounds, that was applied to the est
order to test the predictions, experimenta
tion were measured from an experiment
an esterification batch reactor. The molar
Lauric Acid Methanol
Methyl Laurate
Methanol
Lauric Acid
Methyl Laurate
B
Fig. 2. Predicted chemical equilibrium manifold for the esterification of lauric acid with
methanol to produce methyl laureate and water, for atmospheric pressure at experimen-
tal conditions (0.83 atm) and temperature T=338.4 K. Experimental chemical reactions
correspond to reactive relation values R=0.125, 0.166, 0.250 and 1.0 (square, triangle,
circle and rhombus, respectively). Theoretical predictions are given by a dotted and
solid lines in (A) and (B), respectively. Figure (A) corresponds to the four-vertex chemical
equilibrium manifold whereas (B) is the projection onto the lauric acid-methanol-methyl
Fig. 3. Molar fraction of reactants and products (χ) a
(R). In figure (A) dotted, dashed and solid lines corr
acid, methanol and methyl laurate, respectively, wh
noted by circles, squares and triangles, respectively
for lauric acid; in the case of the other two species t
the symbol size. Theoretical predictions are given f
SAFT-VR Reactive System
Niels Bohr (1885-1962)
On the Constitution of Atoms and Molecules
Phil. Mag. 26, 1 (1913); 26, 476 (1913); 26, 857 (1913)
λB =
h
2πmkT
e−βA
=
1
N!λB
3N
drN
e
−βU rN
( )
∫
e
−βAQ
=
1
N!
drN
rN
e−β ˆH
rN
∫
rN
e−β ˆH
rN
= e−βEn
φn
*
φn
n
∑
rN
e−β ˆH
rN
= e−βWN
free particles: continuous potentials
hard spheres: discontinuous potentials
φn{ }
lim
λB→0
rN
e−β ˆH
rN
= e−βU
16
Eugene Wigner (1902-1995)
Symmetry properties in Quantum Mechanics
Wigner-D matrix
Wigner-Seitz cell
Metallic phase of hydrogen
The Unreasonable Effectiveness of Mathematics
in the Natural Sciences (1960).
Wigner-Kirkwood first-order QLJ potential
uLJ r( )= 4ε
σ
r
⎛
⎝⎜
⎞
⎠⎟
12
−
σ
r
⎛
⎝⎜
⎞
⎠⎟
6
⎡
⎣
⎢
⎤
⎦
⎥ u r( )= uLJ r( )+
Λ2
48π2
T *
∇2
uLJ r( )
Λ =
h
σ mε
λB =
Λσ
2πT *
r σ
u r( )
ρ*
T*
WK-1 pair potential for Ne, D2, H2 and He-IV
T* = 0.60
GEMC simulations and Wegner’s expansion
for the LV coexistence curves (WK-1 systems)
V.M. Trejos, A. Martínez, A. Gil-Villegas, J. Chem. Phys. 139, 184505 (2013)
Confined fluids
Classical Lennard-Jones system
V.M. Trejos, A. Martínez, A. Gil-Villegas, J. Chem. Phys. 139, 184505 (2013)
Y. Liu, A. Z. Panagiotopoulos, P. Debenedetti, J. Chem. Phys. 132, 144107 (2010)
A. Trokhymchuk, J. Alejandre, J. Chem. Phys. 111, 8510 (1999)
Quantum Lennard-Jones system
V.M. Trejos, A. Martínez, A. Gil-Villegas,
J. Chem. Phys. 139, 184505 (2013)
i!
∂ψ
∂t
= ˆHψ t → i!β
∂ ˆρ
∂β
= − ˆH ˆρ
x
t
Path Integral Method
R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948)
S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965)
D. Chandler, P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981)
i!
∂ψ
∂t
= ˆHψ
ψ ′′x ,t( )= d ′x ′′x∫ e−i ˆH t−t0( ) !
′x ψ ′x ,t0( )
e−i ˆH t−t0( ) !
= e−i ˆHΔt !
e−i ˆHΔt !
e−i ˆHΔt !
⋅⋅⋅e−i ˆHΔt !
Ptimes
" #$$$$$ %$$$$$
′′x e−i ˆH t−t0( ) !
′x =
m
ihΔt
⎛
⎝⎜
⎞
⎠⎟
P
2
dxn∫n=1
P−1
∏ exp
iΔt
!
m
2
xn − xn−1
Δt
⎛
⎝⎜
⎞
⎠⎟
2
−V x( )
n=1
P
∑
⎛
⎝
⎜
⎞
⎠
⎟
⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
⎭⎪
Δt =
t − t0
P
x
t t +1
∂ ˆρ
∂β
= − ˆH ˆρ
xP e−β ˆH
x0 =
1
Z
mP
π!2
β
⎛
⎝⎜
⎞
⎠⎟
P
2
dxn∫n=1
P−1
∏ exp −
β
P
mP2
2!2
β2
xn − xn−1( )2
+V x( )
⎛
⎝⎜
⎞
⎠⎟
n=1
P
∑
⎧
⎨
⎩
⎫
⎬
⎭
t − t0 = i!β ,
′′x e−i ˆH t−t0( ) !
′x xP e−β ˆH
x0
Δt =
i!β
P
Z =
1
N!
dx x∫ e−β ˆH
x
0
λB
rN
e−β ˆH
rN
=
P
λB
⎛
⎝⎜
⎞
⎠⎟
3NP
e−βWNP
t=1
P
∏i=1
N
∏
N-particle fluid N-necklace fluid
P beads
βWNP =
πP
λB
2
ri
t
− ri
t+1
( )
2
t
P
∑
i
N
∑ + βWI
t
tt +1
t +1t + 2
t + 2
x
t t +1
βWNP =
πP
λB
2
ri
t
− ri
t+1
( )
2
t
P
∑
i
N
∑ + βWI
Crude propagator
Kinetic contribution = Diffraction term
Corrected propagators
pair interactions contribution
Improving kinetic term
Modelling diffraction of thermal waves
105
106
108
0
0.5
1
1.5
2
2.5
-0.4 -0.2 0 0.2 0.4
|0(x)|2
x
1 ⇥ 108
Pasos
0
0.5
1
1.5
2
2.5
-0.4 -0.2 0 0.2 0.4
|0(x)|2
x
1 ⇥ 106
Pasos
0
0.5
1
1.5
2
2.5
-0.4 -0.2 0 0.2 0.4
|0(x)|2
x
1 ⇥ 105
Pasos
φ x( )
2
x
0
0.2
0.4
0.6
0.8
1
-3 -2 -1 0 1 2 3
|0(x)|2
x
1 ⇥ 108
Pasos
0
0.2
0.4
0.6
0.8
1
-3 -2 -1 0 1 2 3
|0(x)|2
x
1 ⇥ 106
Pasos
0
0.2
0.4
0.6
0.8
1
-3 -2 -1 0 1 2 3
|0(x)|2
x
1 ⇥ 105
Pasos
x
φ x( )
2
Free particle in a box
Harmonic oscillator
Non-interacting particles
0
0.5
1
1.5
2
2.5
0 2 4 6 8 10
hEi
Resultado analítico cuántico
Resultado analítico clásico
P=2
P=5
P=20
P=40
E
!ω
β!ω 1
β!ω
1
2
coth
β!ω
2
⎛
⎝⎜
⎞
⎠⎟
P = 2
P = 5
P = 20
P = 40
Harmonic Oscillator
125 necklaces - 6 beads
Quantum Hard Spheres
Conclusions
Quantum Hard Spheres
Matter Out of Equilibrium 2014 Confined fl
r σ
g(r)
1 2 30
1
2
3
4
ρσ 3
= 0.7 , λB σ = 0.3
Semiclassical MC
Path Integral MC
g(σ ) = 0
σeff ≈σ +
λB
2 2
Path Integral MC:
L. M. Sesé, R. Ledesma, J. Chem. Phys. 102, 3776 (1995)
C. Serna, A. Gil-Villegas (unpublished)
ZQHS =
1+ηeff +ηeff
2
−ηeff
3
1−ηeff( )
3 , ηeff = ηeff η,λB( )
AQHS =
4ηeff − 3ηeff
2
1−ηeff( )
2
B.-J. Yoon, H. A. Sheraga, J. Chem. Phys. 88, 3923 (1988)
ηeff =
2 + AQHS − 4 + AQHS
3+ AQHS
ηeff = 1+ c1λB( )η + c2λB + c3λB
2
( )η2
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
⇢⇤
0
1
2
3
4
5
aQHS
a)
⇤
B = 0.116
⇤
B = 0.3
⇤
B = 0.5
⇤
B = 0.8
Gibson
PIMC
YS
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
⇢⇤
0
2
4
6
8
10
12
ZQHS
b)
⇤
B = 0.116
⇤
B = 0.3
⇤
B = 0.5
⇤
B = 0.8
PIMC
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
⇢⇤
6
5
4
3
2
1
0
a1
a)
MC Classical
PIMC B-B
PIMC CM-CM
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
⇢⇤
6
5
4
3
2
1
0
a1
b)
TPT-PI
SAFT-VR
MC Classical
PIMC CM-CM
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
⇢⇤
0.5
0.4
0.3
0.2
0.1
0.0
a2
a)
MC Classical
MC Semiclassical
PIMC B-B
PIMC CM-CM
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
⇢⇤
0.5
0.4
0.3
0.2
0.1
0.0
a2
b)
TPT-PI
QLCA
GMCA
LCA
PIMC CM-CM
MC Classical
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
⇢⇤
0.10
0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
a3
TPT-PI
LCA
PIMC CM-CM
MC classical
MC semiclassical
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
⇢⇤
7
6
5
4
3
2
1
0
U⇤
SAFT-VRQ
TPT-PI
PIMC QSW
Aads
NkT
= a2D − ln
λwallσ
λB
⎛
⎝⎜
⎞
⎠⎟ + βuwall
Abulk
NkT
= a3D
µads = µbulk
Adsorption of CO2 + CH4 and Asphalte
CO2 + CH4/
activated carbon
Asphaltenes/
Dolomite Rock
M. Castro, A. Mart´ınez, A. Gil-Villegas, AST 29, 59 (2011).
M. Castro, J.L. Mendoza, E. Buenrostro-Gonz´alez, S. L´opez-Rodr´ıguez, A. Gil-Villegas, Fluid Pha
M. Sudibandriyo, Z. Pan, J.E. Fitzgerald, R.L. Robinson Jr., K.A.M. Gasem, Langmuir 19, 5323
Thermodynamics 2013 Confined fluids with quantu
SAFT-VR
Experimental data
C/mg/L
AmountAdsorbed/mg/m2
Adsorption Theory
CH4 + CO2 / activated carbon Asphaltenes /Dolomite Rock
bulk phase
adsorbed phase
M. Castro, A. Martínez, A. Gil-Villegas, Ads. Sci. & Techn. 29, 59 (2011)
M. Castro, J. L. Mendoza, E. Buenrostro, S. López, A. Gil-Villegas, Fluid Phase Equil. 286, 113 (2009)
F. del Río, A. Gil-Villegas, J. Phys. Chem. 95, 787 (1991)
H2
graphene
Metallic-organic frameworks
Metallic-organic frameworks
Activated carbon
V. M. Trejos, M. Becerra, S. Figueroa-Gerstenmaier, A. Gil-Villegas, Mol. Phys. 112, 2330 (2014)
1.7114 2.8983 19.9291 1.7009 15.9433 0.8165
es for the particle–wall energy parameter ϵw for hydrogen adsorption onto different substrates. Results are given
quantum (Q) adsorption SAFT-VR methods used in this work. Experimental values of the BET specific surface
heats are reported. The different substrates correspond to metal-organic frameworks (MOF), activated carbon
ene.
T(m2
g−1
) T/K Isosteric heat (kJ mol−1
) ϵw(C) (kJ mol−1
) ϵw(Q) (kJ mol−1
)
800 [57] 77 – 2.45 2.24
460 [57] 77 – 2.60 2.25
240 [57] 77 – 2.12 2.34
800 [58] 35 6.00–7.60 [58] 5.04 6.54
40 5.04 6.54
45 5.04 5.88
77 3.23 3.16
93 3.23 3.16
113 3.23 3.16
40 [59] 77 5.14–6.37 [60] 3.64 3.46
123 4.19 4.03
173 4.21 4.23
Quantum H2 1.7114 2.8983 19.9291 1.7009 1
Table 2. Optimised values for the particle–wall energy parameter ϵw for hydrogen adsorption onto different
for the classical (C) and quantum (Q) adsorption SAFT-VR methods used in this work. Experimental values
area (SBET) and isosteric heats are reported. The different substrates correspond to metal-organic framewor
(DAC AX-21), and graphene.
Adsorbent SBET(m2
g−1
) T/K Isosteric heat (kJ mol−1
) ϵw(C) (kJ mol−1
MOF-5 3800 [57] 77 – 2.45
MOF-205 4460 [57] 77 – 2.60
MOF-210 6240 [57] 77 – 2.12
DAC AX-21 2800 [58] 35 6.00–7.60 [58] 5.04
40 5.04
45 5.04
77 3.23
93 3.23
113 3.23
Graphene 640 [59] 77 5.14–6.37 [60] 3.64
123 4.19
173 4.21
V. M. Trejos, M. Becerra, S. Figueroa-Gerstenmaier, A. Gil-Villegas, Mol. Phys. 112, 2330 (2014)
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.85
0.90
0.95
1.00
1.05
eff
⇢⇤
=0.1
⇤
B=0.1
⇤
B=0.2
⇤
B=0.3
⇤
B=0.4
⇤
B=0.5
⇤
B=0.6
⇤
B=0.7
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.85
0.90
0.95
1.00
1.05
eff
⇢⇤
=0.2
⇤
B=0.1
⇤
B=0.2
⇤
B=0.3
⇤
B=0.4
⇤
B=0.5
⇤
B=0.6
⇤
B=0.7
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.85
0.90
0.95
1.00
1.05
eff
⇢⇤
=0.3
⇤
B=0.1
⇤
B=0.2
⇤
B=0.3
⇤
B=0.4
⇤
B=0.5
⇤
B=0.6
⇤
B=0.7
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.85
0.90
0.95
1.00
1.05
eff
⇢⇤
=0.4
⇤
B=0.1
⇤
B=0.2
⇤
B=0.3
⇤
B=0.4
⇤
B=0.5
⇤
B=0.6
⇤
B=0.7
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.85
0.90
0.95
1.00
1.05
eff
⇢⇤
=0.5
⇤
B=0.1
⇤
B=0.2
⇤
B=0.3
⇤
B=0.4
⇤
B=0.5
⇤
B=0.6
⇤
B=0.7
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.85
0.90
0.95
1.00
1.05
eff
⇢⇤
=0.6
⇤
B=0.1
⇤
B=0.2
⇤
B=0.3
⇤
B=0.4
⇤
B=0.5
⇤
B=0.6
Exchange Contribution
Indistinguishability
of identical particles
e
−βAQ
=
1
N!
drN
rN
e−β ˆH
rN
∫
Ρ12 rN
= Ρ12 r1 r2 ... rN = ± r2 r1 ... rN
Exchange effects are equivalent to associating ring polymers
D. Chandler & P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981)
Felipe Perdomo
Guadalupe Jiménez
Joel
Tavera
César Serna
Jonatan
Suaste
Eduardo Buenrostro,
Mexican Institute of Petroleum
Carlos Ariel Cardona,
National University of Colombia
Gerardo Gutiérrez,
University of Guanajuato
Gerardo
Campos
Mario
Becerra
Victor Manuel Trejos
Francisco
Espinosa
Job
Lino

More Related Content

What's hot

heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000Tika Ningsih
 
4. utm odourisation seminar cfdflacs and overall conclusion
4. utm odourisation seminar cfdflacs and overall conclusion4. utm odourisation seminar cfdflacs and overall conclusion
4. utm odourisation seminar cfdflacs and overall conclusionAbdul Rashid Serakawi
 
G030102044051
G030102044051G030102044051
G030102044051theijes
 
Quantitative structure activity relationships
Quantitative structure  activity relationshipsQuantitative structure  activity relationships
Quantitative structure activity relationshipsAmiya ghosh
 
Physical chemistry phase diagram 3 components
Physical chemistry phase diagram 3 componentsPhysical chemistry phase diagram 3 components
Physical chemistry phase diagram 3 componentsKustian Permana
 
2D QSAR DESCRIPTORS
2D QSAR DESCRIPTORS2D QSAR DESCRIPTORS
2D QSAR DESCRIPTORSSmita Jain
 
Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...
Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...
Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...Sekheta Bros Company
 
Determination of Abraham model solute descriptors and preferential solvation ...
Determination of Abraham model solute descriptors and preferential solvation ...Determination of Abraham model solute descriptors and preferential solvation ...
Determination of Abraham model solute descriptors and preferential solvation ...Sarah Cheeran
 
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium SystemThermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium SystemIRJESJOURNAL
 
acs%2Ejpcb%2E6b09176
acs%2Ejpcb%2E6b09176acs%2Ejpcb%2E6b09176
acs%2Ejpcb%2E6b09176Thomas Peev
 
Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)Ashwani Dhingra
 
Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MS
Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MSDesign of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MS
Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MSsaheli halder
 

What's hot (20)

heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000
 
4. utm odourisation seminar cfdflacs and overall conclusion
4. utm odourisation seminar cfdflacs and overall conclusion4. utm odourisation seminar cfdflacs and overall conclusion
4. utm odourisation seminar cfdflacs and overall conclusion
 
G030102044051
G030102044051G030102044051
G030102044051
 
Quantitative structure activity relationships
Quantitative structure  activity relationshipsQuantitative structure  activity relationships
Quantitative structure activity relationships
 
Physical chemistry phase diagram 3 components
Physical chemistry phase diagram 3 componentsPhysical chemistry phase diagram 3 components
Physical chemistry phase diagram 3 components
 
Khalid elhasnaoui Dr (5)
Khalid elhasnaoui Dr  (5)Khalid elhasnaoui Dr  (5)
Khalid elhasnaoui Dr (5)
 
Reactor3
Reactor3Reactor3
Reactor3
 
Virendra
VirendraVirendra
Virendra
 
Qsar
QsarQsar
Qsar
 
Descriptors
DescriptorsDescriptors
Descriptors
 
2D QSAR DESCRIPTORS
2D QSAR DESCRIPTORS2D QSAR DESCRIPTORS
2D QSAR DESCRIPTORS
 
Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...
Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...
Microchemical Journal Volume 27 issue 1 1982 [doi 10.1016_0026-265x(82)90099-...
 
IJERGS
IJERGSIJERGS
IJERGS
 
Determination of Abraham model solute descriptors and preferential solvation ...
Determination of Abraham model solute descriptors and preferential solvation ...Determination of Abraham model solute descriptors and preferential solvation ...
Determination of Abraham model solute descriptors and preferential solvation ...
 
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium SystemThermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
 
acs%2Ejpcb%2E6b09176
acs%2Ejpcb%2E6b09176acs%2Ejpcb%2E6b09176
acs%2Ejpcb%2E6b09176
 
Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)
 
Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MS
Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MSDesign of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MS
Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices_MS
 
Qsar UMA
Qsar   UMAQsar   UMA
Qsar UMA
 
Qsar
QsarQsar
Qsar
 

Viewers also liked

importancia de implantes
importancia de implantes importancia de implantes
importancia de implantes paolaarce1946
 
Antibiotic Resistance presentation
Antibiotic Resistance presentationAntibiotic Resistance presentation
Antibiotic Resistance presentationpearse o brien
 
cultural understanding - Copy
cultural understanding - Copycultural understanding - Copy
cultural understanding - CopyMark Leslie
 
aspida Presentation booklet GA1 update 3-1
aspida Presentation booklet GA1 update 3-1aspida Presentation booklet GA1 update 3-1
aspida Presentation booklet GA1 update 3-1Marios Vakanas
 
Implantes dentales angie paola
Implantes dentales angie paolaImplantes dentales angie paola
Implantes dentales angie paolapaolaarce1946
 
ConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_Final
ConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_FinalConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_Final
ConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_FinalAsrade Abate
 
Prokochuk_Irina_Strauss
Prokochuk_Irina_StraussProkochuk_Irina_Strauss
Prokochuk_Irina_StraussIra Prokopchuk
 
Prokochuk_Irina_Dresku character for Fusion Theatre
Prokochuk_Irina_Dresku character for Fusion TheatreProkochuk_Irina_Dresku character for Fusion Theatre
Prokochuk_Irina_Dresku character for Fusion TheatreIra Prokopchuk
 
LEIGHresume_edit[1]101115a
LEIGHresume_edit[1]101115aLEIGHresume_edit[1]101115a
LEIGHresume_edit[1]101115aleigh liu
 
Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...
Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...
Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...Rocío Albán Torres
 
Prokochuk_Irina_architectural magazine Sporuda
Prokochuk_Irina_architectural magazine SporudaProkochuk_Irina_architectural magazine Sporuda
Prokochuk_Irina_architectural magazine SporudaIra Prokopchuk
 
Sex ratio and mortality rate4
Sex ratio and mortality rate4Sex ratio and mortality rate4
Sex ratio and mortality rate4Nurulain siddiqui
 
Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...
Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...
Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...Rocío Albán Torres
 
Stryker master trainer N-D06
Stryker master trainer N-D06Stryker master trainer N-D06
Stryker master trainer N-D06Mark Leslie
 

Viewers also liked (20)

importancia de implantes
importancia de implantes importancia de implantes
importancia de implantes
 
Antibiotic Resistance presentation
Antibiotic Resistance presentationAntibiotic Resistance presentation
Antibiotic Resistance presentation
 
IFM Report
IFM ReportIFM Report
IFM Report
 
certificates
certificatescertificates
certificates
 
cultural understanding - Copy
cultural understanding - Copycultural understanding - Copy
cultural understanding - Copy
 
Aprendizaje autónomo
Aprendizaje autónomoAprendizaje autónomo
Aprendizaje autónomo
 
aspida Presentation booklet GA1 update 3-1
aspida Presentation booklet GA1 update 3-1aspida Presentation booklet GA1 update 3-1
aspida Presentation booklet GA1 update 3-1
 
Artist resume 2015
Artist resume 2015Artist resume 2015
Artist resume 2015
 
Implantes dentales angie paola
Implantes dentales angie paolaImplantes dentales angie paola
Implantes dentales angie paola
 
Live mag audit
Live mag auditLive mag audit
Live mag audit
 
ConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_Final
ConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_FinalConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_Final
ConcernWorldwide_Endline_HEWs_Capacity_Assessment_RCT_Study_Final
 
Prokochuk_Irina_Strauss
Prokochuk_Irina_StraussProkochuk_Irina_Strauss
Prokochuk_Irina_Strauss
 
Aris- Resume
Aris- ResumeAris- Resume
Aris- Resume
 
Prokochuk_Irina_Dresku character for Fusion Theatre
Prokochuk_Irina_Dresku character for Fusion TheatreProkochuk_Irina_Dresku character for Fusion Theatre
Prokochuk_Irina_Dresku character for Fusion Theatre
 
LEIGHresume_edit[1]101115a
LEIGHresume_edit[1]101115aLEIGHresume_edit[1]101115a
LEIGHresume_edit[1]101115a
 
Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...
Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...
Presentación SRI Proyecto de Ley solidaria y de corresponsabilidad ciudadana ...
 
Prokochuk_Irina_architectural magazine Sporuda
Prokochuk_Irina_architectural magazine SporudaProkochuk_Irina_architectural magazine Sporuda
Prokochuk_Irina_architectural magazine Sporuda
 
Sex ratio and mortality rate4
Sex ratio and mortality rate4Sex ratio and mortality rate4
Sex ratio and mortality rate4
 
Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...
Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...
Proyecto de ley solidaria y de corresponsabilidad ciudadana por las afectacio...
 
Stryker master trainer N-D06
Stryker master trainer N-D06Stryker master trainer N-D06
Stryker master trainer N-D06
 

Similar to Predicting phase diagrams combining thermodynamic theory and simulations

1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...Josemar Pereira da Silva
 
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...Josemar Pereira da Silva
 
DavidWooChemEResearchPosterv2
DavidWooChemEResearchPosterv2DavidWooChemEResearchPosterv2
DavidWooChemEResearchPosterv2David Woo
 
CHESC Methane Hydrate Poster
CHESC Methane Hydrate PosterCHESC Methane Hydrate Poster
CHESC Methane Hydrate PosterJiarong Zhou
 
232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eos
232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eos232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eos
232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eosJohn Barry
 
5353The Molecular Structures and Thermodynamic Functions.docx
5353The Molecular Structures and Thermodynamic Functions.docx5353The Molecular Structures and Thermodynamic Functions.docx
5353The Molecular Structures and Thermodynamic Functions.docxtroutmanboris
 
Collart_Stacey_2016_Improved analytical flux surface
Collart_Stacey_2016_Improved analytical flux surfaceCollart_Stacey_2016_Improved analytical flux surface
Collart_Stacey_2016_Improved analytical flux surfaceTim Collart
 
Shortcut Design Method for Multistage Binary Distillation via MS-Exce
Shortcut Design Method for Multistage Binary Distillation via MS-ExceShortcut Design Method for Multistage Binary Distillation via MS-Exce
Shortcut Design Method for Multistage Binary Distillation via MS-ExceIJERA Editor
 
Kalafut optimizing srm - r2 - asms2016
Kalafut   optimizing srm - r2 - asms2016Kalafut   optimizing srm - r2 - asms2016
Kalafut optimizing srm - r2 - asms2016Bennett Kalafut
 
Iisrt surendar(16 20)
Iisrt surendar(16 20)Iisrt surendar(16 20)
Iisrt surendar(16 20)IISRT
 
AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...
AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...
AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...Journal For Research
 
The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...
The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...
The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...theijes
 
Finite Element Analysis research report
Finite Element Analysis research reportFinite Element Analysis research report
Finite Element Analysis research reportAnirban Chakraborty
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...University of California, San Diego
 

Similar to Predicting phase diagrams combining thermodynamic theory and simulations (20)

SPE-175051-MS
SPE-175051-MSSPE-175051-MS
SPE-175051-MS
 
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
 
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
 
Martin1981
Martin1981Martin1981
Martin1981
 
DavidWooChemEResearchPosterv2
DavidWooChemEResearchPosterv2DavidWooChemEResearchPosterv2
DavidWooChemEResearchPosterv2
 
CHESC Methane Hydrate Poster
CHESC Methane Hydrate PosterCHESC Methane Hydrate Poster
CHESC Methane Hydrate Poster
 
232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eos
232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eos232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eos
232372441 correlation-and-prediction-of-vle-and-lle-by-empirical-eos
 
Soave1972
Soave1972Soave1972
Soave1972
 
5353The Molecular Structures and Thermodynamic Functions.docx
5353The Molecular Structures and Thermodynamic Functions.docx5353The Molecular Structures and Thermodynamic Functions.docx
5353The Molecular Structures and Thermodynamic Functions.docx
 
Collart_Stacey_2016_Improved analytical flux surface
Collart_Stacey_2016_Improved analytical flux surfaceCollart_Stacey_2016_Improved analytical flux surface
Collart_Stacey_2016_Improved analytical flux surface
 
Shortcut Design Method for Multistage Binary Distillation via MS-Exce
Shortcut Design Method for Multistage Binary Distillation via MS-ExceShortcut Design Method for Multistage Binary Distillation via MS-Exce
Shortcut Design Method for Multistage Binary Distillation via MS-Exce
 
Kalafut optimizing srm - r2 - asms2016
Kalafut   optimizing srm - r2 - asms2016Kalafut   optimizing srm - r2 - asms2016
Kalafut optimizing srm - r2 - asms2016
 
Tetragonal ba tio3_v8
Tetragonal ba tio3_v8Tetragonal ba tio3_v8
Tetragonal ba tio3_v8
 
Iisrt surendar(16 20)
Iisrt surendar(16 20)Iisrt surendar(16 20)
Iisrt surendar(16 20)
 
Poster MSC11 Jun 2019
Poster MSC11 Jun 2019Poster MSC11 Jun 2019
Poster MSC11 Jun 2019
 
AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...
AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...
AN IMPLEMENTATION FOR FRAMEWORK FOR CHEMICAL STRUCTURE USING GRAPH GRAMMAR | ...
 
The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...
The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...
The Futures of the Physic-Chemical and Thermoelectric Properties of the InTe-...
 
Finite Element Analysis research report
Finite Element Analysis research reportFinite Element Analysis research report
Finite Element Analysis research report
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
 
03 sp2013
03 sp201303 sp2013
03 sp2013
 

Predicting phase diagrams combining thermodynamic theory and simulations

  • 1. Predicting phase diagrams of fluids combining Thermodynamic Perturbation Theory and Monte Carlo computer simulations. Alejandro Gil Villegas Department of Physical Engineering University of Guanajuato México Thomas Young Centre November 2015
  • 2. University of Guanajuato Department of Physical Engineering Sciences and Engineering Division
  • 3. Sciences and Engineering Division Physics Physical Engineering Chemical, Electronic and Biomedical Engineering Bachelor Programs: Physics (1998) Physical Engineering (1998) Chemical Engineering (2010) Biomedical Engineering (2011) Postgraduate Programs: M. Sc. and Ph. D. Physics (1988) M. Sc. Applied Sciences (2013)
  • 5. Associating Fluids Ludwig Boltzmann, Lectures in gas theory (1895) Modelos de sistemas asociativos Michael Wertheim, “Fluids with highly directional attractive forces” J. Stat. Phys. 35, 19 (1984)
  • 6. Conclusiones To exclude all knowledge but that which has already been applied to immediate utility, would be to reduce our faculties to a state of servitude, and to frustrate the very purposes which we are laboring to accomplish. No discovery, however remote in its nature from the subjects of daily observation, can with reason be declared wholly inapplicable to the benefit of mankind. Thomas Young A course of lectures on Natural Philosophy and the Mechanical Arts (1807). RIFUG 2013 Hooke,Young & Gibbs
  • 7. W. Chapman, K. Gubbins, G. Jackson, M. Radosz, Fluid Phase Equil. 52, 31 (1989) W. Chapman, K. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29, 1709 (1990) SAFT: Statistical Associating Fluid Theory Fluidos Asociativ Michael Wertheim: Fluids with highly directional attractive J. Stat. Phys. (1984-1986) A NkT = Aideal NkT  Amonomers NkT  Achain NkT  Aassoc NkT Yukawa:Yukawa: SAFT-VRSAFT-VR
  • 8.
  • 9.
  • 11. OH σ Buenrostro, Lira, Gil-Villegas & WuBuenrostro, Lira, Gil-Villegas & Wu AIChE JAIChE J 50, 255250, 2552 (2004)(2004) SAFT-VR prediction for asphaltene precipitationSAFT-VR prediction for asphaltene precipitation from titration data of oil Y3 with n-heptane. Values of the new parameters are ␺AA/k ϭ 2062.21 K and ␺AR/k ϭ 2359.43 K. No other assumptions or parameter modifications were used. The predicted precipitation curves for oil Y3 resulted within 10% error of the experimental data for precipitant/oil ratios Ն 10. However, for lower ratios, there are larger deviations from the experimental values, even though the model reproduces the de- crease of the precipitation as the carbon number of the precipitant increases. As mentioned earlier, for the prediction of the precipi- tation in oil Y3, it was not necessary to refit the parameters related to the mean-attractive energy (the Hamaker constants and the range of the mean-force potentials). These results can be explained in terms of the similar properties and composition of C1 and Y3 crude oils and the use of the same values for the asphaltene and resin properties (Table 1), considering that both oils are produced To model asphaltene precipitation in certain T and P conditions, the vapor–liqu culation of the reservoir fluid is first perfo equation of state, to obtain the composition of the liquid phase at equilibrium. Then, us resin–oil model system described before, analysis is applied to find out the onset of tation. When asphaltene precipitation appe precipitated material is calculated by solvi equilibrium equations. Calculation of Medium Properties. F (2000), the volume-shifted Peng–Robinson al., 1982; Peng and Robinson, 1976) was vapor–liquid–equilibrium to obtain the de tion of the liquid phase. Recommended va Figure 10. Comparison between experimental and predicted APE for live oil C1.E. Buenrostro, C. Lira, A. Gil-Villegas and J. Wu, AIChE J 50, 2552 (2004). effective spherical potential given by the following expression:16 where r is the distance between the centers of mass (CM) of each molecule with facing parallel aromatic regions, and Z1, Z2 are the number of atoms in each molecule. The parameters C1, C2, R, β, and γ were obtained by fitting eq 1 to the corresponding MM numerical values (T ) 0 K, in vacuum). Figure 2 displays the A-A, A-R, and R-R intermolecular po- tentials generated according to the previous discus- sion.16 The symbols correspond to the MM numerical values and the continuous curves to the best over-all fit found with eq 1. Note that within this spherical approximation for the interactions, asphaltenes and resins are considered as entities without internal struc- ture in the MD simulations described further below. Thus we shall be only concerned with the A-A, A-R, and R-R spatial distributions in terms of the molecular CM positions. The embedding medium is accounted for through a mean field approximation given by its dielectric con- stant, ϵ, affecting only the Coulomb and London con- tributions. The use of an effective medium through its dielectric constant is known to be questionable for intermolecular distances of the order of the molecular size, mainly because it is at these distances where atomic detail becomes important.18 However, it is still a valuable first exploratory means to account for the screening of Coulomb and London interactions due to the embedding medium for intermediate to large inter- molecular distances. It is deemed that the initial stages of aggregation will correlate strongly with the long- range interactions. As the interacting molecules become closer to each other the molecular structure of the solvent is more apparent and local effects become important. These local interactions may be dominant in defining the structure of an aggregate, solvation free energies, possible chemical reactions, etc. Hence, the use of an effective medium in our case has its aim in looking at the evolution of aggregation from its initial stages and extrapolating the behavior of the system in its final “gross” equilibration (see further below). Molecular Dynamics Simulations. The intermo- lecular potentials described in the previous section were used in a canonical molecular dynamics (MD) simula- tion for mixtures of asphaltene/resin in different host media. Our model system consists of NAs and NRe (18) Smith, P. E.; Pettitt, M. B. J. Phys. Chem. 1994, 98, 9700. Figure 1. Molecular models used in this work. (a) 3D diagram of the MM-optimized asphaltene structure (C57H63N1S1) re- ported in ref 7 showing an aromatic region (continuous lines) and its aliphatic chain (dashed lines). (b) Transverse view of the asphaltene structure showing the aromatic region in more detail. (c) Diagram showing the resin structure (C13H10S1) reported in ref 5. V(r) ) Z1Z2 ϵr (e-Rr + C1ϵre-βr ) - C2 ϵ2 r6 e-γ/r4 (1) Figure 2. Intermolecular potential curves in a vacuum for the most favorable relative orientation (see text) between asphaltene-asphaltene (A-A), asphaltene-resin (A-R), and resin-resin (R-R). Symbols correspond to MM calculations. Continuous curve: best fit using eq 1 according to ref 16.
  • 12. Lauric Acid + Methanol + Water Methy Laureate F. Perdomo, B. Millán, G. Mendoza & A. Gil-VillegasF. Perdomo, B. Millán, G. Mendoza & A. Gil-Villegas J. Mol. Liq.J. Mol. Liq. 185, 8 (2013).185, 8 (2013). F. Perdomo, B. Millan, G. Mendoza, A. Gil-Villegas, J. Mol. Liq. 185, 8 (2013) respect to the theoretical predictions a with water, since integrals are inaccurate. compounds: circles for lauric acid, square for methyl laurate. From Figs. 2B and 3A w reacting method is consistent with the exp viations are noted for the biodiesel compo tailed study, both experimental and the case. With exception of this point, the agr experiment is very good. An expanded version of Fig. 2B is give retical predictions are given for higher va this figure, the molar fraction for lauric R=6. The production of methyl laurate that enable us to determine the optimal r tive compositions. This information is of g of an esterification reactor, and these re tage of a molecular thermodynamic theor predictions for compositions that maxim 6. Conclusions We have presented in this article a the proach for the prediction of reactive equ compounds, that was applied to the est order to test the predictions, experimenta tion were measured from an experiment an esterification batch reactor. The molar Lauric Acid Methanol Methyl Laurate Methanol Lauric Acid Methyl Laurate B Fig. 2. Predicted chemical equilibrium manifold for the esterification of lauric acid with methanol to produce methyl laureate and water, for atmospheric pressure at experimen- tal conditions (0.83 atm) and temperature T=338.4 K. Experimental chemical reactions correspond to reactive relation values R=0.125, 0.166, 0.250 and 1.0 (square, triangle, circle and rhombus, respectively). Theoretical predictions are given by a dotted and solid lines in (A) and (B), respectively. Figure (A) corresponds to the four-vertex chemical equilibrium manifold whereas (B) is the projection onto the lauric acid-methanol-methyl Fig. 3. Molar fraction of reactants and products (χ) a (R). In figure (A) dotted, dashed and solid lines corr acid, methanol and methyl laurate, respectively, wh noted by circles, squares and triangles, respectively for lauric acid; in the case of the other two species t the symbol size. Theoretical predictions are given f SAFT-VR Reactive System
  • 13. Niels Bohr (1885-1962) On the Constitution of Atoms and Molecules Phil. Mag. 26, 1 (1913); 26, 476 (1913); 26, 857 (1913)
  • 16. rN e−β ˆH rN = e−βEn φn * φn n ∑ rN e−β ˆH rN = e−βWN free particles: continuous potentials hard spheres: discontinuous potentials φn{ } lim λB→0 rN e−β ˆH rN = e−βU 16
  • 17. Eugene Wigner (1902-1995) Symmetry properties in Quantum Mechanics Wigner-D matrix Wigner-Seitz cell Metallic phase of hydrogen The Unreasonable Effectiveness of Mathematics in the Natural Sciences (1960).
  • 18. Wigner-Kirkwood first-order QLJ potential uLJ r( )= 4ε σ r ⎛ ⎝⎜ ⎞ ⎠⎟ 12 − σ r ⎛ ⎝⎜ ⎞ ⎠⎟ 6 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ u r( )= uLJ r( )+ Λ2 48π2 T * ∇2 uLJ r( ) Λ = h σ mε λB = Λσ 2πT * r σ u r( ) ρ* T* WK-1 pair potential for Ne, D2, H2 and He-IV T* = 0.60 GEMC simulations and Wegner’s expansion for the LV coexistence curves (WK-1 systems) V.M. Trejos, A. Martínez, A. Gil-Villegas, J. Chem. Phys. 139, 184505 (2013)
  • 19. Confined fluids Classical Lennard-Jones system V.M. Trejos, A. Martínez, A. Gil-Villegas, J. Chem. Phys. 139, 184505 (2013) Y. Liu, A. Z. Panagiotopoulos, P. Debenedetti, J. Chem. Phys. 132, 144107 (2010) A. Trokhymchuk, J. Alejandre, J. Chem. Phys. 111, 8510 (1999)
  • 20. Quantum Lennard-Jones system V.M. Trejos, A. Martínez, A. Gil-Villegas, J. Chem. Phys. 139, 184505 (2013)
  • 21. i! ∂ψ ∂t = ˆHψ t → i!β ∂ ˆρ ∂β = − ˆH ˆρ x t Path Integral Method R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948) S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965) D. Chandler, P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981)
  • 22. i! ∂ψ ∂t = ˆHψ ψ ′′x ,t( )= d ′x ′′x∫ e−i ˆH t−t0( ) ! ′x ψ ′x ,t0( ) e−i ˆH t−t0( ) ! = e−i ˆHΔt ! e−i ˆHΔt ! e−i ˆHΔt ! ⋅⋅⋅e−i ˆHΔt ! Ptimes " #$$$$$ %$$$$$ ′′x e−i ˆH t−t0( ) ! ′x = m ihΔt ⎛ ⎝⎜ ⎞ ⎠⎟ P 2 dxn∫n=1 P−1 ∏ exp iΔt ! m 2 xn − xn−1 Δt ⎛ ⎝⎜ ⎞ ⎠⎟ 2 −V x( ) n=1 P ∑ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎧ ⎨ ⎪ ⎩⎪ ⎫ ⎬ ⎪ ⎭⎪ Δt = t − t0 P x t t +1
  • 23. ∂ ˆρ ∂β = − ˆH ˆρ xP e−β ˆH x0 = 1 Z mP π!2 β ⎛ ⎝⎜ ⎞ ⎠⎟ P 2 dxn∫n=1 P−1 ∏ exp − β P mP2 2!2 β2 xn − xn−1( )2 +V x( ) ⎛ ⎝⎜ ⎞ ⎠⎟ n=1 P ∑ ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ t − t0 = i!β , ′′x e−i ˆH t−t0( ) ! ′x xP e−β ˆH x0 Δt = i!β P Z = 1 N! dx x∫ e−β ˆH x
  • 24. 0 λB
  • 25. rN e−β ˆH rN = P λB ⎛ ⎝⎜ ⎞ ⎠⎟ 3NP e−βWNP t=1 P ∏i=1 N ∏ N-particle fluid N-necklace fluid P beads βWNP = πP λB 2 ri t − ri t+1 ( ) 2 t P ∑ i N ∑ + βWI
  • 26. t tt +1 t +1t + 2 t + 2 x t t +1
  • 27. βWNP = πP λB 2 ri t − ri t+1 ( ) 2 t P ∑ i N ∑ + βWI Crude propagator Kinetic contribution = Diffraction term Corrected propagators pair interactions contribution Improving kinetic term Modelling diffraction of thermal waves
  • 28. 105 106 108 0 0.5 1 1.5 2 2.5 -0.4 -0.2 0 0.2 0.4 |0(x)|2 x 1 ⇥ 108 Pasos 0 0.5 1 1.5 2 2.5 -0.4 -0.2 0 0.2 0.4 |0(x)|2 x 1 ⇥ 106 Pasos 0 0.5 1 1.5 2 2.5 -0.4 -0.2 0 0.2 0.4 |0(x)|2 x 1 ⇥ 105 Pasos φ x( ) 2 x 0 0.2 0.4 0.6 0.8 1 -3 -2 -1 0 1 2 3 |0(x)|2 x 1 ⇥ 108 Pasos 0 0.2 0.4 0.6 0.8 1 -3 -2 -1 0 1 2 3 |0(x)|2 x 1 ⇥ 106 Pasos 0 0.2 0.4 0.6 0.8 1 -3 -2 -1 0 1 2 3 |0(x)|2 x 1 ⇥ 105 Pasos x φ x( ) 2 Free particle in a box Harmonic oscillator Non-interacting particles
  • 29. 0 0.5 1 1.5 2 2.5 0 2 4 6 8 10 hEi Resultado analítico cuántico Resultado analítico clásico P=2 P=5 P=20 P=40 E !ω β!ω 1 β!ω 1 2 coth β!ω 2 ⎛ ⎝⎜ ⎞ ⎠⎟ P = 2 P = 5 P = 20 P = 40 Harmonic Oscillator
  • 30. 125 necklaces - 6 beads Quantum Hard Spheres Conclusions Quantum Hard Spheres Matter Out of Equilibrium 2014 Confined fl r σ g(r) 1 2 30 1 2 3 4 ρσ 3 = 0.7 , λB σ = 0.3 Semiclassical MC Path Integral MC g(σ ) = 0 σeff ≈σ + λB 2 2
  • 31. Path Integral MC: L. M. Sesé, R. Ledesma, J. Chem. Phys. 102, 3776 (1995) C. Serna, A. Gil-Villegas (unpublished) ZQHS = 1+ηeff +ηeff 2 −ηeff 3 1−ηeff( ) 3 , ηeff = ηeff η,λB( ) AQHS = 4ηeff − 3ηeff 2 1−ηeff( ) 2 B.-J. Yoon, H. A. Sheraga, J. Chem. Phys. 88, 3923 (1988) ηeff = 2 + AQHS − 4 + AQHS 3+ AQHS ηeff = 1+ c1λB( )η + c2λB + c3λB 2 ( )η2
  • 32. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ⇢⇤ 0 1 2 3 4 5 aQHS a) ⇤ B = 0.116 ⇤ B = 0.3 ⇤ B = 0.5 ⇤ B = 0.8 Gibson PIMC YS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ⇢⇤ 0 2 4 6 8 10 12 ZQHS b) ⇤ B = 0.116 ⇤ B = 0.3 ⇤ B = 0.5 ⇤ B = 0.8 PIMC
  • 33. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ⇢⇤ 6 5 4 3 2 1 0 a1 a) MC Classical PIMC B-B PIMC CM-CM 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ⇢⇤ 6 5 4 3 2 1 0 a1 b) TPT-PI SAFT-VR MC Classical PIMC CM-CM
  • 34. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ⇢⇤ 0.5 0.4 0.3 0.2 0.1 0.0 a2 a) MC Classical MC Semiclassical PIMC B-B PIMC CM-CM 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ⇢⇤ 0.5 0.4 0.3 0.2 0.1 0.0 a2 b) TPT-PI QLCA GMCA LCA PIMC CM-CM MC Classical 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ⇢⇤ 0.10 0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08 a3 TPT-PI LCA PIMC CM-CM MC classical MC semiclassical
  • 35. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ⇢⇤ 7 6 5 4 3 2 1 0 U⇤ SAFT-VRQ TPT-PI PIMC QSW
  • 36. Aads NkT = a2D − ln λwallσ λB ⎛ ⎝⎜ ⎞ ⎠⎟ + βuwall Abulk NkT = a3D µads = µbulk Adsorption of CO2 + CH4 and Asphalte CO2 + CH4/ activated carbon Asphaltenes/ Dolomite Rock M. Castro, A. Mart´ınez, A. Gil-Villegas, AST 29, 59 (2011). M. Castro, J.L. Mendoza, E. Buenrostro-Gonz´alez, S. L´opez-Rodr´ıguez, A. Gil-Villegas, Fluid Pha M. Sudibandriyo, Z. Pan, J.E. Fitzgerald, R.L. Robinson Jr., K.A.M. Gasem, Langmuir 19, 5323 Thermodynamics 2013 Confined fluids with quantu SAFT-VR Experimental data C/mg/L AmountAdsorbed/mg/m2 Adsorption Theory CH4 + CO2 / activated carbon Asphaltenes /Dolomite Rock bulk phase adsorbed phase M. Castro, A. Martínez, A. Gil-Villegas, Ads. Sci. & Techn. 29, 59 (2011) M. Castro, J. L. Mendoza, E. Buenrostro, S. López, A. Gil-Villegas, Fluid Phase Equil. 286, 113 (2009) F. del Río, A. Gil-Villegas, J. Phys. Chem. 95, 787 (1991)
  • 37. H2 graphene Metallic-organic frameworks Metallic-organic frameworks Activated carbon V. M. Trejos, M. Becerra, S. Figueroa-Gerstenmaier, A. Gil-Villegas, Mol. Phys. 112, 2330 (2014)
  • 38. 1.7114 2.8983 19.9291 1.7009 15.9433 0.8165 es for the particle–wall energy parameter ϵw for hydrogen adsorption onto different substrates. Results are given quantum (Q) adsorption SAFT-VR methods used in this work. Experimental values of the BET specific surface heats are reported. The different substrates correspond to metal-organic frameworks (MOF), activated carbon ene. T(m2 g−1 ) T/K Isosteric heat (kJ mol−1 ) ϵw(C) (kJ mol−1 ) ϵw(Q) (kJ mol−1 ) 800 [57] 77 – 2.45 2.24 460 [57] 77 – 2.60 2.25 240 [57] 77 – 2.12 2.34 800 [58] 35 6.00–7.60 [58] 5.04 6.54 40 5.04 6.54 45 5.04 5.88 77 3.23 3.16 93 3.23 3.16 113 3.23 3.16 40 [59] 77 5.14–6.37 [60] 3.64 3.46 123 4.19 4.03 173 4.21 4.23 Quantum H2 1.7114 2.8983 19.9291 1.7009 1 Table 2. Optimised values for the particle–wall energy parameter ϵw for hydrogen adsorption onto different for the classical (C) and quantum (Q) adsorption SAFT-VR methods used in this work. Experimental values area (SBET) and isosteric heats are reported. The different substrates correspond to metal-organic framewor (DAC AX-21), and graphene. Adsorbent SBET(m2 g−1 ) T/K Isosteric heat (kJ mol−1 ) ϵw(C) (kJ mol−1 MOF-5 3800 [57] 77 – 2.45 MOF-205 4460 [57] 77 – 2.60 MOF-210 6240 [57] 77 – 2.12 DAC AX-21 2800 [58] 35 6.00–7.60 [58] 5.04 40 5.04 45 5.04 77 3.23 93 3.23 113 3.23 Graphene 640 [59] 77 5.14–6.37 [60] 3.64 123 4.19 173 4.21 V. M. Trejos, M. Becerra, S. Figueroa-Gerstenmaier, A. Gil-Villegas, Mol. Phys. 112, 2330 (2014)
  • 39. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 0.85 0.90 0.95 1.00 1.05 eff ⇢⇤ =0.1 ⇤ B=0.1 ⇤ B=0.2 ⇤ B=0.3 ⇤ B=0.4 ⇤ B=0.5 ⇤ B=0.6 ⇤ B=0.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 0.85 0.90 0.95 1.00 1.05 eff ⇢⇤ =0.2 ⇤ B=0.1 ⇤ B=0.2 ⇤ B=0.3 ⇤ B=0.4 ⇤ B=0.5 ⇤ B=0.6 ⇤ B=0.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 0.85 0.90 0.95 1.00 1.05 eff ⇢⇤ =0.3 ⇤ B=0.1 ⇤ B=0.2 ⇤ B=0.3 ⇤ B=0.4 ⇤ B=0.5 ⇤ B=0.6 ⇤ B=0.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 0.85 0.90 0.95 1.00 1.05 eff ⇢⇤ =0.4 ⇤ B=0.1 ⇤ B=0.2 ⇤ B=0.3 ⇤ B=0.4 ⇤ B=0.5 ⇤ B=0.6 ⇤ B=0.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 0.85 0.90 0.95 1.00 1.05 eff ⇢⇤ =0.5 ⇤ B=0.1 ⇤ B=0.2 ⇤ B=0.3 ⇤ B=0.4 ⇤ B=0.5 ⇤ B=0.6 ⇤ B=0.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 0.85 0.90 0.95 1.00 1.05 eff ⇢⇤ =0.6 ⇤ B=0.1 ⇤ B=0.2 ⇤ B=0.3 ⇤ B=0.4 ⇤ B=0.5 ⇤ B=0.6
  • 40. Exchange Contribution Indistinguishability of identical particles e −βAQ = 1 N! drN rN e−β ˆH rN ∫ Ρ12 rN = Ρ12 r1 r2 ... rN = ± r2 r1 ... rN Exchange effects are equivalent to associating ring polymers D. Chandler & P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981)
  • 41. Felipe Perdomo Guadalupe Jiménez Joel Tavera César Serna Jonatan Suaste Eduardo Buenrostro, Mexican Institute of Petroleum Carlos Ariel Cardona, National University of Colombia Gerardo Gutiérrez, University of Guanajuato Gerardo Campos Mario Becerra Victor Manuel Trejos Francisco Espinosa Job Lino