SlideShare a Scribd company logo
1 of 61
Download to read offline
 
	
   1	
  
	
  
Colorado	
  College	
  
	
  
Department	
  of	
  Geology	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Paleo	
  Fluid-­‐Flow	
  in	
  Crystalline-­‐Hosted	
  Sandstone	
  Injectites	
  	
  
	
  
from	
  the	
  Neoproterozoic	
  –	
  Evidence	
  for	
  the	
  Migration	
  of	
  	
  
	
  
Hydrocarbons	
  in	
  the	
  Colorado	
  Front	
  Range	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
A	
  Thesis	
  	
  
	
  
Submitted	
  to	
  the	
  Department	
  of	
  Geology	
  Faculty	
  	
  
	
  
In	
  Partial	
  Fulfillment	
  of	
  the	
  Requirements	
  for	
  the	
  	
  
	
  
Degree	
  of	
  	
  
	
  
Bachelor	
  of	
  Arts	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
By	
  
	
  
Alec	
  Lee	
  
Colorado	
  College	
  
May	
  2015	
  
 
	
   2	
  
	
  
A	
  C	
  K	
  N	
  O	
  W	
  L	
  E	
  D	
  G	
  E	
  M	
  E	
  N	
  T	
  S	
  
I	
   would	
   like	
   to	
   thank	
   Christine	
   Siddoway	
   for	
   her	
   unwavering	
   support	
   and	
   guidance	
  
throughout	
  this	
  thesis	
  project,	
  Monte	
  Swan	
  and	
  Stan	
  Keith	
  for	
  their	
  assistance	
  in	
  decoding	
  
the	
  whole	
  rock	
  geochemical	
  and	
  diamondoid	
  hydrocarbon	
  data,	
  the	
  Patricia	
  Buster	
  Grant,	
  
the	
  Creager	
  Award,	
  the	
  Colorado	
  College	
  Natural	
  Science	
  Division	
  Grant,	
  and	
  the	
  Colorado	
  
College	
   Geology	
   Department	
   funds	
   that	
   collectively	
   funded	
   my	
   research,	
   the	
   entire	
  
Colorado	
   College	
   Geology	
   Department	
   with	
   special	
   emphasis	
   on	
   Mandy	
   Sulfrian,	
   my	
  
mother,	
  Aleisha,	
  and	
  Alex	
  Hager	
  and	
  Maggie	
  Bailey	
  for	
  believing	
  in	
  me	
  when	
  I	
  thought	
  I	
  
would	
  never	
  finish.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
   3	
  
T	
  A	
  B	
  L	
  E	
  	
  	
  O	
  F	
  	
  	
  C	
  O	
  N	
  T	
  E	
  N	
  T	
  S	
  
	
  
	
  
ACKNOWLEDGEMENTS……………………….……………………………………………………...…………2	
  
ABSTRACT……………………………………………………………………….……………………………………4	
  
INTRODUCTION……………………………………………….……………………………………………………5	
  
GEOLOGICAL	
  BACKGROUND……………………….…………………………………………………………7	
  
Regional	
  Geology………………………………………………………………………………………….…………………7	
  
Neoproterozoic	
  Setting…………………………………………………………………………………………….……11	
  
Neoproterozoic	
  Sediment…………………………………………………………………………………….………...13	
  
Global	
  Sandstone	
  Injectites…………………………………………………………………………….……………...14	
  
Proterozoic	
  Petroleum	
  Sources…………………………………………………………………….………………..15	
  
Regional	
  Petroleum	
  Sources………………………………………………………………………………….……….17	
  
METHODS………………………………………………………………………………….……………..………...19	
  
THIN	
  SECTION	
  PETROGRAPHY……………………………………………………………………………20	
  
Grain	
  Sorting………………………………………………………………………………………………………….……..21	
  
Cement……………………………………………………………………………………………………………….…………22	
  
Deformation	
  Bands………………………………………………………………………….…………………………….22	
  
Fluid	
  Inclusions……………………………………………………………………………………………….…………….22	
  
Quartz	
  and	
  Calcite	
  Veins…………………………………………………………….………………………………….23	
  
Fluid	
  Controls………………………………………………………………………….…………………………….………24	
  
GEOCHEMICAL	
  RESULTS……………………………………………………………………………….…….25	
  
Major	
  Oxides…………………………………………………………………….…………………………………………...25	
  
Trace	
  Elements…………………………………………………………………………….………………………………..26	
  
Hydrocarbons………………………………………………………………………………………….…………………….26	
  
X-­‐Ray	
  Diffraction…………………………………………………………………………….…………………………….29	
  
DISCUSSION…………………………………………………………………………….…………………………..29	
  
CONCLUSIONS……………………………………………………………………………….…………………….34	
  
REFERENCES…………………………………………………………………………………….…………………38	
  
TABLES	
  &	
  FIGURES……………………………………………………………………………….…………….42	
  
	
  
	
  
 
	
   4	
  
A	
  B	
  S	
  T	
  R	
  A	
  C	
  T	
  
In	
  the	
  Front	
  Range	
  of	
  Colorado,	
  an	
  array	
  of	
  basement-­‐hosted	
  clastic	
  dikes,	
  sills,	
  
and	
   parent	
   bodies	
   named	
   Tava	
   sandstone	
   (informal),	
   exhibit	
   strong	
  
reduction/oxidation	
   (redox)	
   bleaching	
   from	
   the	
   migration	
   of	
   reducing	
   fluids.	
   	
   Redox	
  
within	
   Tava	
   sandstone	
   is	
   evident	
   by	
   the	
   bleaching	
   and/or	
   removal	
   of	
   primary	
   red	
  
hematite	
  cement	
  that	
  formed	
  as	
  grain	
  coatings	
  during	
  early	
  diagenesis.	
  	
  Petrographic	
  
analyses	
  reveal	
  that	
  fluid	
  flow	
  within	
  Tava	
  sandstone	
  is	
  aided	
  by	
  crude	
  grain	
  sorting	
  
and	
  calcite	
  veins,	
  while	
  structural	
  and	
  special	
  relationships	
  of	
  redox	
  patterns	
  indicate	
  
that	
  has	
  been	
  more	
  than	
  one	
  influx	
  of	
  reducing	
  fluids	
  through	
  Tava	
  sandstone.	
  	
  Detrital	
  
zircon	
  dating	
  of	
  Tava	
  sandstone	
  yields	
  similar	
  zircon	
  ages	
  to	
  known	
  Neoproterozoic	
  Era	
  
sediments	
  of	
  the	
  Southwestern	
  United	
  States,	
  and	
  places	
  the	
  age	
  of	
  Tava	
  sandstone	
  at	
  
~750	
  Ma.	
  	
  Bleaching	
  of	
  Tava	
  sandstone	
  may	
  have	
  occurred	
  at	
  any	
  time	
  throughout	
  the	
  
Phanerozoic	
  and	
  possibly	
  even	
  as	
  far	
  back	
  as	
  the	
  Neoproterozoic.	
  	
  It	
  is	
  reasonable	
  to	
  
presume	
   that	
   Tava	
   sandstone’s	
   geochemistry	
   may	
   retain	
   a	
   biogeochemical	
   signature	
  
from	
   the	
   Neoproterozoic	
   Era.	
   	
   However,	
   Tava	
   sandstone	
   is	
   quartz	
   arenite	
   in	
  
composition	
   (>90%	
   quartz),	
   and	
   is	
   therefore	
   not	
   an	
   ideal	
   repository	
   for	
   the	
  
preservation	
  of	
  Neoproterozoic	
  Era	
  geochemical	
  fingerprints.	
  	
  Hydrocarbon	
  screening	
  
and	
  diamondoid	
  analyses	
  performed	
  on	
  a	
  grouping	
  of	
  Tava	
  samples	
  reveal	
  the	
  presence	
  
of	
   several	
   n-­‐alkane,	
   sterane,	
   and	
   terpane	
   hydrocarbon	
   species.	
   	
   These	
   hydrocarbons	
  
include	
  the	
  n-­‐Alkanes	
  n-­‐C10,	
  n-­‐C12,	
  n-­‐C15	
  and	
  n-­‐C20-­‐31	
  with	
  peaks	
  at	
  n-­‐C23	
  and	
  n-­‐C29,	
  
as	
  well	
  as	
  species	
  of	
  steranes,	
  terpanes,	
  and	
  carotenoids.	
  	
  Whole	
  rock	
  analysis	
  on	
  Tava	
  
sandstone	
  reveals	
  reduced	
  ratios	
  (<0.5)	
  of	
  Fe2O3	
  to	
  FeO,	
  further	
  validating	
  the	
  reducing	
  
nature	
   of	
   fluid	
   migration	
   through	
   Tava	
   sandstone.	
   	
   These	
   compounds	
   may	
   not	
   only	
  
uncover	
  the	
  source	
  of	
  hydrocarbons	
  found	
  in	
  Tava	
  sandstone,	
  but	
  may	
  also	
  reveal	
  the	
  
evolution	
  of	
  hydrocarbon	
  generation	
  and	
  migration	
  in	
  the	
  Colorado	
  Front	
  Range,	
  which	
  
is	
   a	
   continually	
   expanding	
   energy	
   resource	
   in	
   the	
   Rocky	
   Mountain	
   region.	
   	
   Further	
  
geochemical	
  analysis	
  on	
  Tava	
  sandstone	
  may	
  expose	
  the	
  true	
  source	
  of	
  hydrocarbons,	
  
timing	
  of	
  migration,	
  and	
  shed	
  light	
  on	
  the	
  paleo-­‐climate/geography	
  of	
  inland	
  Laurentia	
  
following	
  the	
  breakup	
  of	
  Rodinia,	
  750	
  Ma,	
  a	
  region	
  that	
  is	
  poorly	
  known.	
  	
  
	
  
	
  
Figure	
  A.	
  	
  Left,	
  partially	
  bleached	
  Tava	
  from	
  near	
  Woodland	
  Park,	
  Colorado;	
  middle,	
  primary	
  hematite	
  
cemented	
  Tava	
  from	
  Williams	
  Fork	
  Range,	
  Colorado;	
  right,	
  mottled	
  bleached	
  Tava	
  from	
  Keeton	
  Ranch,	
  
Colorado.
 
	
   5	
  
I	
  N	
  T	
  R	
  O	
  D	
  U	
  C	
  T	
  I	
  O	
  N	
  
	
   	
  Along	
  the	
  Ute	
  Pass	
  Fault	
  of	
  the	
  Colorado	
  Front	
  Range	
  a	
  network	
  of	
  basement-­‐
hosted	
   clastic	
   dikes	
   and	
   parent	
   bodies	
   exhibit	
   redox	
   patterns	
   from	
   the	
   migration	
   of	
  
reducing	
   fluids	
   (Figure	
   A).	
   	
   Tava	
   sandstone	
   (informal)	
   is	
   structureless,	
   composed	
   of	
  
well-­‐rounded	
   quartz	
   pebbles,	
   feldspar	
   fragments,	
   and	
   lithic	
   clasts	
   separated	
   and	
  
suspended	
  within	
  a	
  matrix	
  of	
  mature,	
  fine	
  to	
  medium-­‐grained	
  quartz	
  (Siddoway	
  et	
  al.,	
  
2013).	
  	
  Tava	
  sandstone	
  forms	
  tabular	
  bodies	
  and	
  dikes	
  at	
  intervals	
  along	
  the	
  entire	
  ~80	
  
km	
  length	
  of	
  the	
  Ute	
  Pass	
  Fault	
  zone	
  (Figure	
  1	
  and	
  2).	
  	
  Dominant	
  ages	
  of	
  detrital	
  zircons	
  
from	
  Tava	
  sandstone	
  are	
  1.7	
  Ga,	
  1.4	
  Ga,	
  and	
  1.33-­‐0.97	
  Ga	
  (Siddoway	
  and	
  Gehrels,	
  2014),	
  
a	
  distribution	
  that	
  correlates	
  with	
  other	
  Grenville-­‐orogen-­‐derived	
  sedimentary	
  units	
  of	
  
the	
  American	
  Southwest	
  (Siddoway	
  and	
  Gehrels,	
  2014)	
  (Figure	
  3).	
  	
  On	
  this	
  basis,	
  Tava	
  
sandstone	
   is	
   Neoproterozoic	
   in	
   age.	
   	
   The	
   source	
   of	
   sediment	
   that	
   formed	
   Tava	
  
sandstone	
  may	
  have	
  been	
  deposited	
  in	
  rift	
  basins	
  that	
  formed	
  during	
  the	
  breakup	
  of	
  the	
  
supercontinent,	
  Rodinia,	
  	
  ~750	
  Ma	
  (Dehler	
  et	
  al.,	
  2010;	
  Siddoway	
  et	
  al.,	
  2013;	
  Yonkee	
  et	
  
al.,	
  2014).	
  	
  	
  
Evidence	
  for	
  the	
  migration	
  of	
  reducing	
  fluids	
  in	
  Tava	
  sandstone	
  includes	
  redox	
  
patterns	
   and	
   secondary	
   porosity.	
   	
   The	
   potential	
   source	
   of	
   reducing	
   fluids	
   includes	
  
hydrocarbon	
   source	
   rocks	
   of	
   Colorado	
   from	
   lithological	
   units	
   that	
   span	
   the	
   entire	
  
Phanerozoic,	
   or	
   the	
   possibility	
   of	
   in	
   situ	
   generation	
   of	
   hydrocarbons	
   from	
   bacterial	
  
matter	
   originally	
   deposited	
   within	
   Tava	
   sandstone	
   during	
   the	
   Neoproterozoic	
   Era	
  
(Clayton	
  and	
  Swetland,	
  1980;	
  Craig	
  et	
  al.,	
  2013;	
  Johnson	
  and	
  Rice,	
  1990).	
  	
  
Primary	
   Tava	
   cement	
   is	
   deep	
   maroon	
   colored	
   from	
   the	
   breakdown	
   of	
   detrital	
  
ferromagnesian	
   minerals,	
   precipitated	
   as	
   hematite	
   grain	
   coatings	
   during	
   early	
  
diagenesis	
  (e.g.	
  Beitler	
  et	
  al.,	
  2003)	
  (Figure	
  4).	
  	
  Bleached	
  Tava	
  sandstone	
  is	
  often	
  more	
  
 
	
   6	
  
friable	
  and	
  white-­‐tan-­‐pink	
  in	
  color	
  from	
  a	
  change	
  in	
  oxidation	
  state	
  and/or	
  the	
  removal	
  
of	
  hematite.	
  	
  In	
  sediment,	
  hematite	
  is	
  insoluble	
  (ferric	
  iron,	
  Fe3+)	
  and	
  must	
  be	
  reduced	
  
to	
  ferrous	
  iron	
  (Fe2+)	
  in	
  order	
  to	
  become	
  soluble	
  in	
  solution	
  and	
  removed	
  (chemically	
  
bleached)	
  (Surdham	
  et	
  al.,	
  1993)	
  (Figure	
  4).	
  	
  Reducing	
  fluids,	
  such	
  as	
  hydrocarbons,	
  can	
  
cause	
  the	
  reduction	
  and	
  removal	
  of	
  iron	
  from	
  sandstone	
  during	
  fluid	
  migration	
  (Beitler	
  
et	
  al.,	
  2003;	
  Eichhubl	
  et	
  al.,	
  2004;	
  Levandowski	
  et	
  al.,	
  1973;	
  Moulton,	
  1922;	
  Parry	
  et	
  al.,	
  
2003;	
  Rainoldi	
  et	
  al.,	
  2014;	
  Shebl	
  and	
  Surdam,	
  1996).	
  	
  	
  
Early	
  investigations	
  on	
  sandstone	
  redox	
  reactions	
  were	
  carried	
  out	
  in	
  1922	
  on	
  
the	
   petroleum-­‐rich	
   Chugwater	
   redbeds	
   in	
   Montana	
   (Moulton,	
   1922).	
   	
   Moulton	
  
concluded	
   that	
   red	
   sandstone	
   could	
   be	
   bleached	
   by	
   hydrogen	
   sulfide,	
   a	
   known	
  
byproduct	
  of	
  petroleum	
  generation	
  (Moulton,	
  1922).	
  	
  Additionally,	
  in	
  pyrolysis	
  analyses	
  
performed	
  Shebl	
  and	
  Surdam,	
  (1996)	
  a	
  mixture	
  of	
  red	
  rock,	
  water,	
  and	
  hydrocarbons	
  
became	
  altered	
  to	
  light	
  pink,	
  white,	
  gray,	
  or	
  dark	
  gray.	
  
Crude	
   grain	
   sorting	
   observed	
   within	
   Tava	
   sandstone	
   contributes	
   to	
   primary	
  
porosity	
   and	
   may	
   serve	
   as	
   preferential	
   fluid	
   migration	
   pathways	
   in	
   the	
   absence	
   of	
  
structural	
   conduits	
   (Figure	
   5).	
   	
   Examination	
   of	
   outcrops,	
   hand	
   samples,	
   and	
   thin	
  
sections	
   show	
   that	
   deformation	
   bands	
   and	
   calcite	
   veins	
   may	
   also	
   serve	
   as	
   fluid-­‐flow	
  
controls	
  within	
  Tava	
  sandstone	
  (Figure	
  6,	
  7,	
  8).	
  	
  Cataclasis	
  and	
  deformation	
  bands	
  are	
  
observed	
  in	
  a	
  majority	
  of	
  Tava	
  locations	
  and	
  are	
  found	
  in	
  both	
  primary	
  Tava	
  and	
  Tava	
  
containing	
   redox.	
   	
   Brittle	
   deformation	
   potentially	
   responsible	
   for	
   the	
   structural	
  
overprinting	
   observed	
   in	
   Tava	
   sandstone	
   include	
   compaction	
   during	
   original	
  
lithification	
  and	
  structural	
  overprinting	
  during	
  the	
  Ancestral	
  Rocky	
  Mountain	
  Orogeny,	
  
and	
  the	
  Laramide	
  Orogeny.	
  	
  	
  
The	
  aims	
  of	
  this	
  study	
  are:	
  1)	
  establish	
  fluid	
  flow	
  controls	
  within	
  Tava	
  sandstone,	
  
2)	
  determine	
  the	
  characteristics	
  and	
  probable	
  source(s)	
  of	
  reducing	
  fluids	
  responsible	
  
 
	
   7	
  
for	
  redox,	
  and	
  3)	
  infer	
  the	
  tectonic	
  event(s)	
  or	
  alternate	
  mechanisms	
  responsible	
  for	
  the	
  
initiation	
  of	
  fluid	
  flow	
  within	
  Tava	
  sandstone.	
  	
  	
  
The	
   significance	
   of	
   this	
   study	
   is	
   three-­‐part.	
   	
   First,	
   Tava	
   sandstone	
   is	
  
Neoproterozoic	
  in	
  age,	
  and	
  therefore	
  has	
  the	
  potential	
  to	
  reveal	
  the	
  paleoenvironment	
  
of	
   inland	
   Laurentia	
   during	
   the	
   breakup	
   of	
   Rodinia,	
   as	
   well	
   as	
   aspects	
   of	
   the	
  
geobiochemistry	
   of	
   the	
   late	
   Proterozoic	
   Eon	
   prior	
   to	
   the	
   ‘Cambrian	
   Explosion’.	
  	
  
Crystalline-­‐hosted	
   sandstone	
   dike	
   complexes	
   are	
   an	
   extremely	
   rare	
   geological	
  
occurrence.	
  	
  Because	
  deep	
  marine	
  sandstone	
  dike	
  complexes	
  are	
  becoming	
  a	
  major	
  play	
  
for	
  oil	
  exploration,	
  the	
  presence	
  of	
  hydrocarbons	
  in	
  Tava	
  sandstone	
  may	
  lead	
  to	
  other	
  
crystalline-­‐hosted	
   sandstone	
   dike	
   complexes	
   becoming	
   potential	
   targets	
   for	
   oil	
  
exploration.	
   	
   Tava	
   sandstone	
   contains	
   visible	
   redox	
   patterns	
   that	
   may	
   reveal	
   critical	
  
information	
   about	
   the	
   evolution	
   and	
   migration	
   of	
   hydrocarbons	
   that	
   serve	
   as	
   energy	
  
resources	
   in	
   Colorado,	
   for	
   example	
   insights	
   into	
   thermal	
   maturation	
   of	
   sub-­‐thrust	
  
Phanerozoic	
  strata	
  (Gries,	
  1983;	
  Wandrey	
  and	
  Barker,	
  1995)	
  within	
  the	
  Front	
  Range	
  
basement	
  uplift	
  that	
  formed	
  during	
  the	
  Ancestral	
  Rockies	
  and	
  Laramide	
  Orogeny.	
  
	
  
G	
  E	
  O	
  L	
  O	
  G	
  I	
  C	
  A	
  L	
  	
  	
  B	
  A	
  C	
  K	
  G	
  R	
  O	
  U	
  N	
  D	
  
Regional	
  Geology	
  
The	
  Front	
  Range	
  in	
  Colorado	
  has	
  a	
  long	
  and	
  complex	
  regional	
  geology	
  including:	
  
1)	
   formation	
   of	
   Colorado	
   basement	
   rocks	
   in	
   an	
   accretionary	
   province	
   during	
   the	
  
Proterozoic;	
  2)	
  Rodinia	
  rifting	
  and	
  formation	
  of	
  a	
  brittle	
  structural	
  framework	
  within	
  
the	
  basement	
  rocks	
  of	
  Colorado	
  during	
  the	
  Neoproterozoic	
  Era;	
  3)	
  deposition	
  of	
  Tava	
  
sandstone	
  despite	
  extensive	
  erosion	
  between	
  1.1	
  Ga	
  and	
  0.54	
  Ga	
  resulting	
  in	
  the	
  Great	
  
Unconformity;	
   4)	
   deposition	
   of	
   Paleozoic	
   siliciclastics	
   and	
   carbonates	
   in	
   Laurentian	
  
 
	
   8	
  
epeiric	
   seas;	
   5)	
   reactivation	
   of	
   basement	
   faults	
   at	
   the	
   time	
   of	
   the	
   Ancestral	
   Rocky	
  
Mountain	
   Orogeny;	
   6)	
   deposition	
   of	
   Cretaceous	
   Interior	
   Seaway	
   deep	
   marine	
   and	
  
carbonate	
  sediments;	
  7)	
  reactivation	
  of	
  basement	
  faults	
  during	
  the	
  Laramide	
  Orogeny.	
  
Proterozoic	
   basement	
   rocks	
   in	
   Colorado	
   include	
   plutons	
   emplaced	
   within	
   the	
  
Yavapai	
   (2.0-­‐1.8	
   Ga)	
   and	
   Mazatzal	
   (1.8-­‐1.6	
   Ga)	
   accretionary	
   provinces	
   as	
   well	
   as	
  
subsequent	
   anorogenic	
   magmatism	
   at	
   the	
   time	
   of	
   the	
   Grenville	
   orogeny	
   (Pikes	
   Peak	
  
Batholith,	
   1.1	
   Ga)	
   (Yonkee	
   et	
   al.,	
   2014).	
   	
   In	
   Colorado,	
   these	
   accretionary	
   terranes	
  
comprise	
  magmatic	
  and	
  metamorphic	
  complexes	
  at	
  about	
  1.78-­‐1.75	
  Ga,	
  1.67	
  Ga,	
  and	
  1.4	
  
Ga,	
  that	
  all	
  contain	
  evidence	
  of	
  tectonic	
  overprinting	
  (Tweto,	
  1980).	
  	
  The	
  Pikes	
  Peak	
  
batholith	
  (1.1	
  Ga)	
  does	
  not	
  display	
  dynamic	
  fabrics.	
  	
  	
  
	
   Rodinia	
  underwent	
  large	
  scale	
  rifting	
  ~750	
  Ma,	
  culminating	
  in	
  the	
  breakup	
  of	
  
Rodinia	
  and	
  the	
  eventual	
  isolation	
  of	
  Laurentia	
  (Dehler	
  et	
  al.,	
  2010;	
  Yonkee	
  et	
  al.,	
  2014).	
  	
  
The	
   evolutionary	
   history	
   of	
   the	
   ancient	
   rift	
   zone,	
   active	
   from	
   825-­‐740	
   Ma,	
   has	
   been	
  
reconstructed	
   from	
   Neoproterozoic	
   episodic	
   plume	
   events	
   as	
   well	
   as	
   from	
   the	
  
arrangement	
   of	
   Neoproterozoic	
   marine	
   sediments	
   found	
   in	
   south	
   Australia,	
   south	
  
China,	
  Namibia,	
  and	
  western	
  North	
  America	
  (Dehler	
  et	
  al.,	
  2010;	
  Li	
  et	
  al.,	
  2007).	
  	
  The	
  
onset	
  of	
  rifting	
  is	
  indicated	
  by	
  the	
  Gairdner-­‐Amata	
  dike	
  swarm	
  in	
  Australia	
  at	
  825	
  Ma	
  
and	
  the	
  Gunbarrel	
  dike	
  swarm	
  in	
  western	
  Laurentia	
  at	
  780	
  Ma	
  (Li	
  et	
  al.,	
  2007).	
  	
  The	
  dike	
  
swarms	
   are	
   a	
   result	
   of	
   a	
   super-­‐plume	
   that	
   formed	
   below	
   Rodinia	
   due	
   to	
   enhanced	
  
thermal	
  gradients	
  (Li	
  et	
  al.,	
  2007).	
  	
  Following	
  the	
  onset	
  of	
  rifting,	
  the	
  Laurentian	
  passive	
  
margin	
  and	
  accompanying	
  continental	
  rift	
  basins	
  became	
  depocenters	
  for	
  marine	
  and	
  
coastal	
  sediment.	
  	
  Rifting	
  caused	
  basement	
  rocks	
  to	
  undergo	
  crustal	
  thinning,	
  which	
  led	
  
to	
  the	
  development	
  of	
  high	
  angle	
  normal	
  faults	
  aligned	
  parallel	
  to	
  the	
  rift	
  margin.	
  	
  One	
  
such	
  fault	
  may	
  be	
  the	
  ancestral	
  Ute	
  Pass	
  Fault	
  of	
  the	
  Colorado	
  Front	
  Range	
  (Siddoway	
  et	
  
al.,	
  2013).	
  	
  	
  
 
	
   9	
  
The	
  origin	
  of	
  the	
  Ute	
  Pass	
  Fault	
  may	
  be	
  tied	
  to	
  the	
  break	
  up	
  of	
  Rodinia	
  for	
  three	
  
reasons:	
  1)	
  its	
  orientation	
  is	
  parallel	
  to	
  the	
  west	
  coast	
  Laurentian	
  rift	
  margin,	
  2)	
  there	
  is	
  
a	
  probability	
  that	
  Tava	
  sandstone	
  was	
  emplaced	
  as	
  an	
  injectite	
  within	
  the	
  fault	
  zone,	
  
and	
   3)	
   the	
   age	
   of	
   Tava	
   sandstone	
   places	
   it	
   within	
   the	
   time	
   frame	
   of	
   other	
   rifting	
  
structures	
  (Dehler	
  et	
  al.,	
  2010;	
  Yonkee	
  et	
  al.,	
  2014).	
  	
  	
  
The	
   Ute	
   Pass	
   Fault	
   may	
   have	
   been	
   the	
   control	
   upon	
   an	
   inland	
   rift	
   basin	
   that	
  
formed	
   during	
   the	
   rifting	
   of	
   Rodinia.	
   	
   In	
   the	
   continental	
   interior,	
   the	
   paleo-­‐Ute	
   Pass	
  
Fault	
   rift	
   basin	
   accumulated	
   far-­‐traveled	
   sediment	
   transported	
   from	
   the	
   Grenville	
  
orogen	
  (Figure	
  9).	
  	
  In	
  this	
  tectonic	
  setting	
  Tava	
  sandstone	
  experienced	
  an	
  extreme	
  fluid	
  
over-­‐pressurization,	
  and	
  was	
  then	
  injected	
  into	
  crystalline	
  basement	
  rock	
  possibly	
  due	
  
to	
   rupture(s)	
   and	
   seismicity	
   along	
   the	
   ancestral	
   Ute	
   Pass	
   Fault.	
   	
   The	
   result	
   was	
   the	
  
formation	
  of	
  the	
  Tava	
  sandstone	
  injectite	
  complex.	
  	
  	
  	
  
Prior	
   to	
   and	
   following	
   the	
   formation	
   of	
   Tava	
   sandstone	
   injectites,	
   the	
   Front	
  
Range	
  underwent	
  large	
  scale	
  erosion	
  resulting	
  in	
  the	
  Great	
  Unconformity,	
  which	
  before	
  
the	
   discovery	
   of	
   Tava	
   sandstone,	
   was	
   believed	
   to	
   have	
   erased	
   the	
   entire	
   geological	
  
record	
   of	
   eastern	
   Colorado	
   between	
   1.1	
   Ga	
   and	
   0.54	
   Ga.	
   	
   Therefore,	
   Tava	
   sandstone	
  
serves	
   as	
   the	
   only	
   known	
   vestige	
   of	
   inland	
   Laurentia	
   (eastern	
   Colorado)	
   during	
   the	
  
Neoproterozoic	
  Era.	
  	
  	
  
Above	
  the	
  Great	
  Unconformity	
  lies	
  Early	
  Cambrian	
  mature	
  Sawatch	
  Sandstone	
  
deposited	
   directly	
   atop	
   Pikes	
   Peak	
   Granite.	
   Next	
   are	
   shallow	
   marine	
   carbonates	
  
(Manitou,	
  Williams	
  Canyon,	
  and	
  Hardscrabble	
  Limestones)	
  that	
  were	
  deposited	
  within	
  
epeiric	
   seas	
   of	
   Laurentia	
   (Figure	
   10).	
   	
   The	
   epeiric	
   seas	
   covering	
   western	
   Laurentia	
  
served	
   as	
   a	
   catalyst	
   for	
   the	
   explosion	
   of	
   vast	
   marine	
   ecosystems.	
   	
   Cambrian	
   through	
  
Devonian	
   siliciclastics	
   and	
   carbonates	
   record	
   a	
   great	
   diversification	
   of	
   metazoan	
  
invertebrates,	
  as	
  well	
  as	
  the	
  establishment	
  of	
  aerobic	
  life	
  forms	
  capable	
  of	
  inhabiting	
  
 
	
   10	
  
the	
   continents	
   (Levin,	
   2003	
   p.337).	
   	
   The	
   shallow	
   seas	
   of	
   Colorado	
   during	
   the	
   early	
  
Paleozoic	
   were	
   drained	
   by	
   tectonism	
   associated	
   with	
   the	
   Ancestral	
   Rocky	
   Mountain	
  
Orogen	
  (ARMO).	
  	
  To	
  accommodate	
  stress,	
  the	
  Ute	
  Pass	
  Fault	
  reactivated,	
  causing	
  uplift	
  
and	
   erosion	
   of	
   Pikes	
   Peak	
   Granite	
   and	
   older	
   basement	
   rocks.	
   	
   Erosion	
   of	
   exposed	
  
basement	
   led	
   to	
   the	
   deposition	
   the	
   arkosic	
   Pennsylvanian	
   Fountain	
   Formation	
  
unconformably	
   atop	
   sediments	
   of	
   the	
   early	
   Paleozoic	
   siliciclastics	
   and	
   carbonates	
  
(Figure	
  10).	
  	
  	
  
Following	
  the	
  ARMO,	
  terrestrial	
  sedimentation	
  took	
  place	
  during	
  the	
  Permian,	
  
Triassic	
   and	
   Jurassic,	
   while	
   the	
   Cretaceous	
   Interior	
   Seaway	
   laid	
   down	
   deep	
   marine	
  
shales	
  and	
  shallow	
  carbonate	
  facies.	
  	
  The	
  Laramide	
  Orogeny	
  caused	
  reactivation	
  of	
  the	
  
Ute	
  Pass	
  Fault	
  again	
  during	
  the	
  late	
  Cretaceous-­‐Paleocene	
  Period	
  boundary	
  resulting	
  in	
  
the	
  formation	
  of	
  monoclinal	
  structures	
  along	
  the	
  Front	
  Range.	
  	
  	
  
Today,	
  the	
  Ute	
  Pass	
  Fault	
  runs	
  from	
  Turkey	
  Creek	
  to	
  north	
  of	
  Woodland	
  Park	
  
separating	
   two	
   Laramide	
   basement	
   uplifts,	
   the	
   Rampart	
   Range	
   and	
   the	
   Front	
   Range.	
  	
  
Near	
  its	
  southern	
  end,	
  the	
  fault	
  has	
  reverse	
  motion,	
  trends	
  N-­‐S,	
  and	
  dips	
  between	
  0-­‐70	
  
degrees	
  to	
  the	
  west,	
  while	
  its	
  central	
  and	
  northern	
  segments	
  trend	
  northwest,	
  dip	
  very	
  
steeply,	
  and	
  have	
  left	
  lateral	
  displacement	
  (Keller	
  et	
  al.,	
  2003).	
  	
  	
  
Following	
   cementation,	
   Tava	
   sandstone	
   remained	
   hosted	
   within	
   crystalline	
  
basement	
   rocks	
   along	
   the	
   Ute	
   Pass	
   Fault	
   for	
   ~750	
   million	
   years,	
   and	
   during	
   its	
   long	
  
history	
   has	
   been	
   subjected	
   to	
   all	
   events	
   associated	
   with	
   the	
   Ute	
   Pass	
   Fault	
   including	
  
tectonism,	
  diagenetic	
  alteration,	
  and	
  fluid	
  migration.	
  	
  Despite	
  tectonic	
  overprints	
  from	
  
the	
  Phanerozoic	
  Eon,	
  there	
  are	
  pristine	
  exposures	
  that	
  retain	
  primary	
  characteristics	
  
capable	
  of	
  illuminating	
  Neoproterozoic	
  biogeochemical	
  signatures.	
  	
  	
  	
  
	
  
	
  
 
	
   11	
  
Neoproterozoic	
  Setting	
  
During	
  the	
  Neoproterozoic	
  Era	
  (1.0	
  Ga.	
  –	
  0.54	
  Ga.),	
  the	
  supercontinent	
  Rodinia	
  
was	
   both	
   created	
   and	
   fragmented.	
   	
   Furthermore,	
   the	
   entire	
   globe	
   fell	
   into	
   icehouse	
  
conditions	
   during	
   the	
   Cryogenian	
   Period	
   (850	
   Ma	
   –	
   635	
   Ma)	
   appropriately	
   named	
  
‘Snowball	
   Earth’.	
   	
   The	
   interplay	
   of	
   paleogeography,	
   biological	
   diversification,	
   and	
  
atmospheric	
   oxygenation	
   during	
   global	
   continental	
   reconfiguration	
   of	
   the	
  
Neoproterozoic	
  is	
  of	
  great	
  importance	
  in	
  understanding	
  the	
  evolution	
  of	
  life	
  on	
  Earth.	
  
Research	
  into	
  the	
  geochemistry	
  of	
  Tava	
  sandstone	
  may	
  reveal	
  geochemical	
  fingerprints	
  
from	
  the	
  Neoproterozoic.	
  	
  
Although	
  oxygen	
  is	
  highly	
  abundant	
  in	
  today’s	
  atmosphere,	
  before	
  the	
  advent	
  of	
  
oxygen-­‐producing	
   (photosynthesizing)	
   organisms,	
   the	
   atmosphere	
   was	
   anoxic,	
  
comprised	
  of	
  methane,	
  ammonia,	
  hydrogen,	
  and	
  water	
  vapor	
  (Levin,	
  2003	
  p.	
  215).	
  	
  High	
  
atmospheric	
  oxygen	
  concentrations	
  formed	
  in	
  two	
  great	
  oxygenation	
  events	
  prior	
  to	
  the	
  
Precambrian-­‐Phanerozoic	
  boundary	
  	
  (i.e.	
  Cambrian	
  explosion)	
  (Och	
  and	
  Shields-­‐Zhou,	
  
2012).	
   	
   Atmospheric	
   oxygenation	
   levels	
   have	
   been	
   estimated	
   by	
   the	
   rise	
   and	
   fall	
   of	
  
banded	
  iron	
  formations	
  (BIF)	
  deposited	
  mainly	
  between	
  3.5	
  Ga	
  -­‐	
  1.8	
  Ga.	
  	
  Banded	
  iron	
  
formations	
   were	
   deposited	
   in	
   oceans	
   of	
   the	
   Precambrian	
   and	
   formed	
   during	
   the	
  
reaction	
  of	
  iron,	
  supplied	
  at	
  mid	
  oceanic	
  ridges	
  and	
  from	
  continental	
  weathering,	
  with	
  
oxygen	
   produced	
   by	
   photoautotrophs	
   such	
   as	
   stromatolites	
   (Levin,	
   2003	
   p.	
   236).	
  	
  
Deposition	
  continued	
  globally	
  for	
  ~1.7	
  Ga	
  and	
  constitutes	
  a	
  majority	
  of	
  today’s	
  iron	
  ore	
  
deposits.	
   	
   Banded	
   iron	
   formations	
   ceased	
   to	
   form	
   once	
   oxygen	
   production	
   exceeded	
  
iron	
  replenishment	
  leading	
  to	
  the	
  first	
  oxygenated	
  atmosphere	
  by	
  ~2.2	
  Ga	
  (i.e.	
  Great	
  
Oxygenation	
  Event).	
  	
  	
  
The	
  foundation	
  of	
  life	
  on	
  Earth	
  began	
  with	
  prokaryotes	
  at	
  ~3.5	
  Ga	
  during	
  the	
  
Archean.	
   	
   The	
   first	
   diversification	
   of	
   life	
   took	
   place	
   at	
   2.2	
   Ga	
   with	
   the	
   emergence	
   of	
  
 
	
   12	
  
eukaryotes,	
   such	
   as	
   cyanobacteria.	
   	
   Life	
   on	
   Earth	
   remained	
   unchanged	
   until	
   the	
  
development	
  of	
  metazoans	
  at	
  ~640	
  Ma,	
  marked	
  by	
  thin	
  fleshy	
  marine	
  invertebrates	
  of	
  
the	
  Ediacaran	
  Fauna	
  uncovered	
  in	
  southern	
  Australia	
  (Narbonne	
  and	
  Gehling,	
  2003).	
  	
  
These	
   first	
   two	
   biological	
   advancements	
   correspond	
   to	
   the	
   first	
   two	
   atmospheric	
  
oxygenation	
   events:	
   the	
   Great	
   Oxygenation	
   Event	
   (GOE)	
   between	
   2.4-­‐2.0	
   Ga	
   and	
   the	
  
Neoproterozoic	
  Oxygenation	
  Event	
  (NOE)	
  between	
  0.8-­‐0.5	
  Ga.	
  	
  	
  
The	
   Neoproterozoic	
   Oxygenation	
   Event	
   can	
   be	
   partially	
   explained	
   by	
   two	
  
geological	
   processes:	
   1)	
   the	
   formation	
   of	
   numerous	
   passive	
   margins	
   following	
   the	
  
fragmentation	
  of	
  Rodinia,	
  and	
  2)	
  the	
  East	
  African-­‐Antarctic	
  orogeny	
  (Transgondwanan	
  
Supermountains).	
  
During	
  the	
  early	
  Neoproterozoic	
  Era,	
  passive	
  margin	
  shallow	
  seas	
  were	
  scarce	
  
due	
  to	
  the	
  loss	
  of	
  coastal	
  platforms	
  during	
  the	
  formation	
  of	
  Rodinia.	
  	
  However,	
  after	
  the	
  
rifting	
  of	
  Rodinia	
  (~750	
  Ma),	
  passive	
  margin	
  shallow	
  seas	
  became	
  abundant	
  as	
  more	
  
coastlines	
  were	
  created	
  along	
  rift	
  margins.	
  	
  Passive	
  margins	
  are	
  known	
  to	
  be	
  zones	
  of	
  
organic	
   material	
   burial,	
   which	
   allows	
   for	
   the	
   accumulation	
   of	
   atmospheric	
   oxygen.	
  	
  
Additionally,	
   the	
   burial	
   of	
   organic	
   material	
   led	
   to	
   the	
   development	
   of	
   hydrocarbon	
  
source	
   rocks	
   along	
   continental	
   margins	
   during	
   this	
   time	
   (LeHeron	
   and	
   Craig,	
   2012).	
  	
  
Further	
   elevation	
   of	
   atmospheric	
   oxygen	
   was	
   caused	
   by	
   the	
   East	
   African-­‐Antarctic	
  
orogeny	
  (EAO)	
  (650-­‐515	
  Ma).	
  	
  The	
  EAO	
  was	
  caused	
  by	
  the	
  closure	
  of	
  the	
  Mozambique	
  
Ocean,	
   which	
   led	
   to	
   the	
   convergence	
   of	
   East	
   and	
   West	
   Gondwana	
   in	
   the	
   greatest	
  
mountain	
  building	
  episode	
  in	
  Earth’s	
  history	
  (Och	
  and	
  Shields-­‐Zhou,	
  2012).	
  	
  Large	
  scale	
  
continental	
  collision	
  led	
  to	
  greater	
  atmospheric	
  oxygenation	
  by	
  increased	
  erosion	
  rates,	
  
which	
   in	
   turn	
   sent	
   an	
   abundance	
   of	
   nutrients	
   to	
   the	
   oceans,	
   therefore	
   increasing	
  
photosynthesizing	
   organisms	
   that	
   respired	
   oxygen	
   into	
   the	
   atmosphere	
   (Och	
   and	
  
Shields-­‐Zhou,	
  2012;	
  Squire	
  et	
  al.,	
  2006).	
  	
  	
  	
  	
  
 
	
   13	
  
The	
  snowball	
  earth	
  theory	
  is	
  substantiated	
  by	
  the	
  discovery	
  of	
  globally	
  extensive	
  
diamictite	
  formations	
  capped	
  by	
  carbonate	
  formations.	
  	
  Diamictite-­‐cap	
  carbonate	
  series	
  
record	
  two	
  global	
  glaciations,	
  the	
  Sturtian	
  (715	
  Ma)	
  and	
  the	
  Marinoan	
  (635	
  Ma),	
  as	
  well	
  
as	
   one	
   regional	
   glaciation	
   in	
   Laurentia	
   (680	
   Ma)	
   (Craig	
   et	
   al.	
   2013;	
   Halverson	
   et	
   al.	
  
2005).	
  	
  Theories	
  concerning	
  how	
  Snowball	
  Earth	
  formed	
  include	
  the	
  congregation	
  of	
  
the	
   continents	
   in	
   the	
   tropics	
   during	
   the	
   Cryogenian	
   Period	
   (Eyles	
   and	
   Januszczak,	
  
2004).	
  	
  Landmasses	
  are	
  much	
  more	
  reflective	
  than	
  oceans,	
  and	
  it	
  is	
  believed	
  that	
  much	
  
of	
  the	
  sun’s	
  radiation	
  was	
  reflected	
  by	
  landmasses	
  back	
  into	
  space	
  rather	
  than	
  being	
  
absorbed	
  by	
  the	
  oceans	
  therefore	
  leading	
  to	
  global	
  cooling	
  (Levin,	
  2003	
  p.	
  250).	
  	
  Other	
  
theories	
  include	
  a	
  change	
  in	
  Earth’s	
  obliquity	
  (Williams,	
  2008),	
  Earth	
  passing	
  through	
  a	
  
‘rare	
  space-­‐cloud’	
  (Cook-­‐Anderson	
  et	
  al.,	
  2005),	
  and	
  a	
  lowering	
  in	
  Earth’s	
  greenhouse	
  
gases	
  (Hoffman,	
  2002).	
  	
  	
  
Diamictite	
  and	
  cap-­‐carbonate	
  sequences	
  indicate	
  a	
  change	
  in	
  the	
  Earth’s	
  carbon	
  
cycle	
  during	
  glaciation	
  periods.	
  	
  Global	
  ice	
  sheets	
  restrict	
  CO2	
  from	
  entering	
  the	
  oceans,	
  
leading	
  to	
  the	
  buildup	
  of	
  CO2	
  in	
  the	
  atmosphere.	
  	
  Upon	
  the	
  melting	
  of	
  ice	
  sheets,	
  the	
  
oceans	
   are	
   once	
   again	
   able	
   to	
   absorb	
   CO2	
   and	
   precipitate	
   thick	
   carbonate	
   units	
  
(LeHeron	
  and	
  Craig,	
  2012).	
  	
  Because	
  life	
  survived	
  the	
  proposed	
  Snowball	
  Earth	
  periods,	
  
an	
   alternate	
   hypothesis	
   named	
   ‘Slushball	
   Earth’	
   has	
   been	
   proposed	
   (Micheels	
   and	
  
Montenari,	
   2008).	
   	
   Slushball	
   Earth	
   states	
   that	
   little	
   to	
   no	
   ice	
   must	
   have	
   covered	
  
equatorial	
  oceans	
  in	
  order	
  to	
  allow	
  photosynthesizing	
  algae	
  to	
  survive	
  the	
  deep	
  freeze	
  
and	
  maintain	
  oxygen	
  in	
  the	
  atmosphere.	
  	
  
	
  
Neoproterozoic	
  Sediment	
  
Neoproterozoic	
  sediments	
  akin	
  to	
  Tava	
  sandstone	
  are	
  much	
  less	
  abundant	
  than	
  
Phanerozoic	
   sediments,	
   but	
   have	
   not	
   completely	
   been	
   erased	
   from	
   the	
   geological	
  
 
	
   14	
  
record.	
  	
  Grenville-­‐orogen-­‐derived	
  sediments	
  deposited	
  in	
  association	
  with	
  the	
  break	
  up	
  
of	
  Rodinia	
  are	
  found	
  in	
  intervals	
  along	
  the	
  west	
  coast	
  of	
  Laurentia.	
  	
  Neoproterozoic	
  in	
  
age,	
   these	
   formations	
   include	
   the	
   Mackenzie	
   Mountains	
   Supergroup	
   (Northwest	
  
Territories,	
  Canada),	
  Windermere	
  Supergroup	
  (British	
  Columbia,	
  Canada),	
  Chuar	
  Group	
  
(Arizona/Utah),	
  Big	
  Cottonwood	
  and	
  Uinta	
  Mountain	
  Groups	
  (Utah/Colorado)	
  (Dehler	
  
et	
  al.,	
  2010;	
  Fanning	
  and	
  Link,	
  2004;	
  Yonkee	
  et	
  al.,	
  2014).	
  	
  A	
  majority	
  of	
  the	
  sites	
  were	
  
marginal	
   marine	
   at	
   the	
   time	
   of	
   deposition.	
   	
   Therefore,	
   a	
   new	
   contribution	
   to	
  
understanding	
   of	
   Rodinia	
   paleoenvironments	
   comes	
   from	
   Tava	
   sandstone	
   (eastern	
  
Colorado),	
   which	
   is	
   representative	
   of	
   an	
   intracontinental	
   setting	
   (Dehler	
   et	
   al.,	
   2010;	
  
Siddoway	
  and	
  Gehrels,	
  2014).	
  	
  	
  
	
  
Global	
  Sandstone	
  Injectites	
  
Tava	
   sandstone	
   appears	
   to	
   have	
   served	
   as	
   a	
   fluid	
   migration	
   pathway	
   for	
  
reducing	
   fluids	
   as	
   evidenced	
   by	
   its	
   strong	
   redox	
   patterning.	
   	
   Sandstone	
   injectite	
  
complexes	
   are	
   known	
   to	
   serve	
   as	
   permeable	
   petroleum	
   migration	
   pathways	
   and	
  
reservoirs	
  (Hurst	
  et	
  al.,	
  2003;	
  Jonk	
  et	
  al.,	
  2005).	
  	
  Therefore,	
  redox	
  in	
  Tava	
  sandstone	
  
may	
  be	
  due	
  to	
  the	
  migration	
  of	
  hydrocarbons.	
  	
  
Petroleum	
  bearing	
  sandstone	
  injectite	
  complexes	
  are	
  commonly	
  found	
  in	
  marine	
  
sediments	
   and	
   form	
   due	
   to	
   variable	
   pore-­‐fluid	
   pressures	
   within	
   marine	
   basins	
   that	
  
undergo	
   rapid	
   sedimentation	
   (Hurst	
   et	
   al.,	
   2011;	
   Jonk	
   et	
   al.,	
   2005).	
   	
   The	
   North	
   Sea	
  
graben	
   complexes	
   (Viking	
   and	
   Central	
   grabens)	
   and	
   California	
   marine	
   basins	
   (Santa	
  
Barbara	
  and	
  Santa	
  Maria	
  basins)	
  are	
  some	
  of	
  the	
  world’s	
  leading	
  petroleum	
  producing	
  
reservoirs,	
  and	
  they	
  all	
  contain	
  vast	
  networks	
  of	
  sandstone	
  injectites	
  (Hurst	
  et	
  al.,	
  2003;	
  
Jonk	
  et	
  al.,	
  2005).	
  	
  	
  
 
	
   15	
  
Sandstone	
   injectite	
   complexes	
   form	
   an	
   intricate	
   association	
   of	
   parent	
   bodies,	
  
dikes,	
   and	
   sills	
   (Hurst	
   et	
   al.,	
   2011).	
   	
   Although	
   sandstone	
   bodies	
   can	
   possess	
   internal	
  
fabric	
  such	
  as	
  thin	
  laminations	
  and	
  grain	
  sorting,	
  they	
  are	
  mostly	
  structureless	
  due	
  to	
  
liquefaction,	
  turbulent	
  remobilization,	
  and	
  rapid,	
  non-­‐uniform	
  emplacement	
  (Jonk	
  et	
  al.,	
  
2005).	
   	
   Cementation	
   within	
   sandstone	
   dikes	
   is	
   dependent	
   upon	
   diagenetic	
   alteration	
  
and	
  varies	
  among	
  silica,	
  carbonate,	
  and	
  hematite.	
  	
  Due	
  to	
  variable	
  dike	
  sizes,	
  fluid	
  flow	
  
within	
   sandstone	
   dikes	
   can	
   be	
   easily	
   controlled	
   by	
   structural	
   overprints	
   such	
   as	
  
deformation	
   bands	
   or	
   veining.	
   	
   Within	
   clastic	
   dikes	
   of	
   the	
   Viking	
   Graben,	
   conjugate	
  
deformation	
   bands	
   were	
   formed	
   quickly	
   after	
   emplacement	
   due	
   to	
   rapid	
  
depressurization	
  and	
  contraction	
  of	
  the	
  dike	
  margins	
  (Jonk	
  et	
  al.,	
  2005).	
  	
  Deformation	
  
bands	
   observed	
   in	
   the	
   North	
   Sea	
   contain	
   zones	
   of	
   authigenic	
   silica	
   precipitation	
   that	
  
developed	
  during	
  deformation	
  band	
  formation	
  (Jonk	
  et	
  al.,	
  2005).	
  	
  	
  
Crystalline-­‐hosted	
  clastic	
  dikes	
  are	
  also	
  found	
  globally,	
  however	
  they	
  have	
  never	
  
been	
  observed	
  as	
  hydrocarbon	
  migration	
  pathways.	
  	
  Crystalline-­‐hosted	
  sandstone	
  dike	
  
examples	
   are	
   found	
   within	
   Precambrian	
   basement	
   rocks	
   at	
   three	
   known	
   locations	
  
including	
   the	
   Baltic	
   Shield	
   (Friese	
   et	
   al.,	
   2011;	
   Bergman,	
   1982),	
   the	
   Sinai	
   Peninsula	
  
(Eyal,	
   1988),	
   and	
   the	
   Colorado	
   Front	
   Range	
   (this	
   study)	
   (Siddoway	
   et	
   al.,	
   2013;	
  
Siddoway	
  and	
  Gehrels,	
  2014).	
  	
  
	
  
Proterozoic	
  Petroleum	
  Sources	
  
	
   Because	
   Tava	
   sandstone	
   may	
   have	
   served	
   as	
   a	
   migration	
   pathway	
   for	
  
hydrocarbons,	
  it	
  is	
  prudent	
  to	
  explore	
  all	
  potential	
  hydrocarbon	
  sources	
  near	
  the	
  Front	
  
Range,	
   including	
   in	
   situ	
   hydrocarbon	
   generation	
   within	
   Tava	
   sandstone	
   itself.	
  	
  
Proterozoic	
  hydrocarbon	
  source	
  rocks,	
  although	
  rare,	
  are	
  not	
  completely	
  unheard	
  of.	
  	
  
Neoproterozoic	
  source	
  rocks	
  are	
  found	
  in	
  the	
  Chuar	
  Group	
  of	
  the	
  Grand	
  Canyon,	
  the	
  
 
	
   16	
  
Officer,	
  Amadeus,	
  and	
  Georgina	
  basins	
  of	
  Australia,	
  the	
  eastern	
  Siberian	
  platform,	
  the	
  
Huqf	
  basin	
  of	
  Oman,	
  and	
  the	
  Nonesuch	
  Formation	
  in	
  Michigan	
  (Belperio,	
  2007;	
  Craig	
  et	
  
al.,	
  2013;	
  Kelly	
  et	
  al.,	
  2011).	
  	
  
Proterozoic	
  hydrocarbon	
  source	
  rocks	
  were	
  first	
  deposited	
  due	
  to	
  increased	
  life	
  
on	
   Earth	
   during	
   great	
   oxygenation	
   events.	
   	
   During	
   this	
   time	
   the	
   carbon	
   cycle	
   was	
  
enriched	
   allowing	
   unoxidized	
   carbon	
   to	
   be	
   preserved	
   in	
   the	
   sedimentary	
   record	
   at	
  
unprecedented	
   rates.	
   	
   Subsequent	
   thermal	
   maturation	
   of	
   buried	
   organic	
   materials	
   in	
  
these	
   formations	
   led	
   to	
   the	
   production	
   of	
   hydrocarbons.	
   	
   One	
   such	
   Neoproterozoic	
  
hydrocarbon	
   source	
   rock	
   is	
   the	
   Awatubi	
   Member	
   and	
   Walcott	
   Member	
   of	
   the	
   Chuar	
  
Group	
   (~770	
   Ma)	
   in	
   northern	
   Arizona	
   and	
   southern	
   Utah	
   containing	
   total	
   organic	
  
carbon	
  (TOC)	
  concentrations	
  between	
  3-­‐10%	
  (Craig	
  et	
  al.,	
  2013).	
  	
  The	
  Chuar	
  Group	
  is	
  
believed	
  to	
  be	
  the	
  source	
  of	
  kerogen	
  found	
  in	
  the	
  Cambrian	
  Tapeats	
  sandstone	
  reservoir	
  
at	
  the	
  Circle	
  Cliffs	
  in	
  Utah	
  (Craig	
  et	
  al.,	
  2013).	
  	
  	
  
Furthermore,	
   Le	
   Heron	
   and	
   Craig	
   (2012)	
   show	
   that	
   despite	
   extreme	
   icehouse	
  
conditions	
  during	
  the	
  Cryogenian,	
  restricted	
  basins	
  may	
  have	
  served	
  as	
  prime	
  locations	
  
for	
  the	
  accumulation	
  and	
  preservation	
  of	
  organic	
  carbon	
  during	
  periods	
  of	
  deglaciation.	
  	
  
Deglaciation	
   periods	
   formed	
   large	
   isolated	
   water	
   bodies	
   within	
   intracontinental	
   rift	
  
zones	
  of	
  Laurentia,	
  potentially	
  including	
  the	
  rift	
  basin	
  associated	
  with	
  the	
  ancestral	
  Ute	
  
Pass	
   Fault.	
   	
   Stratification	
   of	
   the	
   water	
   column	
   may	
   have	
   led	
   to	
   anoxic	
   bottoms	
   and	
  
therefore	
   the	
   preservation	
   of	
   organic	
   carbon	
   from	
   dying	
   bacteria	
   and	
   algae.	
  	
  
Neoproterozoic	
  deglacial	
  and	
  post-­‐glacial	
  sediments	
  serve	
  as	
  hydrocarbon	
  source	
  rocks	
  
in	
  the	
  Centralian	
  Superbasin	
  of	
  Australia	
  (Le	
  Heron	
  and	
  Craig,	
  2012).	
  	
  
Neoproterozoic	
   hydrocarbons	
   have	
   characteristically	
   high	
   concentrations	
   of	
  
hopanes	
  and	
  high	
  sulfur	
  content	
  from	
  globally	
  extensive	
  euxinic	
  water	
  conditions	
  that	
  
produced	
  cyanobacteria	
  as	
  the	
  main	
  organic	
  carbon	
  constituent	
  during	
  that	
  time	
  (Kelly	
  
 
	
   17	
  
et	
  al.,	
  2011).	
  	
  Additionally,	
  they	
  do	
  not	
  contain	
  terrestrial	
  plant	
  waxes,	
  for	
  life	
  on	
  land	
  
had	
   not	
   yet	
   evolved,	
   and	
   therefore	
   possess	
   higher	
   quantities	
   of	
   smaller	
   n-­‐alkane	
  
molecules.	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Regional	
  Petroleum	
  Sources	
  	
  
No	
  Proterozoic	
  hydrocarbons	
  have	
  been	
  found	
  in	
  Colorado.	
  However,	
  there	
  are	
  a	
  
plethora	
   of	
   Phanerozoic	
   hydrocarbon	
   source	
   rocks	
   in	
   the	
   Front	
   Range.	
   Petroleum	
  
production	
  in	
  Colorado	
  dates	
  back	
  to	
  1881	
  with	
  the	
  discovery	
  of	
  the	
  Florence	
  Oil	
  Field	
  
near	
  Cañon	
  City,	
  Colorado.	
  	
  The	
  Florence	
  Oil	
  Field	
  is	
  the	
  second	
  oldest	
  oil	
  field	
  in	
  the	
  
Unites	
  States,	
  and	
  although	
  much	
  of	
  its	
  resources	
  have	
  been	
  depleted,	
  there	
  are	
  many	
  
wells	
  still	
  in	
  production	
  (Lillis	
  et	
  al.,	
  1998).	
  	
  The	
  close	
  proximity	
  of	
  the	
  Florence	
  Oil	
  Field	
  
to	
  the	
  Ute	
  Pass	
  Fault	
  and	
  Tava	
  sandstone	
  cannot	
  be	
  ignored.	
  	
  Geochemical	
  analysis	
  has	
  
determined	
  that	
  the	
  source	
  of	
  the	
  Florence	
  Oil	
  Field	
  is	
  the	
  Sharon	
  Springs	
  member	
  of	
  
the	
  Cretaceous	
  Pierre	
  Shale	
  (Lillis	
  et	
  al.,	
  1998),	
  a	
  formation	
  that	
  was	
  thrust	
  beneath	
  the	
  
Wet	
   Mountains	
   during	
   the	
   Laramide	
   Orogeny.	
   	
   The	
   Wet	
   Mountain	
   Fault	
   occupies	
   a	
  
structural	
  setting	
  similar	
  to	
  that	
  of	
  the	
  Ute	
  Pass	
  Fault	
  (Keller	
  et	
  al.,	
  2005).	
  	
  	
  
In	
  Colorado	
  Springs,	
  another	
  hydrocarbon	
  source	
  rock	
  is	
  the	
  Upper	
  Cretaceous	
  
Laramie	
  Formation,	
  the	
  main	
  horizon	
  in	
  the	
  Colorado	
  Springs	
  Coalfield.	
  	
  The	
  Colorado	
  
Springs	
   Coalfield	
   is	
   situated	
   in	
   north	
   and	
   northeast	
   Colorado	
   Springs	
   and	
   was	
  
productive	
   between	
   1900-­‐1950	
   (Morgan	
   et	
   al.,	
   2003).	
   	
   Possible	
   evidence	
   for	
  
hydrocarbon	
   migration	
   in	
   Colorado	
   Springs	
   includes	
   the	
   bleached,	
   porous	
   upper	
  
member	
  of	
  the	
  Lyons	
  sandstone	
  in	
  the	
  Garden	
  of	
  the	
  Gods	
  (Siddoway	
  et	
  al.,	
  2013).	
  
The	
  three	
  other	
  potential	
   sources	
   of	
   hydrocarbons	
   in	
  the	
   vicinity	
   of	
   the	
   Front	
  
Range	
  are	
  carbonates	
  of	
  the	
  Upper	
  Paleozoic	
  Era	
  (Manitou	
  and	
  Hardscrabble	
  Devonian	
  
limestones),	
   dark	
   marine	
   shales	
   of	
   the	
   Pennsylvanian	
   Period	
   (Glen	
   Eyrie	
   shale),	
   and	
  
 
	
   18	
  
Cretaceous	
  Interior	
  Seaway	
  shales	
  and	
  limestones	
  (Niobrara	
  Formation,	
  Benton	
  Group,	
  
and	
   Pierre	
   Shale).	
   	
   These	
   formations	
   are	
   source	
   rocks	
   for	
   economically	
   significant	
  
petroleum	
  reservoirs	
  in	
  Colorado,	
  such	
  as	
  the	
  Denver	
  and	
  Piceance	
  basins	
  (Figure	
  11).	
  	
  
The	
   hydrocarbon	
   source	
   rocks	
   feeding	
   these	
   basins	
   are	
   Graneros	
   Shale,	
   Greenhorn	
  
Limestone,	
  Carlisle	
  Shale,	
  and	
  Pierre	
  Shale,	
  deposited	
  in	
  the	
  Cretaceous	
  Interior	
  Seaway	
  
(Clayton	
   and	
   Swetland,	
   1980)	
   and	
   the	
   Pennsylvanian	
   Minturn	
   and	
   Phosphoria	
  
Formations	
  (Glen	
  Eyrie	
  shale	
  and	
  Fountain	
  Formation	
  correlatives)	
  that	
  accumulated	
  in	
  
tectonic	
  basins	
  and	
  marginal	
  marine	
  settings	
  during	
  the	
  ARMO	
  (Lillis	
  et	
  al.,	
  2003).	
  	
  	
  
Within	
   Laramide	
   structures	
   of	
   the	
   broader	
   region,	
   evidence	
   of	
   large-­‐scale	
  
hydrocarbon	
  migration	
  comes	
  from	
  patterns	
  of	
  bleaching/discoloration	
  of	
  sandstones	
  
involved	
  in	
  Laramide-­‐derived	
  monoclines.	
  	
  In	
  Utah,	
  bleaching	
  is	
  so	
  great	
  that	
  it	
  suggests	
  
the	
   development	
   of	
   ‘supergiant’	
   hydrocarbon	
   reservoirs	
   during	
   the	
   Paleogene	
   Period	
  
(Beitler	
  et	
  al.,	
  2003).	
  	
  This	
  claim	
  is	
  based	
  on	
  extensive	
  bleaching	
  in	
  the	
  Jurassic	
  Navajo	
  
Sandstone	
  found	
  at	
  the	
  crest	
  of	
  monoclines	
  in	
  Utah.	
  	
  Beitler	
  et	
  al.	
  (2003)	
  proposed	
  that	
  
hydrocarbons	
   preferentially	
   migrated	
   through	
   inclined	
   bedding	
   of	
   the	
   aeolian	
  
sandstone,	
  and	
  accumulated	
  in	
  the	
  crests	
  of	
  Laramide	
  monoclines	
  in	
  Utah.	
  	
  When	
  the	
  
crests	
  of	
  these	
  anticlines	
  were	
  eroded	
  during	
  the	
  Miocene,	
  the	
  reservoirs	
  were	
  breached	
  
causing	
  hydrocarbons	
  to	
  seep	
  to	
  the	
  surface	
  and	
  into	
  the	
  atmosphere.	
  	
  The	
  correlation	
  
between	
  the	
  time	
  of	
  incision	
  into	
  the	
  reservoir	
  and	
  a	
  spike	
  in	
  Miocene	
  global	
  warming	
  
suggests	
   that	
   these	
   reservoirs	
   were	
   so	
   large	
   that	
   they	
   may	
   have	
   greatly	
   affected	
   the	
  
atmospheric	
  CO2	
  concentrations	
  contributing	
  to	
  Miocene	
  global	
  warming	
  (Beitler	
  et	
  al.,	
  
2003).	
  	
   	
  
	
  
	
  
 
	
   19	
  
M	
  E	
  T	
  H	
  O	
  D	
  S	
  
	
   Petrographic	
   analysis	
   of	
   Tava	
   sandstone	
   was	
   employed	
   to	
   determine	
   cement	
  
variations,	
   deformation	
   banding,	
   veining,	
   grain	
   sorting,	
   and	
   fluid	
   inclusions.	
  	
  
Additionally,	
   gas	
   chromatography/mass	
   spectrometry	
   (GC/MS)	
   analyses	
   were	
  
performed	
   on	
   four	
   samples	
   (KRCD-­‐3,	
   PEA-­‐1,	
   DUPLX	
   and	
   SLT-­‐6)	
   to	
   establish	
   the	
  
presence	
   of	
   hydrocarbons	
   and	
   to	
   characterize	
   the	
   geochemical	
   fingerprints	
   of	
  
hydrocarbons	
  within	
  Tava	
  sandstone	
  samples.	
  	
  These	
  four	
  samples	
  were	
  all	
  cobble	
  size	
  
specimens	
  collected	
  directly	
  from	
  outcrop.	
  	
  Duplicate	
  GC/MS	
  runs	
  were	
  performed	
  on	
  
KRCD-­‐3	
  and	
  SLT-­‐6.	
  	
  All	
  hand	
  samples	
  of	
  Tava	
  sandstone	
  were	
  collected	
  at	
  selected	
  sites	
  
along	
  the	
  ~80	
  km	
  of	
  the	
  Ute	
  Pass	
  Fault	
  and	
  were	
  processed	
  into	
  27mm	
  X	
  46mm	
  thin	
  
sections	
  by	
  Texas	
  Petrographic	
  Services	
  INC.	
  	
  A	
  small	
  number	
  of	
  samples	
  were	
  selected	
  
for	
  polished	
  thin	
  sections	
  for	
  identification	
  of	
  opaque	
  phases	
  under	
  reflected	
  light.	
  	
  Thin	
  
sections	
  were	
  viewed	
  with	
  a	
  Leitz	
  Laborlux	
  12	
  Pol	
  and	
  a	
  Nikon	
  SMZ	
  1500	
  microscope	
  
under	
  10X	
  –	
  400X	
  magnification.	
  	
  Thin	
  sections	
  were	
  viewed	
  under	
  plane	
  and	
  cross-­‐
polarized	
   light.	
   	
   Thin	
   sections	
   were	
   also	
   viewed	
   under	
   surface	
   illumination	
   only	
   to	
  
better	
  view	
  cement	
  variations.	
  This	
  mode	
  renders	
  grains	
  transparent	
  while	
  revealing	
  
cements	
   in	
   their	
   authentic	
   color.	
   	
   A	
   Mightex	
   LED	
   attached	
   to	
   the	
   Leitz	
   microscope	
  
provided	
   reflected	
   light	
   used	
   to	
   view	
   polished	
   thin	
   sections.	
   Photomicrographs	
   were	
  
taken	
  with	
  a	
  mounted	
  Nikon	
  EOS	
  Rebel	
  T4i	
  and	
  processed	
  with	
  Nikon	
  Rebel	
  Utility	
  on	
  
an	
  iMac.	
  	
  
Activation	
   Laboratories	
   Ltd.	
   in	
   Ontario	
   Canada	
   performed	
   GC/MS	
   analyses	
   of	
  
eleven	
   Tava	
   sandstone	
   samples	
   and	
   one	
   claystone	
   sample	
   (Figure	
   12).	
   	
   The	
   eleven	
  
samples	
   were	
   selected	
   based	
   on	
   degree	
   of	
   alteration	
   (redox),	
   the	
   two	
   end	
   members	
  
being	
  PW611	
  (oxidized)	
  and	
  DUPLX	
  (reduced).	
  	
  One	
  sample	
  of	
  Glen	
  Eyrie	
  shale	
  was	
  also	
  
 
	
   20	
  
analyzed	
  to	
  create	
  a	
  baseline	
  hydrocarbon	
  concentration/composition	
  with	
  respect	
  to	
  
Tava	
  sandstone.	
  	
  These	
  tests	
  were	
  performed	
  using	
  an	
  Olympic-­‐02	
  GC/MS	
  instrument	
  
with	
   an	
   Agilent	
   7890A	
   GC	
   model	
   and	
   an	
   Agilent	
   5975C	
   MS	
   model.	
   	
   All	
   samples	
  
underwent	
   hydrocarbon	
   screening	
   capable	
   of	
   identifying	
   hydrocarbon	
   molecules	
   in	
  
abundances	
   <	
   1ppm.	
   	
   Geochemical	
   analysis	
   for	
   Whole	
   Rock	
   Oxides,	
   Minor	
   and	
   Trace	
  
Elements	
  was	
  also	
  performed,	
  with	
  acquisition	
  of	
  64	
  trace	
  elements	
  as	
  well	
  as	
  oxides	
  
versus	
  reduced	
  graphite.	
  	
  On	
  the	
  basis	
  of	
  hydrocarbon	
  screen	
  results,	
  four	
  samples	
  were	
  
selected	
  for	
  Diamondoid	
  Testing	
  with	
  a	
  High	
  Resolution	
  GC/MS	
  capable	
  of	
  identifying	
  
hydrocarbon	
   classes	
   in	
   the	
   C12-­‐C44	
   Carbon	
   Number	
   range	
   (Figure	
   13).	
   	
   For	
   these	
  
samples,	
   0.5g	
   of	
   crushed	
   rock	
   was	
   weighed	
   into	
   a	
   test	
   tube	
   and	
   1mL	
   of	
   2:1	
  
hexane:methylene	
  chloride	
  was	
  added	
  at	
  a	
  weight	
  of	
  ~0.835g.	
  	
  The	
  samples	
  were	
  then	
  
sonificated	
   for	
   30	
   minutes	
   and	
   then	
   centrifuged	
   for	
   1	
   minute	
   before	
   testing.	
  	
  
Geochemical	
  data	
  was	
  plotted	
  and	
  analyzed	
  using	
  Microsoft	
  Excel	
  and	
  IgPet	
  software	
  
(RockWare,	
  INC.).	
  
	
   Samples	
   of	
   clay	
   minerals	
   were	
   analyzed	
   and	
   identified	
   using	
   X-­‐ray	
   diffraction	
  
(XRD),	
  using	
  the	
  X’pert	
  PRO	
  PANalytical	
  diffractometer	
  at	
  Colorado	
  College.	
  	
  Six	
  Tava	
  
samples	
  were	
  ground	
  into	
  fine	
  power	
  and	
  analyzed.	
  
	
  
T	
  H	
  I	
  N	
  	
  	
  S	
  E	
  C	
  T	
  I	
  O	
  N	
  	
  	
  P	
  E	
  T	
  R	
  O	
  G	
  A	
  P	
  H	
  Y	
  
	
   Tava	
  sandstone	
  is	
  composed	
  of	
  fine	
  to	
  medium-­‐grained	
  quartz	
  sandstone	
  hosting	
  
infrequent	
   groupings	
   of	
   coarse	
   grain	
   to	
   pebble	
   size	
   quartz	
   clasts.	
   	
   Fine	
   to	
   medium	
  
grained	
  matrix	
  grains	
  range	
  from	
  0.20	
  –	
  0.33	
  mm,	
  while	
  coarse	
  gains	
  and	
  pebbles	
  range	
  
from	
  1.0	
  –	
  4.0	
  mm.	
  	
  Grain	
  sorting	
  is	
  very	
  unorganized,	
  but	
  there	
  are	
  zones	
  of	
  crude	
  grain	
  
sorting	
   with	
   a	
   strand-­‐like	
   pattern	
   appear	
   throughout	
   multiple	
   Tava	
   samples.	
   	
   These	
  
 
	
   21	
  
grain-­‐sorting	
   patterns	
   may	
   have	
   formed	
   during	
   rapid	
   fluidized	
   injection	
   of	
   Tava	
  
sandstone	
  during	
  seismicity	
  along	
  the	
  Ute	
  Pass	
  Fault	
  zone	
  associated	
  with	
  tectonism.	
  	
  	
  
	
   Hematite	
  cement	
  in	
  Tava	
  sandstone	
  formed	
  as	
  grain	
  coatings	
  from	
  the	
  chemical	
  
breakdown	
   of	
   ferromagnesian	
   minerals	
   such	
   as	
   biotite,	
   which	
   is	
   found	
   as	
   clasts	
   in	
  
multiple	
  Tava	
  samples.	
  	
  Hematite	
  cement	
  gives	
  Tava	
  its	
  characteristic	
  red/maroon	
  hue	
  
(Figure	
   4).	
   	
   Alteration	
   of	
   Tava	
   sandstone	
   cement	
   is	
   observed	
   in	
   samples	
   containing	
  
redox	
  patterns.	
  	
  Redox	
  patterns	
  share	
  a	
  relationship	
  with	
  structural	
  overprinting	
  within	
  
Tava	
  sandstone.	
  	
  Redox	
  is	
  controlled	
  by	
  calcite	
  veins,	
  which	
  may	
  indicate	
  that	
  calcite	
  
veins	
  formed	
  during	
  depressurization	
  of	
  Tava	
  dikes	
  following	
  rapid	
  injection	
  and	
  were	
  
then	
  utilized	
  as	
  a	
  structural	
  conduit	
  for	
  fluid	
  migration.	
  	
  	
  
Redox	
   patterns	
   appear	
   in	
   three	
   forms:	
   1)	
   linear	
   bands	
   controlled	
   by	
   veins,	
   2)	
  
spherical	
  interruptions	
  nucleating	
  around	
  shale	
  clasts	
  or	
  at	
  the	
  termination/origin	
  of	
  
calcite	
   veins,	
   3)	
   brecciated	
   angular	
   blocks	
   from	
   secondary	
   structural	
   overprinting	
   of	
  
past	
   redox.	
   	
   In	
   addition	
   to	
   redox	
   patterns,	
   further	
   evidence	
   for	
   hydrocarbons	
   within	
  
Tava	
  sandstone	
  may	
  include	
  yellow	
  fluid	
  inclusions	
  containing	
  black	
  solid	
  centers.	
  	
  	
  
	
  
Grain	
  Sorting	
   	
  
Multiple	
   Tava	
   samples	
   contain	
   sinuous	
   grain	
   flow	
   boundaries	
   that	
   separate	
  
strands	
  of	
  coarse-­‐grained	
  sandstone	
  from	
  strands	
  of	
  fine-­‐grained	
  sandstone	
  (e.g.	
  DUPLX	
  
and	
  MS-­‐109)	
  (Figure	
  5).	
  	
  These	
  strands	
  display	
  an	
  inter-­‐penetrating	
  configuration	
  at	
  the	
  
transition	
  between	
  grain	
  sizes	
  and	
  possess	
  crude	
  grain	
  sorting.	
  	
  In	
  thin	
  section,	
  strands	
  
vary	
  in	
  width	
  from	
  0.5-­‐2.0	
  mm	
  and	
  are	
  observed	
  to	
  be	
  up	
  to	
  47	
  mm	
  long,	
  the	
  length	
  of	
  a	
  
thin	
  section.	
  	
  Strands	
  observed	
  in	
  thin	
  section	
  are	
  interpreted	
  to	
  mimic	
  larger	
  strands	
  
observed	
  in	
  hand	
  samples.	
  	
  Larger	
  strands	
  are	
  up	
  to	
  10	
  cm	
  long.	
  	
  All	
  strands	
  possess	
  
characteristic	
  tails	
  where	
  the	
  boundaries	
  taper	
  to	
  an	
  end.	
  	
  
 
	
   22	
  
One	
  particular	
  grain	
  sorting	
  fabric	
  is	
  substantiated	
  by	
  cement	
  variations	
  in	
  the	
  
form	
  of	
  hematite	
  cement	
  ‘flow	
  shadow.’	
  	
  Sample	
  CRY-­‐8	
  contains	
  a	
  quartz	
  pebble	
  floating	
  
among	
  medium-­‐grained	
  sand	
  matrix.	
  	
  On	
  one	
  side	
  of	
  the	
  pebble	
  there	
  is	
  an	
  elongated	
  
zone	
  of	
  hematite	
  cement	
  that	
  tapers	
  to	
  a	
  point.	
  	
  Accompanying	
  the	
  tapered	
  hematite	
  
cement	
   patch	
   is	
   a	
   parallel	
   funnel	
   shaped	
   grain	
   sorting	
   pattern	
   20	
   mm	
   away,	
   also	
  
containing	
   hematite	
   cement.	
   	
   All	
   other	
   cement	
   in	
   the	
   vicinity	
   is	
   quartz.	
   	
   This	
   sample	
  
suggests	
  that	
  fluid	
  migration	
  preferentially	
  followed	
  crude	
  grain	
  sorting.	
  
	
  
Cement	
  
Tava	
  sandstone	
  cement	
  varies	
  between	
  hematite,	
  quartz,	
  and	
  carbonate	
  (Dockal,	
  
2005;	
  Harms,	
  1965;	
  Kost,	
  1984)	
  (Figure	
  4).	
  	
  Distinctive	
  red	
  and	
  white	
  redox	
  patterns	
  
within	
   Tava	
   sandstone	
   arise	
   from	
   variations	
   in	
   cement	
   (red=hematite,	
   clear=quartz)	
  
and	
   accompanying	
   grain	
   sorting	
   and/or	
   fracture	
   networks.	
   	
   Furthermore,	
   limonite	
  
(FeO[OH]ŸH2O)	
  is	
  observed	
  primarily	
  in	
  conjunction	
  with	
  bleached	
  zones.	
  	
  
	
  
Deformation	
  Bands	
  at	
  Microscopic	
  Scale	
  
	
   Brittle	
  deformation	
  differs	
  from	
  veining	
  due	
  to	
  the	
  presence	
  of	
  cataclasite	
  and	
  
brecciation.	
   	
   Deformation	
   bands	
   contain	
   angular	
   clasts	
   within	
   a	
   matrix	
   of	
   clay.	
  	
  
Deformation	
  bands	
  are	
  most	
  prevalent	
  in	
  sample	
  SLT-­‐2	
  where	
  they	
  reach	
  widths	
  of	
  3	
  
mm	
  and	
  offset	
  redox	
  patterns	
  (Figure	
  6).	
  	
  The	
  offsetting	
  of	
  redox	
  patterns	
  indicates	
  that	
  
deformation	
  banding	
  post-­‐dates	
  the	
  formation	
  of	
  redox	
  patterning.	
  	
  	
  	
  	
  	
  
	
  
Fluid	
  Inclusions	
  
	
   Tava	
  thin	
  sections	
  show	
  an	
  abundance	
  of	
  yellow	
  colored	
  fluid	
  inclusions.	
  	
  Fluid	
  
inclusions	
  appear	
  to	
  be	
  secondary	
  in	
  nature,	
  as	
  they	
  follow	
  linear	
  curvo-­‐planar	
  healed	
  
 
	
   23	
  
fractures	
  within	
  quartz	
  grains.	
  	
  Fluid	
  inclusions	
  are	
  primarily	
  limited	
  to	
  one	
  single	
  grain	
  
but	
   are	
   sometimes	
   observed	
   bridging	
   multiple	
   grains.	
   	
   Tava	
   fluid	
   inclusions	
   are	
  
observed	
  in	
  many	
  shapes	
  and	
  sizes,	
  but	
  are	
  primarily	
  found	
  as	
  spheres	
  ranging	
  between	
  
1-­‐2	
  μm	
  in	
  diameter.	
  	
  Other	
  forms	
  include	
  ellipsoidal,	
  cylindrical,	
  and	
  a	
  highly	
  intricate	
  
snowflake-­‐like	
  pattern	
  that	
  can	
  be	
  up	
  to	
  10	
  μm	
  in	
  size.	
  	
  
	
  
Quartz	
  and	
  Calcite	
  Veins	
  
	
   Quartz	
  and	
  calcite	
  veins	
  are	
  observed	
  among	
  samples	
  along	
  the	
  ~80	
  km	
  of	
  the	
  
Ute	
  Pass	
  Fault.	
  	
  Veins	
  are	
  observed	
  in	
  Tava	
  sandstone	
  samples	
  with	
  and	
  without	
  redox	
  
patterns.	
  	
  Veins	
  follow	
  inter-­‐grain	
  interstices	
  and	
  are	
  discontinuous	
  along	
  their	
  length	
  
(Figure	
   8).	
   	
   In	
   many	
   instances,	
   veins	
   control	
   the	
   shape	
   and	
   distribution	
   of	
   redox	
  
patterns.	
  	
  From	
  this,	
  it	
  is	
  interpreted	
  that	
  veins	
  formed	
  within	
  preferential	
  low-­‐pressure	
  
dilation	
  bands	
  and	
  in	
  close	
  association	
  with	
  the	
  migration	
  of	
  reducing	
  fluids.	
  	
  Reducing	
  
fluids	
  preferentially	
  flowed	
  through	
  the	
  veins,	
  which	
  served	
  as	
  structural	
  conduits.	
  	
  
• Sample	
   CHR-­‐9	
   contains	
   spherical	
   patterning	
   controlled	
   by	
   multiple	
   crosscutting	
  
veins.	
  	
  Spherical	
  red	
  hematite	
  cement	
  is	
  only	
  present	
  at	
  vein	
  intersections,	
  while	
  the	
  
remaining	
  cement	
  is	
  clear	
  to	
  white.	
  	
  Assuming	
  that	
  hematite	
  cement	
  is	
  primary,	
  vein	
  
intersections	
   became	
   seals	
   to	
   fluid	
   migration,	
   therefore	
   allowing	
   for	
   the	
  
preservation	
  of	
  hematite	
  (Figure	
  8).	
  
• Sample	
  CHR-­‐1	
  contains	
  spherical	
  cement	
  patterning,	
  but	
  unlike	
  CHR-­‐9,	
  there	
  is	
  only	
  
one	
  solitary	
  calcite	
  vein.	
  	
  The	
  one	
  bleached	
  sphere	
  in	
  sample	
  CHR-­‐1	
  occurs	
  at	
  the	
  
termination/origin	
  of	
  the	
  calcite	
  vein	
  and	
  exhibits	
  a	
  teardrop	
  shape	
  following	
  the	
  
trend	
  of	
  the	
  vein	
  (Figure	
  8).	
  	
  	
  
• Sample	
  PINE-­‐1	
  exhibits	
  angular	
  redox	
  patterning,	
  and	
  contains	
  multiple	
  crosscutting	
  
vein	
   relationships,	
   however,	
   unlike	
   in	
   Sample	
   CHR-­‐9,	
   red	
   hematite	
   cement	
   exists	
  
 
	
   24	
  
only	
  in	
  areas	
  without	
  veining;	
  that	
  is,	
  veins	
  contain	
  clear-­‐white-­‐tan	
  cement,	
  while	
  
the	
  surrounding,	
  vein-­‐free	
  cement	
  is	
  pink-­‐red	
  (Figure	
  8).	
  	
  	
  	
  	
  
• Sample	
  110-­‐5A	
  contains	
  one	
  calcite	
  vein	
  with	
  a	
  5	
  mm	
  wide	
  bleached	
  zone	
  on	
  either	
  
side.	
  	
  The	
  calcite	
  vein	
  is	
  up	
  to	
  2	
  mm	
  wide	
  and	
  pops	
  in	
  and	
  out	
  of	
  existence.	
  	
  Limonite	
  
is	
  closely	
  associated	
  with	
  the	
  bleached	
  zone	
  and	
  calcite	
  vein.	
  	
  From	
  this,	
  calcite	
  and	
  
limonite	
   may	
   be	
   reconstituted	
   calcium	
   and	
   iron	
   that	
   were	
   precipitated	
   out	
   of	
  
solution	
   during	
   the	
   migration	
   of	
   reducing	
   fluids.	
   	
   Furthermore,	
   the	
   calcite	
   vein	
  
clearly	
  crosscuts	
  crude	
  grain	
  sorting	
  in	
  this	
  sample	
  indicating	
  that	
  calcite	
  veins	
  take	
  
precedence	
  over	
  grain	
  sorting	
  as	
  a	
  fluid	
  conduit	
  when	
  observed	
  together	
  (Figure	
  8).	
  	
  	
  
• Sample	
  SLT-­‐3	
  contains	
  two	
  quartz	
  veins	
  that	
  run	
  parallel	
  to	
  one	
  another,	
  although	
  
one	
  of	
  the	
  veins	
  has	
  an	
  indention	
  towards	
  the	
  opposite	
  vein.	
  	
  The	
  vein	
  indention	
  
correlates	
   precisely	
   with	
   the	
   separation	
   of	
   two	
   zones	
   of	
   hematite	
   cement,	
   which	
  
appear	
  to	
  have	
  been	
  molded	
  matching	
  the	
  quartz	
  veins.	
  	
  This	
  indicates	
  that	
  the	
  veins	
  
serve	
  as	
  structural	
  conduits	
  for	
  the	
  migration	
  of	
  reducing	
  fluids	
  (Figure	
  8).	
  
	
  
Fluid	
  Flow	
  Controls	
  
• While	
  grain	
  sorting	
  in	
  sample	
  CRY-­‐8	
  serves	
  as	
  the	
  main	
  fluid	
  migration	
  conduit,	
  
sample	
  110-­‐5A	
  suggests	
  that	
  calcite	
  veins	
  are	
  more	
  permeable	
  fluid	
  pathways	
  
than	
  grain	
  sorting.	
  	
  	
  
• Sample	
   PINE-­‐1	
   shows	
   that	
   deformation	
   bands	
   offset	
   redox	
   patterns	
   indicating	
  
that	
  deformation	
  banding	
  post-­‐dates	
  the	
  migration	
  of	
  reducing	
  fluids.	
  	
  Therefore	
  
deformation	
  bands	
  have	
  not	
  served	
  as	
  a	
  structural	
  conduit	
  for	
  the	
  migration	
  of	
  
reducing	
  fluids	
  within	
  Tava	
  sandstone.	
  
• The	
  calcite	
  vein	
  in	
  sample	
  110-­‐5A	
  proves	
  that	
  veins	
  are	
  the	
  most	
  prominent	
  fluid	
  
migration	
  pathways	
  in	
  Tava	
  sandstone.	
  
 
	
   25	
  
G	
  E	
  O	
  C	
  H	
  E	
  M	
  I	
  C	
  A	
  L	
  	
  	
  R	
  E	
  S	
  U	
  L	
  T	
  S	
  
Major	
  Oxides	
  
	
   Other	
   than	
   one	
   shale	
   sample,	
   Tava	
   sandstone	
   is	
   mature	
   quartz	
   arenite	
   with	
  
quartz	
  contents	
  ranging	
  from	
  90-­‐97%	
  and	
  Fe2O3
	
  (hematite)	
  compositions	
  ranging	
  from	
  
<0.01	
  -­‐	
  6.36%.	
  	
  To	
  determine	
  the	
  oxidation	
  state	
  of	
  Tava	
  sandstone	
  samples,	
  ratios	
  of	
  
ferric	
   iron	
   (Fe2O3)	
   to	
   ferrous	
   iron	
   (FeO)	
   were	
   determined.	
   	
   Ratios	
   less	
   than	
   0.5	
   are	
  
reduced	
  (SLT-­‐6,	
  CHR-­‐1,	
  KRCD-­‐3,	
  DUPLX),	
  while	
  ratios	
  above	
  0.5	
  are	
  oxidized	
  (PW611,	
  
TC-­‐1,	
  PEA-­‐1,	
  SLT-­‐5,	
  SH	
  324-­‐VE,	
  IM-­‐126)	
  (Figure	
  14).	
  	
  Reduced	
  samples	
  contain	
  lower	
  
total	
  iron	
  concentrations	
  than	
  oxidized	
  samples,	
  with	
  averages	
  of	
  0.71%	
  (reduced)	
  and	
  
2.07%	
  (oxidized).	
  	
  Furthermore,	
  reduced	
  samples	
  contain	
  positive	
  anomalies	
  of	
  boron	
  
compared	
  to	
  oxidized	
  samples	
  with	
  averages	
  of	
  33.25	
  ppm	
  boron	
  (reduced)	
  and	
  16.6	
  
ppm	
  boron	
  (oxidized)	
  (Table	
  1).	
  	
  	
  	
  	
  
For	
  closer	
  examination,	
  Tava	
  sandstone	
  samples	
  are	
  divided	
  into	
  four	
  categories:	
  
red	
  (PW611,	
  PEA-­‐1,	
  TC-­‐1),	
  mottled	
  (SLT-­‐5,	
  CHR-­‐1,	
  KRCD-­‐3),	
  bleached	
  (SLT-­‐6,	
  DUPLX,	
  
SH	
   324-­‐VE),	
   and	
   shale	
   (IM-­‐126).	
   	
   Red	
   Tava	
   samples	
   contain	
   the	
   most	
   hematite;	
  
especially	
   sample	
   PW611	
   with	
   6.36%,	
   while	
   mottled	
   and	
   bleached	
   samples	
   contain	
  
much	
   less	
   between	
   0.92	
   -­‐	
   <0.01%.	
   	
   The	
   shale	
   rich	
   Tava	
   sample,	
   IM-­‐126,	
   contains	
  
53.57%	
   quartz,	
   15.75%	
   Al2O3,	
   and	
   2.09%	
   Fe2O3,	
   and	
   is	
   a	
   rare	
   occurrence	
   in	
   Tava	
  
sandstone	
  outcrops.	
  	
  All	
  other	
  major	
  oxides	
  in	
  Tava	
  sandstone	
  samples,	
  including	
  FeO,	
  
MnO,	
   MgO,	
   CaO,	
   Na2O,	
   K2O,	
   TiO2,	
   and	
   P2O5,	
   remain	
   quite	
   constant	
   throughout	
   all	
  
categories.	
  	
  IM-­‐126,	
  however,	
  has	
  much	
  more	
  major	
  oxide	
  concentrations	
  than	
  all	
  other	
  
Tava	
  sandstone	
  samples.	
  	
  
	
  
	
  
 
	
   26	
  
Trace	
  Elements	
  
Barium	
  is	
  the	
  most	
  abundant	
  trace	
  element	
  in	
  Tava	
  sandstone,	
  ranging	
  between	
  
73	
  to	
  421	
  ppm	
  (Table	
  2).	
  	
  Bleached	
  Tava	
  samples	
  contain	
  the	
  most	
  barium	
  with	
  207,	
  
193,	
  and	
  116	
  ppm.	
  	
  Sample	
  PW611	
  (oxidized)	
  contains	
  the	
  least	
  barium	
  with	
  only	
  73	
  
ppm.	
  	
  Red	
  Tava	
  samples	
  are	
  enriched	
  in	
  chromium	
  and	
  zirconium	
  compared	
  to	
  mottled	
  
and	
  white	
  Tava	
  samples.	
  	
  Sample	
  IM-­‐126,	
  the	
  shale	
  rich	
  sample,	
  contains	
  the	
  most	
  trace	
  
elements	
   in	
   general,	
   especially	
   Rubidium	
   (261ppm),	
   Vanadium	
   (83ppm),	
   Chromium	
  
(89ppm),	
  Zirconium	
  (86ppm),	
  and	
  Barium	
  (90ppm).	
  	
  	
  
	
  
Hydrocarbons	
  
	
   Preliminary	
   hydrocarbon	
   screening	
   revealed	
   the	
   qualitative	
   presence	
   of	
  
hydrocarbons	
   in	
   samples	
   PEA-­‐1,	
   SLT-­‐5,	
   SLT-­‐6,	
   DUPLX,	
   and	
   GE700	
   (Glen	
   Eyrie	
   shale)	
  
(Table	
   1).	
   	
   From	
   this,	
   samples	
   PEA-­‐1	
   (qualitative),	
   KRCD-­‐3	
   (quantitative),	
   SLT-­‐6	
  
(quantitative),	
   and	
   DUPLX	
   (quantitative)	
   were	
   selected	
   for	
   gas	
   chromatography	
   and	
  
mass	
   spectrometry	
   diamondoid	
   analysis	
   (Table	
   3).	
   	
   These	
   four	
   samples	
   collectively	
  
span	
  the	
  full	
  spectrum	
  of	
  oxidation	
  states	
  for	
  Tava	
  sandstone	
  with	
  ferric/ferrous	
  ratios:	
  
PEA-­‐1	
  =	
  1.09,	
  SLT-­‐6	
  =	
  0.46,	
  KRCD-­‐3	
  =	
  <0.01,	
  and	
  DUPLX	
  =	
  <0.01.	
  	
  Furthermore,	
  PEA-­‐1	
  
does	
  not	
  possess	
  any	
  redox	
  bleaching	
  patterns,	
  while	
  all	
  other	
  samples	
  do,	
  and	
  KRCD-­‐3	
  
did	
   not	
   register	
   on	
   the	
   preliminary	
   hydrocarbon	
   screening	
   but	
   proved	
   positive	
   for	
  
hydrocarbons	
  with	
  diamondoid	
  analysis.	
  	
  	
  
Along	
   with	
   Tava	
   sandstone,	
   a	
   sample	
   of	
   Glen	
   Eyrie	
   shale	
   (qualitative)	
   from	
  
Colorado	
  Springs	
  was	
  also	
  selected	
  for	
  Diamondoid	
  Analysis	
  to	
  serve	
  as	
  a	
  hydrocarbon	
  
baseline	
  control	
  to	
  Tava	
  sandstone	
  results.	
  	
  The	
  Glen	
  Eyrie	
  shale	
  is	
  made	
  up	
  of	
  a	
  series	
  
of	
   incomplete	
   cyclotherms	
   composed	
   of	
   alternating	
   coaly	
   black	
   shales,	
   black-­‐grey	
  
sandstones,	
   and	
   marly	
   limestones.	
   	
   Glen	
   Eyrie	
   shale	
   has	
   been	
   dated	
   to	
   the	
   early	
  
 
	
   27	
  
Pennsylvanian	
   Period	
   from	
   its	
   location	
   beneath	
   the	
   arkose	
   Fountain	
   Formation	
   and	
  
index	
  fossils	
  including	
  conodonts,	
  brachiopods,	
  and	
  bryozoans	
  (Chronic	
  and	
  Williams,	
  
1978).	
  	
  Currently,	
  no	
  known	
  studies	
  have	
  tested	
  the	
  hydrocarbon	
  potential	
  of	
  Glen	
  Eyrie	
  
shale.	
  	
  	
  
Diamondoid	
  analysis	
  confirmed	
  the	
  qualitative	
  presence	
  of	
  hydrocarbons	
  in	
  all	
  
Tava	
   samples	
   as	
   well	
   as	
   Glen	
   Eyrie	
   shale.	
   	
   All	
   samples	
   contain	
   n-­‐alkanes,	
   but	
   only	
  
samples	
  DUPLX,	
  and	
  SLT-­‐6	
  revealed	
  hopanes,	
  steranes,	
  and	
  diamondoids	
  (Table	
  2).	
  	
  All	
  
hydrocarbons	
   are	
   composed	
   of	
   hydrogen	
   and	
   carbon	
   atoms,	
   but	
   are	
   categorized	
  
depending	
   on	
   their	
   structure	
   and	
   bonds.	
   	
   N-­‐alkanes	
   are	
   simple	
   carbon	
   chains	
   with	
  
single	
   bonds	
   to	
   hydrogen.	
   	
   The	
   carbon	
   number	
   of	
   an	
   n-­‐alkane	
   identifies	
   how	
   many	
  
carbon	
   atoms	
   make	
   up	
   the	
   carbon	
   chain.	
   	
   Hopanes	
   and	
   steranes	
   are	
   comprised	
   of	
  
carbon	
  rings	
  with	
  both	
  single	
  and	
  double	
  bonds	
  to	
  hydrogen.	
  	
  Carotenoids	
  are	
  chains	
  of	
  
40	
  carbon	
  atoms	
  that	
  are	
  produced	
  by	
  plants	
  and	
  cannot	
  be	
  made	
  by	
  animals.	
  	
  	
  	
  	
  
• Glen	
  Eyrie	
  shale	
  is	
  composed	
  of	
  n-­‐alkanes	
  between	
  n-­‐C12	
  through	
  n-­‐C27	
  with	
  
one	
  peak	
  at	
  n-­‐C16	
  that	
  tails	
  off	
  to	
  n-­‐C24.	
  	
  	
  
• Sample	
   KRCD-­‐3	
   contains	
   n-­‐alkanes	
   n-­‐C15,	
   n-­‐C17,	
   and	
   n-­‐C18	
   -­‐	
   C28.	
   	
   KRCD-­‐3	
  
shows	
  a	
  much	
  smaller	
  peak	
  than	
  Glen	
  Eyrie	
  at	
  n-­‐C21	
  that	
  tails	
  off	
  on	
  either	
  side	
  
to	
  n-­‐C19	
  and	
  n-­‐C23.	
  	
  Sample	
  KRCD-­‐3	
  did	
  not	
  register	
  on	
  the	
  initial	
  hydrocarbon	
  
screening,	
  and	
  yet	
  it	
  revealed	
  minor	
  traces	
  of	
  hydrocarbons	
  upon	
  diamondoid	
  
analysis.	
  	
  	
  
• Sample	
  PEA-­‐1	
  contains	
  n-­‐alkanes	
  n-­‐C13	
  –	
  C16,	
  n-­‐C18,	
  and	
  n-­‐C22	
  –	
  C26.	
  Sample	
  
PEA-­‐1	
  does	
  not	
  exhibit	
  redox	
  patterns.	
  	
  
	
  
SLT-­‐6	
  and	
  DUPLX	
  were	
  sampled	
  for	
  quantitative	
  Diamondoid	
  analysis,	
  which	
  revealed	
  
the	
  presence	
  of	
  more	
  complex	
  and	
  stable	
  hydrocarbon	
  molecules.	
  	
  	
  
 
	
   28	
  
• Sample	
  SLT-­‐6	
  contains	
  n-­‐C10,	
  n-­‐C12,	
  n-­‐C15,	
  and	
  n-­‐C21	
  –	
  C26	
  with	
  a	
  peak	
  at	
  n-­‐
C22	
  that	
  tails	
  down	
  to	
  n-­‐C26.	
  	
  Maximum	
  abundances	
  of	
  n-­‐alkanes	
  are	
  n-­‐C21,	
  C22,	
  
and	
  C23	
  with	
  28,600	
  ppb,	
  32,900	
  ppb,	
  and	
  29,600	
  ppb	
  respectively.	
  	
  Sample	
  SLT-­‐
6	
  also	
  revealed	
  one	
  carotenoid,	
  trimethylpentadecane	
  (125	
  ppb).	
  	
  	
  
• Sample	
  DUPLX	
  revealed	
  the	
  highest	
  quantity	
  of	
  hydrocarbons	
  out	
  of	
  any	
  sample.	
  	
  
DUPLX	
  contains	
  n-­‐alkanes	
  n-­‐C10,	
  n-­‐C12,	
  and	
  n-­‐C20	
  –	
  C31	
  with	
  a	
  lone	
  peak	
  at	
  n-­‐
C20	
  and	
  an	
  asymmetrical	
  peak	
  at	
  n-­‐C29	
  that	
  tails	
  off	
  at	
  n-­‐C31.	
  	
  DUPLX	
  contains	
  
the	
  most	
  abundance	
  of	
  n-­‐alkanes	
  at	
  n-­‐C20	
  (223,500	
  ppb),	
  n-­‐C29	
  (431,000	
  ppb),	
  
n-­‐C30	
  (379,000	
  ppb)	
  and	
  n-­‐C31	
  (138,000	
  ppb).	
  	
  Furthermore,	
  DUPLX	
  contains	
  
an	
  abundance	
  of	
  hopanes,	
  steranes,	
  and	
  carotenoids.	
  	
  Two	
  species	
  of	
  triaromatic	
  
steranes	
  were	
  revealed,	
  both	
  chlorestane	
  (706	
  ppb)	
  and	
  ergostane	
  (2,860	
  ppb).	
  	
  
Two	
  species	
  of	
  hopanes	
  were	
  also	
  observed,	
  both	
  trisnorhopane	
  (302	
  ppb)	
  and	
  
norhopane	
   (150	
   ppb).	
   	
   Three	
   carotenoids	
   were	
   recorded	
   including	
  
trimethylpentadecane	
   (137	
   ppb),	
   tetramethylnonadecane	
   (69.9	
   ppb),	
   and	
  
squalane	
  (113	
  ppb).	
  	
  	
  
	
  
X-­‐Ray	
  Diffraction	
  (XRD)	
  
	
   Samples	
   IM-­‐126	
   and	
   SH	
   324-­‐VE	
   were	
   selected	
   for	
   x-­‐ray	
   diffraction	
   analysis	
  
because	
  they	
  contain	
  visible	
  green	
  shale	
  clasts	
  (Figure	
  15).	
  	
  Sample	
  SP313	
  (relative	
  to	
  
PEA-­‐1)	
   was	
   also	
   selected.	
   	
   Green-­‐grey	
   in	
   color,	
   these	
   shale	
   clasts	
   are	
   dispersed	
  
sporadically	
  and	
  can	
  be	
  up	
  to	
  1.0	
  cm	
  long	
  and	
  0.25	
  cm	
  wide.	
  	
  Sample	
  IM-­‐126	
  yielded	
  
XRD	
  peaks	
  correlating	
  to	
  quartz,	
  illite,	
  and	
  dolomite,	
  while	
  sample	
  SH	
  324-­‐VE	
  revealed	
  
quartz,	
   montmorillonite,	
   and	
   graphite.	
   	
   Sample	
   SP313	
   contains	
   quartz,	
   albite,	
   and	
  
chlorite.	
  	
  The	
  presence	
  of	
  graphite	
  in	
  sample	
  SH	
  324-­‐VE	
  indicates	
  strong	
  carbon	
  content	
  
within	
  the	
  shale.	
  	
  	
  	
  	
  
 
	
   29	
  
D	
  I	
  S	
  C	
  U	
  S	
  S	
  I	
  O	
  N	
  	
  
	
   	
  The	
  presence	
  of	
  hydrocarbons	
  in	
  Tava	
  sandstone	
  indicates	
  that	
  the	
  Tava	
  dike	
  
complex	
  has	
  served	
  as	
  a	
  fluid	
  migration	
  pathway	
  for	
  hydrocarbons.	
  	
  For	
  this	
  to	
  occur	
  
there	
  must	
  be	
  a	
  source	
  of	
  mature	
  hydrocarbons	
  in	
  the	
  Front	
  Range	
  as	
  well	
  as	
  tectonism	
  
to	
  initiate	
  hydrocarbon	
  migration.	
  	
  Tava	
  sandstone	
  is	
  Neoproterozoic	
  in	
  age	
  (~750	
  Ma),	
  
and	
  because	
  of	
  this,	
  Tava	
  hydrocarbons	
  may	
  be	
  as	
  old	
  as	
  Neoproterozoic,	
  or	
  as	
  young	
  as	
  
Cenozoic.	
   	
   The	
   three	
   most	
   likely	
   sources	
   of	
   hydrocarbons	
   to	
   migrate	
   through	
   Tava	
  
sandstone	
  include	
  in	
  situ	
  thermal	
  maturation	
  of	
  microbial	
  material	
  deposited	
  in	
  Tava	
  
sandstone	
   during	
   original	
   deposition,	
   Paleozoic	
   limestones	
   and	
   shales	
   including	
   the	
  
Manitou	
  Limestone	
  and	
  Glen	
  Eyrie	
  Shale,	
  or	
  Cretaceous	
  Interior	
  Seaway	
  limestones	
  and	
  
shales	
   such	
   as	
   the	
   Niobrara	
   Formation	
   and	
   Pierre	
   Shale.	
   	
   Tava	
   sandstone	
   has	
   been	
  
subjected	
  to	
  ~750	
  million	
  years	
  of	
  tectonism	
  and	
  alteration	
  from	
  movement	
  along	
  the	
  
Ute	
  Pass	
  Fault	
  zone.	
  	
  The	
  three	
  known	
  phases	
  of	
  tectonism	
  to	
  affect	
  the	
  Front	
  Range	
  are	
  
extensional	
   rifting	
   during	
   the	
   Neoproterozoic	
   (~750	
   Ma),	
   Ancestral	
   Rocky	
   Mountain	
  
Orogeny	
  (~300	
  Ma),	
  and	
  the	
  Laramide	
  Orogeny	
  (~60	
  Ma).	
  	
  Processes	
  such	
  as	
  faulting,	
  
erosion,	
  and	
  temperature	
  change	
  related	
  to	
  tectonic	
  exhumation	
  or	
  burial	
  could	
  have	
  
caused	
  migration	
  or	
  leakage	
  of	
  hydrocarbons	
  during	
  any	
  of	
  these	
  stages.	
  
	
   Calcite	
  and	
  quartz	
  veins	
  are	
  the	
  primary	
  fluid	
  conduits	
  within	
  Tava	
  sandstone.	
  	
  
In	
  areas	
  of	
  strong	
  redox,	
  conjugate	
  veins	
  are	
  visibly	
  enhanced	
  by	
  redox	
  patterns.	
  	
  The	
  
formation	
   of	
   conjugate	
   veins	
   may	
   be	
   due	
   to	
   a	
   decompression	
   of	
   the	
   dike	
   margins	
  
following	
  rapid,	
  pressurized	
  injection.	
  	
  This	
  process	
  is	
  well	
  documented	
  in	
  sandstone	
  
injectites	
  of	
  the	
  Viking	
  Graben	
  in	
  the	
  North	
  Sea	
  where	
  silica	
  has	
  been	
  precipitated	
  in	
  
conjugate	
   veins	
   (Jonk	
   et	
   al.,	
   2005).	
   	
   In	
   Tava	
   however,	
   calcite	
   vein	
   filling	
   may	
   have	
  
formed	
  by	
  chemical	
  reactions	
  between	
  CO2	
  and	
  calcium	
  during	
  secondary	
  migration	
  of	
  
 
	
   30	
  
reducing	
   fluids	
   through	
   primary	
   conjugate	
   deformation	
   bands	
   (Ehrlich	
   and	
   Newman,	
  
2009).	
  	
  	
  
	
   Cross	
  cutting	
  relationships	
  in	
  sample	
  PINE-­‐1	
  indicate	
  that	
  a	
  secondary	
  phase	
  of	
  
deformation	
  bands	
  formed	
  within	
  Tava	
  sandstone	
  following	
  the	
  migration	
  of	
  reducing	
  
fluids.	
  	
  Since	
  the	
  last	
  tectonism	
  to	
  affect	
  Tava	
  sandstone	
  was	
  the	
  Laramide	
  Orogeny,	
  this	
  
implies	
  that	
  redox,	
  and	
  therefore	
  hydrocarbon	
  migration,	
  must	
  have	
  occurred	
  prior	
  to	
  
the	
   Laramide	
   Orogeny	
   (~60	
   Ma).	
   	
   This	
   also	
   rules	
   out	
   all	
   hydrocarbon	
   source	
   rocks	
  
younger	
  than	
  ~60	
  Ma	
  as	
  the	
  source	
  of	
  hydrocarbons	
  in	
  Tava	
  sandstone.	
  	
  	
  
	
   The	
   presence	
   of	
   n-­‐alkanes	
   in	
   the	
   ten	
   Tava	
   sandstone	
   samples	
   offers	
   possible	
  
evidence	
  that	
  regional	
  hydrocarbon	
  migration	
  has	
  occurred	
  along	
  the	
  Front	
  Range	
  prior	
  
to	
   the	
   Laramide	
   Orogeny	
   according	
   to	
   the	
   following	
   rationale.	
   	
   N-­‐alkanes	
   are	
   highly	
  
susceptible	
   to	
   biodegradation,	
   so	
   n-­‐alkanes	
   in	
   Tava	
   sandstone	
   are	
   likely	
   from	
   a	
  
Paleozoic-­‐Mesozoic	
   regional	
   hydrocarbon	
   source	
   rock.	
   	
   The	
   highest	
   amounts	
   of	
   n-­‐
alkanes	
   observed	
   in	
   Tava	
   sandstone	
   are	
   n-­‐C29-­‐31	
   at	
   431,000,	
   379,000,	
   and	
   138,000	
  
ppb,	
  respectively,	
  within	
  sample	
  DUPLX.	
  	
  The	
  abundance	
  of	
  these	
  larger	
  n-­‐alkanes	
  is	
  
indicative	
   of	
   terrestrial	
   plant	
   wax	
   input.	
   	
   However,	
   it	
   should	
   be	
   noted	
   that	
  
biodegradation	
   would	
   preferentially	
   attenuate	
   smaller	
   n-­‐alkanes,	
   which	
   is	
   noticed	
   in	
  
Tava	
  samples.	
  	
  Disregarding	
  a	
  strong	
  influence	
  from	
  biodegradation,	
  the	
  abundance	
  of	
  
large	
   n-­‐alkanes	
   further	
   narrows	
   the	
   source	
   of	
   Tava	
   hydrocarbons	
   to	
   post	
   Ordovician	
  
(~450	
  Ma).	
  	
  This	
  is	
  based	
  on	
  the	
  fact	
  that	
  terrestrial	
  plants	
  did	
  not	
  exist	
  until	
  the	
  Late	
  
Ordovician.	
  	
  This	
  further	
  limits	
  the	
  remaining	
  hydrocarbon	
  source	
  rocks	
  in	
  the	
  Front	
  
Range	
   to	
   Hardscrabble	
   Limestone,	
   Glen	
   Eyrie	
   Shale,	
   Niobrara	
   Formation,	
   and	
   Pierre	
  
Shale.	
  	
  	
  
	
   GC/MS	
   on	
   oil	
   samples	
   from	
   the	
   Florence	
   Oil	
   Field	
   in	
   Cañon	
   City,	
   Colorado	
  
indicate	
   that	
   the	
   Sharon	
   Springs	
   member	
   of	
   the	
   Pierre	
   Shale	
   is	
   the	
   source	
   for	
   the	
  
 
	
   31	
  
Florence	
  field	
  (Lillis	
  et	
  al.,	
  1998).	
  	
  N-­‐alkanes	
  within	
  a	
  sample	
  directly	
  taken	
  from	
  the	
  oil	
  
field	
   indicate	
   a	
   peak	
   at	
   n-­‐C15	
   that	
   trails	
   to	
   n-­‐C31.	
   	
   Tava	
   sandstone	
   and	
   the	
   Sharon	
  
Springs	
   member	
   of	
   the	
   Pierre	
   Shale	
   share	
   mutual	
   maximum	
   n-­‐alkanes	
   at	
   n-­‐C31	
  
potentially	
  indicating	
  a	
  relationship.	
  	
  
	
   Tava	
  and	
  Glen	
  Eyrie	
  hydrocarbons	
  share	
  similar	
  maximum	
  n-­‐Alkanes	
  (n-­‐C27	
  for	
  
Glen	
  Eyrie	
  and	
  n-­‐C31	
  for	
  Tava).	
  	
  The	
  minimum	
  n-­‐Alkanes	
  are	
  n-­‐C10	
  for	
  Tava	
  and	
  n-­‐C12	
  
for	
  Glen	
  Eyrie.	
  	
  This	
  difference	
  in	
  minimum	
  n-­‐Alkanes	
  can	
  be	
  explained	
  by	
  preferential	
  
biodegradation	
  patterns	
  due	
  to	
  different	
  surface	
  exposure	
  periods	
  for	
  the	
  two	
  samples.	
  	
  
Furthermore,	
   biodegradation	
   can	
   explain	
   the	
   attenuated	
   peaks	
   shown	
   in	
   the	
  
chromatogram	
  for	
  Tava	
  sandstone.	
  	
  	
  
	
   The	
  high	
  abundances	
  of	
  boron	
  and	
  barium	
  in	
  Tava	
  samples	
  containing	
  redox	
  are	
  
presumably	
   caused	
   by	
   hydrocarbon-­‐bearing	
   reservoir	
   brines.	
   	
   Brines	
   are	
   known	
   to	
  
carry	
  in	
  solution	
  excess	
  amounts	
  of	
  boron	
  and	
  incompatible	
  elements	
  such	
  as	
  barium.	
  	
  I	
  
propose	
  that	
  reservoir	
  brine	
  from	
  either	
  the	
  Denver	
  Basin	
  or	
  the	
  Florence	
  Oil	
  Field	
  has	
  
introduced	
  hydrocarbons	
  into	
  Tava	
  sandstone,	
  therefore	
  leading	
  to	
  redox,	
  as	
  well	
  as	
  an	
  
increase	
   in	
   boron	
   and	
   barium.	
   	
   Brines	
   carrying	
   hydrocarbons	
   have	
   low	
   density	
   and	
  
therefore	
  rise	
  to	
  the	
  surface	
  through	
  any	
  structural	
  or	
  stratigraphic	
  conduit	
  available.	
  	
  
These	
  brines	
  presumably	
  flowed	
  through	
  the	
  Ute	
  Pass	
  Fault	
  zone	
  and	
  came	
  into	
  contact	
  
with	
  Tava	
  sandstone	
  during	
  their	
  upward	
  migration.	
  	
  	
  
Sample	
   PEA-­‐1	
   (dark	
   brown	
   in	
   color)	
   contains	
   hydrocarbons	
   but	
   has	
   no	
   redox	
  
indicating	
  that	
  hydrocarbons	
  and	
  redox	
  are	
  not	
  necessarily	
  associated.	
  	
  Because	
  of	
  this,	
  
no	
  less	
  than	
  two	
  sources	
  of	
  hydrocarbons	
  must	
  be	
  contained	
  within	
  Tava	
  sandstone.	
  	
  
For	
  PEA-­‐1	
  to	
  contain	
  hydrocarbons	
  but	
  lack	
  redox	
  implies	
  that	
  no	
  secondary	
  migration	
  
of	
  hydrocarbons	
  has	
  occurred	
  within	
  PEA-­‐1	
  to	
  initiate	
  redox.	
  	
  From	
  this,	
  I	
  propose	
  that	
  
PEA-­‐1	
  contains	
  original	
  Neoproterozoic	
  hydrocarbons	
  that	
  matured	
  in	
  situ	
  within	
  Tava	
  
 
	
   32	
  
sandstone	
  during	
  down-­‐faulting	
  of	
  Pikes	
  Peak	
  Granite	
  following	
  the	
  formation	
  of	
  Tava	
  
sandstone	
  injectites.	
  	
  	
  
A	
  potential	
  source	
  of	
  in	
  situ	
  hydrocarbon	
  maturation	
  within	
  Tava	
  sandstone	
  is	
  
randomly	
  dispersed	
  green	
  shale	
  clasts	
  (Figure	
  15).	
  	
  X-­‐ray	
  diffraction	
  on	
  the	
  shale	
  clasts	
  
reveals	
   the	
   presence	
   of	
   graphite	
   (SH	
   324-­‐VE),	
   indicating	
   carbon	
   content	
   within	
   the	
  
shale.	
  	
  Most	
  shale	
  clasts	
  are	
  green	
  in	
  color,	
  however	
  black	
  shale	
  clasts	
  are	
  observed	
  as	
  
well.	
  	
  A	
  bleached	
  sphere	
  commonly	
  surrounds	
  black	
  shale	
  clasts.	
  	
  This	
  may	
  indicate	
  that	
  
black	
  shale	
  clasts	
  have	
  thermally	
  generated	
  hydrocarbons	
  that	
  are	
  responsible	
  for	
  the	
  
reducing	
  conditions	
  that	
  arose	
  in	
  the	
  surrounding	
  halo.	
  	
  One	
  outcrop	
  of	
  green	
  shale	
  (IM-­‐
126)	
  hosted	
  in	
  Pikes	
  Peak	
  Granite	
  is	
  located	
  near	
  sample	
  SLT-­‐6.	
  	
  This	
  may	
  explain	
  the	
  
abundance	
  of	
  shale	
  clasts	
  and	
  hydrocarbons	
  within	
  SLT-­‐6.	
  
Aside	
   from	
   thermal	
   maturation,	
   green	
   shale	
   clasts	
   may	
   have	
   produced	
  
hydrocarbons	
  by	
  a	
  process	
  known	
  as	
  microbial	
  methanogenesis.	
  	
  	
  The	
  origins	
  of	
  calcite	
  
veins	
   in	
   Tava	
   sandstone	
   may	
   be	
   associated	
   with	
   this	
   same	
   process.	
   	
   Microbial	
  
methanogenesis	
   is	
   a	
   process	
   by	
   which	
   microbes,	
   known	
   as	
   methanogens,	
   convert	
  
carbon	
   dioxide	
   and	
   hydrogen	
   into	
   methane	
   and	
   water	
   (Budai	
   et	
   al.,	
   2002).	
  	
  
Methane/water	
   fluids	
   created	
   during	
   microbial	
   methanogenesis	
   are	
   reducing	
   fluids	
  
capable	
  of	
  bleaching	
  sandstone.	
  	
  Microbial	
  methanogenesis	
  requires	
  the	
  infiltration	
  of	
  
microbial	
   bearing	
   fluids	
   into	
   an	
   organic	
   carbon-­‐rich	
   formation.	
   	
   Possible	
   sources	
   of	
  
carbon	
  within	
  Tava	
  sandstone	
  are	
  the	
  green	
  shale	
  clasts,	
  determined	
  in	
  one	
  sample	
  to	
  
contain	
   graphite.	
   	
   Potential	
   times	
   of	
   fluid	
   infiltration	
   that	
   could	
   have	
   provided	
  
methanogens	
  into	
  Tava	
  sandstone	
  coincide	
  with	
  tectonism	
  along	
  the	
  Front	
  Range	
  (i.e.	
  
Neoproterozoic	
   rifting,	
   Pennsylvanian	
   ARMO,	
   or	
   Cretaceous-­‐Paleogene	
   Laramide	
  
orogeny).	
  	
  	
  
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis
AlecLeeSeniorThesis

More Related Content

Similar to AlecLeeSeniorThesis

Ofiolitas
OfiolitasOfiolitas
Ofiolitas2603 96
 
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...VictorValdivia20
 
6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.ppt
6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.ppt6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.ppt
6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.pptSaptarshiHalder7
 
V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...
V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...
V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...GiovannaDellaPorta2
 
Southeastern Piedmont Groundwater
Southeastern Piedmont GroundwaterSoutheastern Piedmont Groundwater
Southeastern Piedmont GroundwaterSTAR Environmental
 
Research Grant Proposal Final version
Research Grant Proposal Final versionResearch Grant Proposal Final version
Research Grant Proposal Final versionJordan Lubbers
 
Gold in Oceans-EPSL
Gold in Oceans-EPSLGold in Oceans-EPSL
Gold in Oceans-EPSLRoss Large
 
Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...
Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...
Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...STAR Environmental
 
Field Mapping in Porphyry Copper Environments.pdf
Field Mapping in Porphyry Copper Environments.pdfField Mapping in Porphyry Copper Environments.pdf
Field Mapping in Porphyry Copper Environments.pdfssuser515d94
 
Graehl - Thesis Defense 5-2-12 ver 1
Graehl - Thesis Defense 5-2-12 ver 1Graehl - Thesis Defense 5-2-12 ver 1
Graehl - Thesis Defense 5-2-12 ver 1Nicholas Graehl
 
Baseline Lithogeochemistry Project Report
Baseline Lithogeochemistry Project ReportBaseline Lithogeochemistry Project Report
Baseline Lithogeochemistry Project ReportDr Nick Le Boutillier
 
2005 fmcc agate_symposium
2005 fmcc agate_symposium2005 fmcc agate_symposium
2005 fmcc agate_symposiumSergio Eduardo
 
Filed report of salt range
Filed report of salt rangeFiled report of salt range
Filed report of salt rangesafeerahmad30
 
Geology 3: Notes on mineral composition, structure of crystals, and identifi...
Geology 3:  Notes on mineral composition, structure of crystals, and identifi...Geology 3:  Notes on mineral composition, structure of crystals, and identifi...
Geology 3: Notes on mineral composition, structure of crystals, and identifi...Robin Seamon
 

Similar to AlecLeeSeniorThesis (20)

konstantinou et al., 2014
konstantinou et al., 2014konstantinou et al., 2014
konstantinou et al., 2014
 
Ofiolitas
OfiolitasOfiolitas
Ofiolitas
 
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
 
6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.ppt
6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.ppt6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.ppt
6ff695ad-94ef-4892-a50c-5e6d95cfcb9e.ppt
 
V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...
V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...
V.P. Wright and L. Cherns (2015) – Leaving no stone unturned: the feedback be...
 
Southeastern Piedmont Groundwater
Southeastern Piedmont GroundwaterSoutheastern Piedmont Groundwater
Southeastern Piedmont Groundwater
 
Research Grant Proposal Final version
Research Grant Proposal Final versionResearch Grant Proposal Final version
Research Grant Proposal Final version
 
Gold in Oceans-EPSL
Gold in Oceans-EPSLGold in Oceans-EPSL
Gold in Oceans-EPSL
 
Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...
Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...
Formation And Occurrences Of Laumontite And Related Minerals In The Carolinas...
 
Field Mapping in Porphyry Copper Environments.pdf
Field Mapping in Porphyry Copper Environments.pdfField Mapping in Porphyry Copper Environments.pdf
Field Mapping in Porphyry Copper Environments.pdf
 
Graehl - Thesis Defense 5-2-12 ver 1
Graehl - Thesis Defense 5-2-12 ver 1Graehl - Thesis Defense 5-2-12 ver 1
Graehl - Thesis Defense 5-2-12 ver 1
 
Baseline Lithogeochemistry Project Report
Baseline Lithogeochemistry Project ReportBaseline Lithogeochemistry Project Report
Baseline Lithogeochemistry Project Report
 
quartoo sand
quartoo sandquartoo sand
quartoo sand
 
2005 fmcc agate_symposium
2005 fmcc agate_symposium2005 fmcc agate_symposium
2005 fmcc agate_symposium
 
Filed report of salt range
Filed report of salt rangeFiled report of salt range
Filed report of salt range
 
PhD Thesis SJB Dec_04
PhD Thesis SJB Dec_04PhD Thesis SJB Dec_04
PhD Thesis SJB Dec_04
 
BCUR POSTER
BCUR POSTERBCUR POSTER
BCUR POSTER
 
Absar y Sreenivas, 2015.pdf
Absar y Sreenivas, 2015.pdfAbsar y Sreenivas, 2015.pdf
Absar y Sreenivas, 2015.pdf
 
The Piedmont Essay
The Piedmont EssayThe Piedmont Essay
The Piedmont Essay
 
Geology 3: Notes on mineral composition, structure of crystals, and identifi...
Geology 3:  Notes on mineral composition, structure of crystals, and identifi...Geology 3:  Notes on mineral composition, structure of crystals, and identifi...
Geology 3: Notes on mineral composition, structure of crystals, and identifi...
 

AlecLeeSeniorThesis

  • 1.     1     Colorado  College     Department  of  Geology                 Paleo  Fluid-­‐Flow  in  Crystalline-­‐Hosted  Sandstone  Injectites       from  the  Neoproterozoic  –  Evidence  for  the  Migration  of       Hydrocarbons  in  the  Colorado  Front  Range                   A  Thesis       Submitted  to  the  Department  of  Geology  Faculty       In  Partial  Fulfillment  of  the  Requirements  for  the       Degree  of       Bachelor  of  Arts                   By     Alec  Lee   Colorado  College   May  2015  
  • 2.     2     A  C  K  N  O  W  L  E  D  G  E  M  E  N  T  S   I   would   like   to   thank   Christine   Siddoway   for   her   unwavering   support   and   guidance   throughout  this  thesis  project,  Monte  Swan  and  Stan  Keith  for  their  assistance  in  decoding   the  whole  rock  geochemical  and  diamondoid  hydrocarbon  data,  the  Patricia  Buster  Grant,   the  Creager  Award,  the  Colorado  College  Natural  Science  Division  Grant,  and  the  Colorado   College   Geology   Department   funds   that   collectively   funded   my   research,   the   entire   Colorado   College   Geology   Department   with   special   emphasis   on   Mandy   Sulfrian,   my   mother,  Aleisha,  and  Alex  Hager  and  Maggie  Bailey  for  believing  in  me  when  I  thought  I   would  never  finish.                                                          
  • 3.     3   T  A  B  L  E      O  F      C  O  N  T  E  N  T  S       ACKNOWLEDGEMENTS……………………….……………………………………………………...…………2   ABSTRACT……………………………………………………………………….……………………………………4   INTRODUCTION……………………………………………….……………………………………………………5   GEOLOGICAL  BACKGROUND……………………….…………………………………………………………7   Regional  Geology………………………………………………………………………………………….…………………7   Neoproterozoic  Setting…………………………………………………………………………………………….……11   Neoproterozoic  Sediment…………………………………………………………………………………….………...13   Global  Sandstone  Injectites…………………………………………………………………………….……………...14   Proterozoic  Petroleum  Sources…………………………………………………………………….………………..15   Regional  Petroleum  Sources………………………………………………………………………………….……….17   METHODS………………………………………………………………………………….……………..………...19   THIN  SECTION  PETROGRAPHY……………………………………………………………………………20   Grain  Sorting………………………………………………………………………………………………………….……..21   Cement……………………………………………………………………………………………………………….…………22   Deformation  Bands………………………………………………………………………….…………………………….22   Fluid  Inclusions……………………………………………………………………………………………….…………….22   Quartz  and  Calcite  Veins…………………………………………………………….………………………………….23   Fluid  Controls………………………………………………………………………….…………………………….………24   GEOCHEMICAL  RESULTS……………………………………………………………………………….…….25   Major  Oxides…………………………………………………………………….…………………………………………...25   Trace  Elements…………………………………………………………………………….………………………………..26   Hydrocarbons………………………………………………………………………………………….…………………….26   X-­‐Ray  Diffraction…………………………………………………………………………….…………………………….29   DISCUSSION…………………………………………………………………………….…………………………..29   CONCLUSIONS……………………………………………………………………………….…………………….34   REFERENCES…………………………………………………………………………………….…………………38   TABLES  &  FIGURES……………………………………………………………………………….…………….42      
  • 4.     4   A  B  S  T  R  A  C  T   In  the  Front  Range  of  Colorado,  an  array  of  basement-­‐hosted  clastic  dikes,  sills,   and   parent   bodies   named   Tava   sandstone   (informal),   exhibit   strong   reduction/oxidation   (redox)   bleaching   from   the   migration   of   reducing   fluids.     Redox   within   Tava   sandstone   is   evident   by   the   bleaching   and/or   removal   of   primary   red   hematite  cement  that  formed  as  grain  coatings  during  early  diagenesis.    Petrographic   analyses  reveal  that  fluid  flow  within  Tava  sandstone  is  aided  by  crude  grain  sorting   and  calcite  veins,  while  structural  and  special  relationships  of  redox  patterns  indicate   that  has  been  more  than  one  influx  of  reducing  fluids  through  Tava  sandstone.    Detrital   zircon  dating  of  Tava  sandstone  yields  similar  zircon  ages  to  known  Neoproterozoic  Era   sediments  of  the  Southwestern  United  States,  and  places  the  age  of  Tava  sandstone  at   ~750  Ma.    Bleaching  of  Tava  sandstone  may  have  occurred  at  any  time  throughout  the   Phanerozoic  and  possibly  even  as  far  back  as  the  Neoproterozoic.    It  is  reasonable  to   presume   that   Tava   sandstone’s   geochemistry   may   retain   a   biogeochemical   signature   from   the   Neoproterozoic   Era.     However,   Tava   sandstone   is   quartz   arenite   in   composition   (>90%   quartz),   and   is   therefore   not   an   ideal   repository   for   the   preservation  of  Neoproterozoic  Era  geochemical  fingerprints.    Hydrocarbon  screening   and  diamondoid  analyses  performed  on  a  grouping  of  Tava  samples  reveal  the  presence   of   several   n-­‐alkane,   sterane,   and   terpane   hydrocarbon   species.     These   hydrocarbons   include  the  n-­‐Alkanes  n-­‐C10,  n-­‐C12,  n-­‐C15  and  n-­‐C20-­‐31  with  peaks  at  n-­‐C23  and  n-­‐C29,   as  well  as  species  of  steranes,  terpanes,  and  carotenoids.    Whole  rock  analysis  on  Tava   sandstone  reveals  reduced  ratios  (<0.5)  of  Fe2O3  to  FeO,  further  validating  the  reducing   nature   of   fluid   migration   through   Tava   sandstone.     These   compounds   may   not   only   uncover  the  source  of  hydrocarbons  found  in  Tava  sandstone,  but  may  also  reveal  the   evolution  of  hydrocarbon  generation  and  migration  in  the  Colorado  Front  Range,  which   is   a   continually   expanding   energy   resource   in   the   Rocky   Mountain   region.     Further   geochemical  analysis  on  Tava  sandstone  may  expose  the  true  source  of  hydrocarbons,   timing  of  migration,  and  shed  light  on  the  paleo-­‐climate/geography  of  inland  Laurentia   following  the  breakup  of  Rodinia,  750  Ma,  a  region  that  is  poorly  known.         Figure  A.    Left,  partially  bleached  Tava  from  near  Woodland  Park,  Colorado;  middle,  primary  hematite   cemented  Tava  from  Williams  Fork  Range,  Colorado;  right,  mottled  bleached  Tava  from  Keeton  Ranch,   Colorado.
  • 5.     5   I  N  T  R  O  D  U  C  T  I  O  N      Along  the  Ute  Pass  Fault  of  the  Colorado  Front  Range  a  network  of  basement-­‐ hosted   clastic   dikes   and   parent   bodies   exhibit   redox   patterns   from   the   migration   of   reducing   fluids   (Figure   A).     Tava   sandstone   (informal)   is   structureless,   composed   of   well-­‐rounded   quartz   pebbles,   feldspar   fragments,   and   lithic   clasts   separated   and   suspended  within  a  matrix  of  mature,  fine  to  medium-­‐grained  quartz  (Siddoway  et  al.,   2013).    Tava  sandstone  forms  tabular  bodies  and  dikes  at  intervals  along  the  entire  ~80   km  length  of  the  Ute  Pass  Fault  zone  (Figure  1  and  2).    Dominant  ages  of  detrital  zircons   from  Tava  sandstone  are  1.7  Ga,  1.4  Ga,  and  1.33-­‐0.97  Ga  (Siddoway  and  Gehrels,  2014),   a  distribution  that  correlates  with  other  Grenville-­‐orogen-­‐derived  sedimentary  units  of   the  American  Southwest  (Siddoway  and  Gehrels,  2014)  (Figure  3).    On  this  basis,  Tava   sandstone   is   Neoproterozoic   in   age.     The   source   of   sediment   that   formed   Tava   sandstone  may  have  been  deposited  in  rift  basins  that  formed  during  the  breakup  of  the   supercontinent,  Rodinia,    ~750  Ma  (Dehler  et  al.,  2010;  Siddoway  et  al.,  2013;  Yonkee  et   al.,  2014).       Evidence  for  the  migration  of  reducing  fluids  in  Tava  sandstone  includes  redox   patterns   and   secondary   porosity.     The   potential   source   of   reducing   fluids   includes   hydrocarbon   source   rocks   of   Colorado   from   lithological   units   that   span   the   entire   Phanerozoic,   or   the   possibility   of   in   situ   generation   of   hydrocarbons   from   bacterial   matter   originally   deposited   within   Tava   sandstone   during   the   Neoproterozoic   Era   (Clayton  and  Swetland,  1980;  Craig  et  al.,  2013;  Johnson  and  Rice,  1990).     Primary   Tava   cement   is   deep   maroon   colored   from   the   breakdown   of   detrital   ferromagnesian   minerals,   precipitated   as   hematite   grain   coatings   during   early   diagenesis  (e.g.  Beitler  et  al.,  2003)  (Figure  4).    Bleached  Tava  sandstone  is  often  more  
  • 6.     6   friable  and  white-­‐tan-­‐pink  in  color  from  a  change  in  oxidation  state  and/or  the  removal   of  hematite.    In  sediment,  hematite  is  insoluble  (ferric  iron,  Fe3+)  and  must  be  reduced   to  ferrous  iron  (Fe2+)  in  order  to  become  soluble  in  solution  and  removed  (chemically   bleached)  (Surdham  et  al.,  1993)  (Figure  4).    Reducing  fluids,  such  as  hydrocarbons,  can   cause  the  reduction  and  removal  of  iron  from  sandstone  during  fluid  migration  (Beitler   et  al.,  2003;  Eichhubl  et  al.,  2004;  Levandowski  et  al.,  1973;  Moulton,  1922;  Parry  et  al.,   2003;  Rainoldi  et  al.,  2014;  Shebl  and  Surdam,  1996).       Early  investigations  on  sandstone  redox  reactions  were  carried  out  in  1922  on   the   petroleum-­‐rich   Chugwater   redbeds   in   Montana   (Moulton,   1922).     Moulton   concluded   that   red   sandstone   could   be   bleached   by   hydrogen   sulfide,   a   known   byproduct  of  petroleum  generation  (Moulton,  1922).    Additionally,  in  pyrolysis  analyses   performed  Shebl  and  Surdam,  (1996)  a  mixture  of  red  rock,  water,  and  hydrocarbons   became  altered  to  light  pink,  white,  gray,  or  dark  gray.   Crude   grain   sorting   observed   within   Tava   sandstone   contributes   to   primary   porosity   and   may   serve   as   preferential   fluid   migration   pathways   in   the   absence   of   structural   conduits   (Figure   5).     Examination   of   outcrops,   hand   samples,   and   thin   sections   show   that   deformation   bands   and   calcite   veins   may   also   serve   as   fluid-­‐flow   controls  within  Tava  sandstone  (Figure  6,  7,  8).    Cataclasis  and  deformation  bands  are   observed  in  a  majority  of  Tava  locations  and  are  found  in  both  primary  Tava  and  Tava   containing   redox.     Brittle   deformation   potentially   responsible   for   the   structural   overprinting   observed   in   Tava   sandstone   include   compaction   during   original   lithification  and  structural  overprinting  during  the  Ancestral  Rocky  Mountain  Orogeny,   and  the  Laramide  Orogeny.       The  aims  of  this  study  are:  1)  establish  fluid  flow  controls  within  Tava  sandstone,   2)  determine  the  characteristics  and  probable  source(s)  of  reducing  fluids  responsible  
  • 7.     7   for  redox,  and  3)  infer  the  tectonic  event(s)  or  alternate  mechanisms  responsible  for  the   initiation  of  fluid  flow  within  Tava  sandstone.       The   significance   of   this   study   is   three-­‐part.     First,   Tava   sandstone   is   Neoproterozoic  in  age,  and  therefore  has  the  potential  to  reveal  the  paleoenvironment   of   inland   Laurentia   during   the   breakup   of   Rodinia,   as   well   as   aspects   of   the   geobiochemistry   of   the   late   Proterozoic   Eon   prior   to   the   ‘Cambrian   Explosion’.     Crystalline-­‐hosted   sandstone   dike   complexes   are   an   extremely   rare   geological   occurrence.    Because  deep  marine  sandstone  dike  complexes  are  becoming  a  major  play   for  oil  exploration,  the  presence  of  hydrocarbons  in  Tava  sandstone  may  lead  to  other   crystalline-­‐hosted   sandstone   dike   complexes   becoming   potential   targets   for   oil   exploration.     Tava   sandstone   contains   visible   redox   patterns   that   may   reveal   critical   information   about   the   evolution   and   migration   of   hydrocarbons   that   serve   as   energy   resources   in   Colorado,   for   example   insights   into   thermal   maturation   of   sub-­‐thrust   Phanerozoic  strata  (Gries,  1983;  Wandrey  and  Barker,  1995)  within  the  Front  Range   basement  uplift  that  formed  during  the  Ancestral  Rockies  and  Laramide  Orogeny.     G  E  O  L  O  G  I  C  A  L      B  A  C  K  G  R  O  U  N  D   Regional  Geology   The  Front  Range  in  Colorado  has  a  long  and  complex  regional  geology  including:   1)   formation   of   Colorado   basement   rocks   in   an   accretionary   province   during   the   Proterozoic;  2)  Rodinia  rifting  and  formation  of  a  brittle  structural  framework  within   the  basement  rocks  of  Colorado  during  the  Neoproterozoic  Era;  3)  deposition  of  Tava   sandstone  despite  extensive  erosion  between  1.1  Ga  and  0.54  Ga  resulting  in  the  Great   Unconformity;   4)   deposition   of   Paleozoic   siliciclastics   and   carbonates   in   Laurentian  
  • 8.     8   epeiric   seas;   5)   reactivation   of   basement   faults   at   the   time   of   the   Ancestral   Rocky   Mountain   Orogeny;   6)   deposition   of   Cretaceous   Interior   Seaway   deep   marine   and   carbonate  sediments;  7)  reactivation  of  basement  faults  during  the  Laramide  Orogeny.   Proterozoic   basement   rocks   in   Colorado   include   plutons   emplaced   within   the   Yavapai   (2.0-­‐1.8   Ga)   and   Mazatzal   (1.8-­‐1.6   Ga)   accretionary   provinces   as   well   as   subsequent   anorogenic   magmatism   at   the   time   of   the   Grenville   orogeny   (Pikes   Peak   Batholith,   1.1   Ga)   (Yonkee   et   al.,   2014).     In   Colorado,   these   accretionary   terranes   comprise  magmatic  and  metamorphic  complexes  at  about  1.78-­‐1.75  Ga,  1.67  Ga,  and  1.4   Ga,  that  all  contain  evidence  of  tectonic  overprinting  (Tweto,  1980).    The  Pikes  Peak   batholith  (1.1  Ga)  does  not  display  dynamic  fabrics.         Rodinia  underwent  large  scale  rifting  ~750  Ma,  culminating  in  the  breakup  of   Rodinia  and  the  eventual  isolation  of  Laurentia  (Dehler  et  al.,  2010;  Yonkee  et  al.,  2014).     The   evolutionary   history   of   the   ancient   rift   zone,   active   from   825-­‐740   Ma,   has   been   reconstructed   from   Neoproterozoic   episodic   plume   events   as   well   as   from   the   arrangement   of   Neoproterozoic   marine   sediments   found   in   south   Australia,   south   China,  Namibia,  and  western  North  America  (Dehler  et  al.,  2010;  Li  et  al.,  2007).    The   onset  of  rifting  is  indicated  by  the  Gairdner-­‐Amata  dike  swarm  in  Australia  at  825  Ma   and  the  Gunbarrel  dike  swarm  in  western  Laurentia  at  780  Ma  (Li  et  al.,  2007).    The  dike   swarms   are   a   result   of   a   super-­‐plume   that   formed   below   Rodinia   due   to   enhanced   thermal  gradients  (Li  et  al.,  2007).    Following  the  onset  of  rifting,  the  Laurentian  passive   margin  and  accompanying  continental  rift  basins  became  depocenters  for  marine  and   coastal  sediment.    Rifting  caused  basement  rocks  to  undergo  crustal  thinning,  which  led   to  the  development  of  high  angle  normal  faults  aligned  parallel  to  the  rift  margin.    One   such  fault  may  be  the  ancestral  Ute  Pass  Fault  of  the  Colorado  Front  Range  (Siddoway  et   al.,  2013).      
  • 9.     9   The  origin  of  the  Ute  Pass  Fault  may  be  tied  to  the  break  up  of  Rodinia  for  three   reasons:  1)  its  orientation  is  parallel  to  the  west  coast  Laurentian  rift  margin,  2)  there  is   a  probability  that  Tava  sandstone  was  emplaced  as  an  injectite  within  the  fault  zone,   and   3)   the   age   of   Tava   sandstone   places   it   within   the   time   frame   of   other   rifting   structures  (Dehler  et  al.,  2010;  Yonkee  et  al.,  2014).       The   Ute   Pass   Fault   may   have   been   the   control   upon   an   inland   rift   basin   that   formed   during   the   rifting   of   Rodinia.     In   the   continental   interior,   the   paleo-­‐Ute   Pass   Fault   rift   basin   accumulated   far-­‐traveled   sediment   transported   from   the   Grenville   orogen  (Figure  9).    In  this  tectonic  setting  Tava  sandstone  experienced  an  extreme  fluid   over-­‐pressurization,  and  was  then  injected  into  crystalline  basement  rock  possibly  due   to   rupture(s)   and   seismicity   along   the   ancestral   Ute   Pass   Fault.     The   result   was   the   formation  of  the  Tava  sandstone  injectite  complex.         Prior   to   and   following   the   formation   of   Tava   sandstone   injectites,   the   Front   Range  underwent  large  scale  erosion  resulting  in  the  Great  Unconformity,  which  before   the   discovery   of   Tava   sandstone,   was   believed   to   have   erased   the   entire   geological   record   of   eastern   Colorado   between   1.1   Ga   and   0.54   Ga.     Therefore,   Tava   sandstone   serves   as   the   only   known   vestige   of   inland   Laurentia   (eastern   Colorado)   during   the   Neoproterozoic  Era.       Above  the  Great  Unconformity  lies  Early  Cambrian  mature  Sawatch  Sandstone   deposited   directly   atop   Pikes   Peak   Granite.   Next   are   shallow   marine   carbonates   (Manitou,  Williams  Canyon,  and  Hardscrabble  Limestones)  that  were  deposited  within   epeiric   seas   of   Laurentia   (Figure   10).     The   epeiric   seas   covering   western   Laurentia   served   as   a   catalyst   for   the   explosion   of   vast   marine   ecosystems.     Cambrian   through   Devonian   siliciclastics   and   carbonates   record   a   great   diversification   of   metazoan   invertebrates,  as  well  as  the  establishment  of  aerobic  life  forms  capable  of  inhabiting  
  • 10.     10   the   continents   (Levin,   2003   p.337).     The   shallow   seas   of   Colorado   during   the   early   Paleozoic   were   drained   by   tectonism   associated   with   the   Ancestral   Rocky   Mountain   Orogen  (ARMO).    To  accommodate  stress,  the  Ute  Pass  Fault  reactivated,  causing  uplift   and   erosion   of   Pikes   Peak   Granite   and   older   basement   rocks.     Erosion   of   exposed   basement   led   to   the   deposition   the   arkosic   Pennsylvanian   Fountain   Formation   unconformably   atop   sediments   of   the   early   Paleozoic   siliciclastics   and   carbonates   (Figure  10).       Following  the  ARMO,  terrestrial  sedimentation  took  place  during  the  Permian,   Triassic   and   Jurassic,   while   the   Cretaceous   Interior   Seaway   laid   down   deep   marine   shales  and  shallow  carbonate  facies.    The  Laramide  Orogeny  caused  reactivation  of  the   Ute  Pass  Fault  again  during  the  late  Cretaceous-­‐Paleocene  Period  boundary  resulting  in   the  formation  of  monoclinal  structures  along  the  Front  Range.       Today,  the  Ute  Pass  Fault  runs  from  Turkey  Creek  to  north  of  Woodland  Park   separating   two   Laramide   basement   uplifts,   the   Rampart   Range   and   the   Front   Range.     Near  its  southern  end,  the  fault  has  reverse  motion,  trends  N-­‐S,  and  dips  between  0-­‐70   degrees  to  the  west,  while  its  central  and  northern  segments  trend  northwest,  dip  very   steeply,  and  have  left  lateral  displacement  (Keller  et  al.,  2003).       Following   cementation,   Tava   sandstone   remained   hosted   within   crystalline   basement   rocks   along   the   Ute   Pass   Fault   for   ~750   million   years,   and   during   its   long   history   has   been   subjected   to   all   events   associated   with   the   Ute   Pass   Fault   including   tectonism,  diagenetic  alteration,  and  fluid  migration.    Despite  tectonic  overprints  from   the  Phanerozoic  Eon,  there  are  pristine  exposures  that  retain  primary  characteristics   capable  of  illuminating  Neoproterozoic  biogeochemical  signatures.            
  • 11.     11   Neoproterozoic  Setting   During  the  Neoproterozoic  Era  (1.0  Ga.  –  0.54  Ga.),  the  supercontinent  Rodinia   was   both   created   and   fragmented.     Furthermore,   the   entire   globe   fell   into   icehouse   conditions   during   the   Cryogenian   Period   (850   Ma   –   635   Ma)   appropriately   named   ‘Snowball   Earth’.     The   interplay   of   paleogeography,   biological   diversification,   and   atmospheric   oxygenation   during   global   continental   reconfiguration   of   the   Neoproterozoic  is  of  great  importance  in  understanding  the  evolution  of  life  on  Earth.   Research  into  the  geochemistry  of  Tava  sandstone  may  reveal  geochemical  fingerprints   from  the  Neoproterozoic.     Although  oxygen  is  highly  abundant  in  today’s  atmosphere,  before  the  advent  of   oxygen-­‐producing   (photosynthesizing)   organisms,   the   atmosphere   was   anoxic,   comprised  of  methane,  ammonia,  hydrogen,  and  water  vapor  (Levin,  2003  p.  215).    High   atmospheric  oxygen  concentrations  formed  in  two  great  oxygenation  events  prior  to  the   Precambrian-­‐Phanerozoic  boundary    (i.e.  Cambrian  explosion)  (Och  and  Shields-­‐Zhou,   2012).     Atmospheric   oxygenation   levels   have   been   estimated   by   the   rise   and   fall   of   banded  iron  formations  (BIF)  deposited  mainly  between  3.5  Ga  -­‐  1.8  Ga.    Banded  iron   formations   were   deposited   in   oceans   of   the   Precambrian   and   formed   during   the   reaction  of  iron,  supplied  at  mid  oceanic  ridges  and  from  continental  weathering,  with   oxygen   produced   by   photoautotrophs   such   as   stromatolites   (Levin,   2003   p.   236).     Deposition  continued  globally  for  ~1.7  Ga  and  constitutes  a  majority  of  today’s  iron  ore   deposits.     Banded   iron   formations   ceased   to   form   once   oxygen   production   exceeded   iron  replenishment  leading  to  the  first  oxygenated  atmosphere  by  ~2.2  Ga  (i.e.  Great   Oxygenation  Event).       The  foundation  of  life  on  Earth  began  with  prokaryotes  at  ~3.5  Ga  during  the   Archean.     The   first   diversification   of   life   took   place   at   2.2   Ga   with   the   emergence   of  
  • 12.     12   eukaryotes,   such   as   cyanobacteria.     Life   on   Earth   remained   unchanged   until   the   development  of  metazoans  at  ~640  Ma,  marked  by  thin  fleshy  marine  invertebrates  of   the  Ediacaran  Fauna  uncovered  in  southern  Australia  (Narbonne  and  Gehling,  2003).     These   first   two   biological   advancements   correspond   to   the   first   two   atmospheric   oxygenation   events:   the   Great   Oxygenation   Event   (GOE)   between   2.4-­‐2.0   Ga   and   the   Neoproterozoic  Oxygenation  Event  (NOE)  between  0.8-­‐0.5  Ga.       The   Neoproterozoic   Oxygenation   Event   can   be   partially   explained   by   two   geological   processes:   1)   the   formation   of   numerous   passive   margins   following   the   fragmentation  of  Rodinia,  and  2)  the  East  African-­‐Antarctic  orogeny  (Transgondwanan   Supermountains).   During  the  early  Neoproterozoic  Era,  passive  margin  shallow  seas  were  scarce   due  to  the  loss  of  coastal  platforms  during  the  formation  of  Rodinia.    However,  after  the   rifting  of  Rodinia  (~750  Ma),  passive  margin  shallow  seas  became  abundant  as  more   coastlines  were  created  along  rift  margins.    Passive  margins  are  known  to  be  zones  of   organic   material   burial,   which   allows   for   the   accumulation   of   atmospheric   oxygen.     Additionally,   the   burial   of   organic   material   led   to   the   development   of   hydrocarbon   source   rocks   along   continental   margins   during   this   time   (LeHeron   and   Craig,   2012).     Further   elevation   of   atmospheric   oxygen   was   caused   by   the   East   African-­‐Antarctic   orogeny  (EAO)  (650-­‐515  Ma).    The  EAO  was  caused  by  the  closure  of  the  Mozambique   Ocean,   which   led   to   the   convergence   of   East   and   West   Gondwana   in   the   greatest   mountain  building  episode  in  Earth’s  history  (Och  and  Shields-­‐Zhou,  2012).    Large  scale   continental  collision  led  to  greater  atmospheric  oxygenation  by  increased  erosion  rates,   which   in   turn   sent   an   abundance   of   nutrients   to   the   oceans,   therefore   increasing   photosynthesizing   organisms   that   respired   oxygen   into   the   atmosphere   (Och   and   Shields-­‐Zhou,  2012;  Squire  et  al.,  2006).          
  • 13.     13   The  snowball  earth  theory  is  substantiated  by  the  discovery  of  globally  extensive   diamictite  formations  capped  by  carbonate  formations.    Diamictite-­‐cap  carbonate  series   record  two  global  glaciations,  the  Sturtian  (715  Ma)  and  the  Marinoan  (635  Ma),  as  well   as   one   regional   glaciation   in   Laurentia   (680   Ma)   (Craig   et   al.   2013;   Halverson   et   al.   2005).    Theories  concerning  how  Snowball  Earth  formed  include  the  congregation  of   the   continents   in   the   tropics   during   the   Cryogenian   Period   (Eyles   and   Januszczak,   2004).    Landmasses  are  much  more  reflective  than  oceans,  and  it  is  believed  that  much   of  the  sun’s  radiation  was  reflected  by  landmasses  back  into  space  rather  than  being   absorbed  by  the  oceans  therefore  leading  to  global  cooling  (Levin,  2003  p.  250).    Other   theories  include  a  change  in  Earth’s  obliquity  (Williams,  2008),  Earth  passing  through  a   ‘rare  space-­‐cloud’  (Cook-­‐Anderson  et  al.,  2005),  and  a  lowering  in  Earth’s  greenhouse   gases  (Hoffman,  2002).       Diamictite  and  cap-­‐carbonate  sequences  indicate  a  change  in  the  Earth’s  carbon   cycle  during  glaciation  periods.    Global  ice  sheets  restrict  CO2  from  entering  the  oceans,   leading  to  the  buildup  of  CO2  in  the  atmosphere.    Upon  the  melting  of  ice  sheets,  the   oceans   are   once   again   able   to   absorb   CO2   and   precipitate   thick   carbonate   units   (LeHeron  and  Craig,  2012).    Because  life  survived  the  proposed  Snowball  Earth  periods,   an   alternate   hypothesis   named   ‘Slushball   Earth’   has   been   proposed   (Micheels   and   Montenari,   2008).     Slushball   Earth   states   that   little   to   no   ice   must   have   covered   equatorial  oceans  in  order  to  allow  photosynthesizing  algae  to  survive  the  deep  freeze   and  maintain  oxygen  in  the  atmosphere.       Neoproterozoic  Sediment   Neoproterozoic  sediments  akin  to  Tava  sandstone  are  much  less  abundant  than   Phanerozoic   sediments,   but   have   not   completely   been   erased   from   the   geological  
  • 14.     14   record.    Grenville-­‐orogen-­‐derived  sediments  deposited  in  association  with  the  break  up   of  Rodinia  are  found  in  intervals  along  the  west  coast  of  Laurentia.    Neoproterozoic  in   age,   these   formations   include   the   Mackenzie   Mountains   Supergroup   (Northwest   Territories,  Canada),  Windermere  Supergroup  (British  Columbia,  Canada),  Chuar  Group   (Arizona/Utah),  Big  Cottonwood  and  Uinta  Mountain  Groups  (Utah/Colorado)  (Dehler   et  al.,  2010;  Fanning  and  Link,  2004;  Yonkee  et  al.,  2014).    A  majority  of  the  sites  were   marginal   marine   at   the   time   of   deposition.     Therefore,   a   new   contribution   to   understanding   of   Rodinia   paleoenvironments   comes   from   Tava   sandstone   (eastern   Colorado),   which   is   representative   of   an   intracontinental   setting   (Dehler   et   al.,   2010;   Siddoway  and  Gehrels,  2014).         Global  Sandstone  Injectites   Tava   sandstone   appears   to   have   served   as   a   fluid   migration   pathway   for   reducing   fluids   as   evidenced   by   its   strong   redox   patterning.     Sandstone   injectite   complexes   are   known   to   serve   as   permeable   petroleum   migration   pathways   and   reservoirs  (Hurst  et  al.,  2003;  Jonk  et  al.,  2005).    Therefore,  redox  in  Tava  sandstone   may  be  due  to  the  migration  of  hydrocarbons.     Petroleum  bearing  sandstone  injectite  complexes  are  commonly  found  in  marine   sediments   and   form   due   to   variable   pore-­‐fluid   pressures   within   marine   basins   that   undergo   rapid   sedimentation   (Hurst   et   al.,   2011;   Jonk   et   al.,   2005).     The   North   Sea   graben   complexes   (Viking   and   Central   grabens)   and   California   marine   basins   (Santa   Barbara  and  Santa  Maria  basins)  are  some  of  the  world’s  leading  petroleum  producing   reservoirs,  and  they  all  contain  vast  networks  of  sandstone  injectites  (Hurst  et  al.,  2003;   Jonk  et  al.,  2005).      
  • 15.     15   Sandstone   injectite   complexes   form   an   intricate   association   of   parent   bodies,   dikes,   and   sills   (Hurst   et   al.,   2011).     Although   sandstone   bodies   can   possess   internal   fabric  such  as  thin  laminations  and  grain  sorting,  they  are  mostly  structureless  due  to   liquefaction,  turbulent  remobilization,  and  rapid,  non-­‐uniform  emplacement  (Jonk  et  al.,   2005).     Cementation   within   sandstone   dikes   is   dependent   upon   diagenetic   alteration   and  varies  among  silica,  carbonate,  and  hematite.    Due  to  variable  dike  sizes,  fluid  flow   within   sandstone   dikes   can   be   easily   controlled   by   structural   overprints   such   as   deformation   bands   or   veining.     Within   clastic   dikes   of   the   Viking   Graben,   conjugate   deformation   bands   were   formed   quickly   after   emplacement   due   to   rapid   depressurization  and  contraction  of  the  dike  margins  (Jonk  et  al.,  2005).    Deformation   bands   observed   in   the   North   Sea   contain   zones   of   authigenic   silica   precipitation   that   developed  during  deformation  band  formation  (Jonk  et  al.,  2005).       Crystalline-­‐hosted  clastic  dikes  are  also  found  globally,  however  they  have  never   been  observed  as  hydrocarbon  migration  pathways.    Crystalline-­‐hosted  sandstone  dike   examples   are   found   within   Precambrian   basement   rocks   at   three   known   locations   including   the   Baltic   Shield   (Friese   et   al.,   2011;   Bergman,   1982),   the   Sinai   Peninsula   (Eyal,   1988),   and   the   Colorado   Front   Range   (this   study)   (Siddoway   et   al.,   2013;   Siddoway  and  Gehrels,  2014).       Proterozoic  Petroleum  Sources     Because   Tava   sandstone   may   have   served   as   a   migration   pathway   for   hydrocarbons,  it  is  prudent  to  explore  all  potential  hydrocarbon  sources  near  the  Front   Range,   including   in   situ   hydrocarbon   generation   within   Tava   sandstone   itself.     Proterozoic  hydrocarbon  source  rocks,  although  rare,  are  not  completely  unheard  of.     Neoproterozoic  source  rocks  are  found  in  the  Chuar  Group  of  the  Grand  Canyon,  the  
  • 16.     16   Officer,  Amadeus,  and  Georgina  basins  of  Australia,  the  eastern  Siberian  platform,  the   Huqf  basin  of  Oman,  and  the  Nonesuch  Formation  in  Michigan  (Belperio,  2007;  Craig  et   al.,  2013;  Kelly  et  al.,  2011).     Proterozoic  hydrocarbon  source  rocks  were  first  deposited  due  to  increased  life   on   Earth   during   great   oxygenation   events.     During   this   time   the   carbon   cycle   was   enriched   allowing   unoxidized   carbon   to   be   preserved   in   the   sedimentary   record   at   unprecedented   rates.     Subsequent   thermal   maturation   of   buried   organic   materials   in   these   formations   led   to   the   production   of   hydrocarbons.     One   such   Neoproterozoic   hydrocarbon   source   rock   is   the   Awatubi   Member   and   Walcott   Member   of   the   Chuar   Group   (~770   Ma)   in   northern   Arizona   and   southern   Utah   containing   total   organic   carbon  (TOC)  concentrations  between  3-­‐10%  (Craig  et  al.,  2013).    The  Chuar  Group  is   believed  to  be  the  source  of  kerogen  found  in  the  Cambrian  Tapeats  sandstone  reservoir   at  the  Circle  Cliffs  in  Utah  (Craig  et  al.,  2013).       Furthermore,   Le   Heron   and   Craig   (2012)   show   that   despite   extreme   icehouse   conditions  during  the  Cryogenian,  restricted  basins  may  have  served  as  prime  locations   for  the  accumulation  and  preservation  of  organic  carbon  during  periods  of  deglaciation.     Deglaciation   periods   formed   large   isolated   water   bodies   within   intracontinental   rift   zones  of  Laurentia,  potentially  including  the  rift  basin  associated  with  the  ancestral  Ute   Pass   Fault.     Stratification   of   the   water   column   may   have   led   to   anoxic   bottoms   and   therefore   the   preservation   of   organic   carbon   from   dying   bacteria   and   algae.     Neoproterozoic  deglacial  and  post-­‐glacial  sediments  serve  as  hydrocarbon  source  rocks   in  the  Centralian  Superbasin  of  Australia  (Le  Heron  and  Craig,  2012).     Neoproterozoic   hydrocarbons   have   characteristically   high   concentrations   of   hopanes  and  high  sulfur  content  from  globally  extensive  euxinic  water  conditions  that   produced  cyanobacteria  as  the  main  organic  carbon  constituent  during  that  time  (Kelly  
  • 17.     17   et  al.,  2011).    Additionally,  they  do  not  contain  terrestrial  plant  waxes,  for  life  on  land   had   not   yet   evolved,   and   therefore   possess   higher   quantities   of   smaller   n-­‐alkane   molecules.                   Regional  Petroleum  Sources     No  Proterozoic  hydrocarbons  have  been  found  in  Colorado.  However,  there  are  a   plethora   of   Phanerozoic   hydrocarbon   source   rocks   in   the   Front   Range.   Petroleum   production  in  Colorado  dates  back  to  1881  with  the  discovery  of  the  Florence  Oil  Field   near  Cañon  City,  Colorado.    The  Florence  Oil  Field  is  the  second  oldest  oil  field  in  the   Unites  States,  and  although  much  of  its  resources  have  been  depleted,  there  are  many   wells  still  in  production  (Lillis  et  al.,  1998).    The  close  proximity  of  the  Florence  Oil  Field   to  the  Ute  Pass  Fault  and  Tava  sandstone  cannot  be  ignored.    Geochemical  analysis  has   determined  that  the  source  of  the  Florence  Oil  Field  is  the  Sharon  Springs  member  of   the  Cretaceous  Pierre  Shale  (Lillis  et  al.,  1998),  a  formation  that  was  thrust  beneath  the   Wet   Mountains   during   the   Laramide   Orogeny.     The   Wet   Mountain   Fault   occupies   a   structural  setting  similar  to  that  of  the  Ute  Pass  Fault  (Keller  et  al.,  2005).       In  Colorado  Springs,  another  hydrocarbon  source  rock  is  the  Upper  Cretaceous   Laramie  Formation,  the  main  horizon  in  the  Colorado  Springs  Coalfield.    The  Colorado   Springs   Coalfield   is   situated   in   north   and   northeast   Colorado   Springs   and   was   productive   between   1900-­‐1950   (Morgan   et   al.,   2003).     Possible   evidence   for   hydrocarbon   migration   in   Colorado   Springs   includes   the   bleached,   porous   upper   member  of  the  Lyons  sandstone  in  the  Garden  of  the  Gods  (Siddoway  et  al.,  2013).   The  three  other  potential   sources   of   hydrocarbons   in  the   vicinity   of   the   Front   Range  are  carbonates  of  the  Upper  Paleozoic  Era  (Manitou  and  Hardscrabble  Devonian   limestones),   dark   marine   shales   of   the   Pennsylvanian   Period   (Glen   Eyrie   shale),   and  
  • 18.     18   Cretaceous  Interior  Seaway  shales  and  limestones  (Niobrara  Formation,  Benton  Group,   and   Pierre   Shale).     These   formations   are   source   rocks   for   economically   significant   petroleum  reservoirs  in  Colorado,  such  as  the  Denver  and  Piceance  basins  (Figure  11).     The   hydrocarbon   source   rocks   feeding   these   basins   are   Graneros   Shale,   Greenhorn   Limestone,  Carlisle  Shale,  and  Pierre  Shale,  deposited  in  the  Cretaceous  Interior  Seaway   (Clayton   and   Swetland,   1980)   and   the   Pennsylvanian   Minturn   and   Phosphoria   Formations  (Glen  Eyrie  shale  and  Fountain  Formation  correlatives)  that  accumulated  in   tectonic  basins  and  marginal  marine  settings  during  the  ARMO  (Lillis  et  al.,  2003).       Within   Laramide   structures   of   the   broader   region,   evidence   of   large-­‐scale   hydrocarbon  migration  comes  from  patterns  of  bleaching/discoloration  of  sandstones   involved  in  Laramide-­‐derived  monoclines.    In  Utah,  bleaching  is  so  great  that  it  suggests   the   development   of   ‘supergiant’   hydrocarbon   reservoirs   during   the   Paleogene   Period   (Beitler  et  al.,  2003).    This  claim  is  based  on  extensive  bleaching  in  the  Jurassic  Navajo   Sandstone  found  at  the  crest  of  monoclines  in  Utah.    Beitler  et  al.  (2003)  proposed  that   hydrocarbons   preferentially   migrated   through   inclined   bedding   of   the   aeolian   sandstone,  and  accumulated  in  the  crests  of  Laramide  monoclines  in  Utah.    When  the   crests  of  these  anticlines  were  eroded  during  the  Miocene,  the  reservoirs  were  breached   causing  hydrocarbons  to  seep  to  the  surface  and  into  the  atmosphere.    The  correlation   between  the  time  of  incision  into  the  reservoir  and  a  spike  in  Miocene  global  warming   suggests   that   these   reservoirs   were   so   large   that   they   may   have   greatly   affected   the   atmospheric  CO2  concentrations  contributing  to  Miocene  global  warming  (Beitler  et  al.,   2003).          
  • 19.     19   M  E  T  H  O  D  S     Petrographic   analysis   of   Tava   sandstone   was   employed   to   determine   cement   variations,   deformation   banding,   veining,   grain   sorting,   and   fluid   inclusions.     Additionally,   gas   chromatography/mass   spectrometry   (GC/MS)   analyses   were   performed   on   four   samples   (KRCD-­‐3,   PEA-­‐1,   DUPLX   and   SLT-­‐6)   to   establish   the   presence   of   hydrocarbons   and   to   characterize   the   geochemical   fingerprints   of   hydrocarbons  within  Tava  sandstone  samples.    These  four  samples  were  all  cobble  size   specimens  collected  directly  from  outcrop.    Duplicate  GC/MS  runs  were  performed  on   KRCD-­‐3  and  SLT-­‐6.    All  hand  samples  of  Tava  sandstone  were  collected  at  selected  sites   along  the  ~80  km  of  the  Ute  Pass  Fault  and  were  processed  into  27mm  X  46mm  thin   sections  by  Texas  Petrographic  Services  INC.    A  small  number  of  samples  were  selected   for  polished  thin  sections  for  identification  of  opaque  phases  under  reflected  light.    Thin   sections  were  viewed  with  a  Leitz  Laborlux  12  Pol  and  a  Nikon  SMZ  1500  microscope   under  10X  –  400X  magnification.    Thin  sections  were  viewed  under  plane  and  cross-­‐ polarized   light.     Thin   sections   were   also   viewed   under   surface   illumination   only   to   better  view  cement  variations.  This  mode  renders  grains  transparent  while  revealing   cements   in   their   authentic   color.     A   Mightex   LED   attached   to   the   Leitz   microscope   provided   reflected   light   used   to   view   polished   thin   sections.   Photomicrographs   were   taken  with  a  mounted  Nikon  EOS  Rebel  T4i  and  processed  with  Nikon  Rebel  Utility  on   an  iMac.     Activation   Laboratories   Ltd.   in   Ontario   Canada   performed   GC/MS   analyses   of   eleven   Tava   sandstone   samples   and   one   claystone   sample   (Figure   12).     The   eleven   samples   were   selected   based   on   degree   of   alteration   (redox),   the   two   end   members   being  PW611  (oxidized)  and  DUPLX  (reduced).    One  sample  of  Glen  Eyrie  shale  was  also  
  • 20.     20   analyzed  to  create  a  baseline  hydrocarbon  concentration/composition  with  respect  to   Tava  sandstone.    These  tests  were  performed  using  an  Olympic-­‐02  GC/MS  instrument   with   an   Agilent   7890A   GC   model   and   an   Agilent   5975C   MS   model.     All   samples   underwent   hydrocarbon   screening   capable   of   identifying   hydrocarbon   molecules   in   abundances   <   1ppm.     Geochemical   analysis   for   Whole   Rock   Oxides,   Minor   and   Trace   Elements  was  also  performed,  with  acquisition  of  64  trace  elements  as  well  as  oxides   versus  reduced  graphite.    On  the  basis  of  hydrocarbon  screen  results,  four  samples  were   selected  for  Diamondoid  Testing  with  a  High  Resolution  GC/MS  capable  of  identifying   hydrocarbon   classes   in   the   C12-­‐C44   Carbon   Number   range   (Figure   13).     For   these   samples,   0.5g   of   crushed   rock   was   weighed   into   a   test   tube   and   1mL   of   2:1   hexane:methylene  chloride  was  added  at  a  weight  of  ~0.835g.    The  samples  were  then   sonificated   for   30   minutes   and   then   centrifuged   for   1   minute   before   testing.     Geochemical  data  was  plotted  and  analyzed  using  Microsoft  Excel  and  IgPet  software   (RockWare,  INC.).     Samples   of   clay   minerals   were   analyzed   and   identified   using   X-­‐ray   diffraction   (XRD),  using  the  X’pert  PRO  PANalytical  diffractometer  at  Colorado  College.    Six  Tava   samples  were  ground  into  fine  power  and  analyzed.     T  H  I  N      S  E  C  T  I  O  N      P  E  T  R  O  G  A  P  H  Y     Tava  sandstone  is  composed  of  fine  to  medium-­‐grained  quartz  sandstone  hosting   infrequent   groupings   of   coarse   grain   to   pebble   size   quartz   clasts.     Fine   to   medium   grained  matrix  grains  range  from  0.20  –  0.33  mm,  while  coarse  gains  and  pebbles  range   from  1.0  –  4.0  mm.    Grain  sorting  is  very  unorganized,  but  there  are  zones  of  crude  grain   sorting   with   a   strand-­‐like   pattern   appear   throughout   multiple   Tava   samples.     These  
  • 21.     21   grain-­‐sorting   patterns   may   have   formed   during   rapid   fluidized   injection   of   Tava   sandstone  during  seismicity  along  the  Ute  Pass  Fault  zone  associated  with  tectonism.         Hematite  cement  in  Tava  sandstone  formed  as  grain  coatings  from  the  chemical   breakdown   of   ferromagnesian   minerals   such   as   biotite,   which   is   found   as   clasts   in   multiple  Tava  samples.    Hematite  cement  gives  Tava  its  characteristic  red/maroon  hue   (Figure   4).     Alteration   of   Tava   sandstone   cement   is   observed   in   samples   containing   redox  patterns.    Redox  patterns  share  a  relationship  with  structural  overprinting  within   Tava  sandstone.    Redox  is  controlled  by  calcite  veins,  which  may  indicate  that  calcite   veins  formed  during  depressurization  of  Tava  dikes  following  rapid  injection  and  were   then  utilized  as  a  structural  conduit  for  fluid  migration.       Redox   patterns   appear   in   three   forms:   1)   linear   bands   controlled   by   veins,   2)   spherical  interruptions  nucleating  around  shale  clasts  or  at  the  termination/origin  of   calcite   veins,   3)   brecciated   angular   blocks   from   secondary   structural   overprinting   of   past   redox.     In   addition   to   redox   patterns,   further   evidence   for   hydrocarbons   within   Tava  sandstone  may  include  yellow  fluid  inclusions  containing  black  solid  centers.         Grain  Sorting     Multiple   Tava   samples   contain   sinuous   grain   flow   boundaries   that   separate   strands  of  coarse-­‐grained  sandstone  from  strands  of  fine-­‐grained  sandstone  (e.g.  DUPLX   and  MS-­‐109)  (Figure  5).    These  strands  display  an  inter-­‐penetrating  configuration  at  the   transition  between  grain  sizes  and  possess  crude  grain  sorting.    In  thin  section,  strands   vary  in  width  from  0.5-­‐2.0  mm  and  are  observed  to  be  up  to  47  mm  long,  the  length  of  a   thin  section.    Strands  observed  in  thin  section  are  interpreted  to  mimic  larger  strands   observed  in  hand  samples.    Larger  strands  are  up  to  10  cm  long.    All  strands  possess   characteristic  tails  where  the  boundaries  taper  to  an  end.    
  • 22.     22   One  particular  grain  sorting  fabric  is  substantiated  by  cement  variations  in  the   form  of  hematite  cement  ‘flow  shadow.’    Sample  CRY-­‐8  contains  a  quartz  pebble  floating   among  medium-­‐grained  sand  matrix.    On  one  side  of  the  pebble  there  is  an  elongated   zone  of  hematite  cement  that  tapers  to  a  point.    Accompanying  the  tapered  hematite   cement   patch   is   a   parallel   funnel   shaped   grain   sorting   pattern   20   mm   away,   also   containing   hematite   cement.     All   other   cement   in   the   vicinity   is   quartz.     This   sample   suggests  that  fluid  migration  preferentially  followed  crude  grain  sorting.     Cement   Tava  sandstone  cement  varies  between  hematite,  quartz,  and  carbonate  (Dockal,   2005;  Harms,  1965;  Kost,  1984)  (Figure  4).    Distinctive  red  and  white  redox  patterns   within   Tava   sandstone   arise   from   variations   in   cement   (red=hematite,   clear=quartz)   and   accompanying   grain   sorting   and/or   fracture   networks.     Furthermore,   limonite   (FeO[OH]ŸH2O)  is  observed  primarily  in  conjunction  with  bleached  zones.       Deformation  Bands  at  Microscopic  Scale     Brittle  deformation  differs  from  veining  due  to  the  presence  of  cataclasite  and   brecciation.     Deformation   bands   contain   angular   clasts   within   a   matrix   of   clay.     Deformation  bands  are  most  prevalent  in  sample  SLT-­‐2  where  they  reach  widths  of  3   mm  and  offset  redox  patterns  (Figure  6).    The  offsetting  of  redox  patterns  indicates  that   deformation  banding  post-­‐dates  the  formation  of  redox  patterning.               Fluid  Inclusions     Tava  thin  sections  show  an  abundance  of  yellow  colored  fluid  inclusions.    Fluid   inclusions  appear  to  be  secondary  in  nature,  as  they  follow  linear  curvo-­‐planar  healed  
  • 23.     23   fractures  within  quartz  grains.    Fluid  inclusions  are  primarily  limited  to  one  single  grain   but   are   sometimes   observed   bridging   multiple   grains.     Tava   fluid   inclusions   are   observed  in  many  shapes  and  sizes,  but  are  primarily  found  as  spheres  ranging  between   1-­‐2  μm  in  diameter.    Other  forms  include  ellipsoidal,  cylindrical,  and  a  highly  intricate   snowflake-­‐like  pattern  that  can  be  up  to  10  μm  in  size.       Quartz  and  Calcite  Veins     Quartz  and  calcite  veins  are  observed  among  samples  along  the  ~80  km  of  the   Ute  Pass  Fault.    Veins  are  observed  in  Tava  sandstone  samples  with  and  without  redox   patterns.    Veins  follow  inter-­‐grain  interstices  and  are  discontinuous  along  their  length   (Figure   8).     In   many   instances,   veins   control   the   shape   and   distribution   of   redox   patterns.    From  this,  it  is  interpreted  that  veins  formed  within  preferential  low-­‐pressure   dilation  bands  and  in  close  association  with  the  migration  of  reducing  fluids.    Reducing   fluids  preferentially  flowed  through  the  veins,  which  served  as  structural  conduits.     • Sample   CHR-­‐9   contains   spherical   patterning   controlled   by   multiple   crosscutting   veins.    Spherical  red  hematite  cement  is  only  present  at  vein  intersections,  while  the   remaining  cement  is  clear  to  white.    Assuming  that  hematite  cement  is  primary,  vein   intersections   became   seals   to   fluid   migration,   therefore   allowing   for   the   preservation  of  hematite  (Figure  8).   • Sample  CHR-­‐1  contains  spherical  cement  patterning,  but  unlike  CHR-­‐9,  there  is  only   one  solitary  calcite  vein.    The  one  bleached  sphere  in  sample  CHR-­‐1  occurs  at  the   termination/origin  of  the  calcite  vein  and  exhibits  a  teardrop  shape  following  the   trend  of  the  vein  (Figure  8).       • Sample  PINE-­‐1  exhibits  angular  redox  patterning,  and  contains  multiple  crosscutting   vein   relationships,   however,   unlike   in   Sample   CHR-­‐9,   red   hematite   cement   exists  
  • 24.     24   only  in  areas  without  veining;  that  is,  veins  contain  clear-­‐white-­‐tan  cement,  while   the  surrounding,  vein-­‐free  cement  is  pink-­‐red  (Figure  8).           • Sample  110-­‐5A  contains  one  calcite  vein  with  a  5  mm  wide  bleached  zone  on  either   side.    The  calcite  vein  is  up  to  2  mm  wide  and  pops  in  and  out  of  existence.    Limonite   is  closely  associated  with  the  bleached  zone  and  calcite  vein.    From  this,  calcite  and   limonite   may   be   reconstituted   calcium   and   iron   that   were   precipitated   out   of   solution   during   the   migration   of   reducing   fluids.     Furthermore,   the   calcite   vein   clearly  crosscuts  crude  grain  sorting  in  this  sample  indicating  that  calcite  veins  take   precedence  over  grain  sorting  as  a  fluid  conduit  when  observed  together  (Figure  8).       • Sample  SLT-­‐3  contains  two  quartz  veins  that  run  parallel  to  one  another,  although   one  of  the  veins  has  an  indention  towards  the  opposite  vein.    The  vein  indention   correlates   precisely   with   the   separation   of   two   zones   of   hematite   cement,   which   appear  to  have  been  molded  matching  the  quartz  veins.    This  indicates  that  the  veins   serve  as  structural  conduits  for  the  migration  of  reducing  fluids  (Figure  8).     Fluid  Flow  Controls   • While  grain  sorting  in  sample  CRY-­‐8  serves  as  the  main  fluid  migration  conduit,   sample  110-­‐5A  suggests  that  calcite  veins  are  more  permeable  fluid  pathways   than  grain  sorting.       • Sample   PINE-­‐1   shows   that   deformation   bands   offset   redox   patterns   indicating   that  deformation  banding  post-­‐dates  the  migration  of  reducing  fluids.    Therefore   deformation  bands  have  not  served  as  a  structural  conduit  for  the  migration  of   reducing  fluids  within  Tava  sandstone.   • The  calcite  vein  in  sample  110-­‐5A  proves  that  veins  are  the  most  prominent  fluid   migration  pathways  in  Tava  sandstone.  
  • 25.     25   G  E  O  C  H  E  M  I  C  A  L      R  E  S  U  L  T  S   Major  Oxides     Other   than   one   shale   sample,   Tava   sandstone   is   mature   quartz   arenite   with   quartz  contents  ranging  from  90-­‐97%  and  Fe2O3  (hematite)  compositions  ranging  from   <0.01  -­‐  6.36%.    To  determine  the  oxidation  state  of  Tava  sandstone  samples,  ratios  of   ferric   iron   (Fe2O3)   to   ferrous   iron   (FeO)   were   determined.     Ratios   less   than   0.5   are   reduced  (SLT-­‐6,  CHR-­‐1,  KRCD-­‐3,  DUPLX),  while  ratios  above  0.5  are  oxidized  (PW611,   TC-­‐1,  PEA-­‐1,  SLT-­‐5,  SH  324-­‐VE,  IM-­‐126)  (Figure  14).    Reduced  samples  contain  lower   total  iron  concentrations  than  oxidized  samples,  with  averages  of  0.71%  (reduced)  and   2.07%  (oxidized).    Furthermore,  reduced  samples  contain  positive  anomalies  of  boron   compared  to  oxidized  samples  with  averages  of  33.25  ppm  boron  (reduced)  and  16.6   ppm  boron  (oxidized)  (Table  1).           For  closer  examination,  Tava  sandstone  samples  are  divided  into  four  categories:   red  (PW611,  PEA-­‐1,  TC-­‐1),  mottled  (SLT-­‐5,  CHR-­‐1,  KRCD-­‐3),  bleached  (SLT-­‐6,  DUPLX,   SH   324-­‐VE),   and   shale   (IM-­‐126).     Red   Tava   samples   contain   the   most   hematite;   especially   sample   PW611   with   6.36%,   while   mottled   and   bleached   samples   contain   much   less   between   0.92   -­‐   <0.01%.     The   shale   rich   Tava   sample,   IM-­‐126,   contains   53.57%   quartz,   15.75%   Al2O3,   and   2.09%   Fe2O3,   and   is   a   rare   occurrence   in   Tava   sandstone  outcrops.    All  other  major  oxides  in  Tava  sandstone  samples,  including  FeO,   MnO,   MgO,   CaO,   Na2O,   K2O,   TiO2,   and   P2O5,   remain   quite   constant   throughout   all   categories.    IM-­‐126,  however,  has  much  more  major  oxide  concentrations  than  all  other   Tava  sandstone  samples.        
  • 26.     26   Trace  Elements   Barium  is  the  most  abundant  trace  element  in  Tava  sandstone,  ranging  between   73  to  421  ppm  (Table  2).    Bleached  Tava  samples  contain  the  most  barium  with  207,   193,  and  116  ppm.    Sample  PW611  (oxidized)  contains  the  least  barium  with  only  73   ppm.    Red  Tava  samples  are  enriched  in  chromium  and  zirconium  compared  to  mottled   and  white  Tava  samples.    Sample  IM-­‐126,  the  shale  rich  sample,  contains  the  most  trace   elements   in   general,   especially   Rubidium   (261ppm),   Vanadium   (83ppm),   Chromium   (89ppm),  Zirconium  (86ppm),  and  Barium  (90ppm).         Hydrocarbons     Preliminary   hydrocarbon   screening   revealed   the   qualitative   presence   of   hydrocarbons   in   samples   PEA-­‐1,   SLT-­‐5,   SLT-­‐6,   DUPLX,   and   GE700   (Glen   Eyrie   shale)   (Table   1).     From   this,   samples   PEA-­‐1   (qualitative),   KRCD-­‐3   (quantitative),   SLT-­‐6   (quantitative),   and   DUPLX   (quantitative)   were   selected   for   gas   chromatography   and   mass   spectrometry   diamondoid   analysis   (Table   3).     These   four   samples   collectively   span  the  full  spectrum  of  oxidation  states  for  Tava  sandstone  with  ferric/ferrous  ratios:   PEA-­‐1  =  1.09,  SLT-­‐6  =  0.46,  KRCD-­‐3  =  <0.01,  and  DUPLX  =  <0.01.    Furthermore,  PEA-­‐1   does  not  possess  any  redox  bleaching  patterns,  while  all  other  samples  do,  and  KRCD-­‐3   did   not   register   on   the   preliminary   hydrocarbon   screening   but   proved   positive   for   hydrocarbons  with  diamondoid  analysis.       Along   with   Tava   sandstone,   a   sample   of   Glen   Eyrie   shale   (qualitative)   from   Colorado  Springs  was  also  selected  for  Diamondoid  Analysis  to  serve  as  a  hydrocarbon   baseline  control  to  Tava  sandstone  results.    The  Glen  Eyrie  shale  is  made  up  of  a  series   of   incomplete   cyclotherms   composed   of   alternating   coaly   black   shales,   black-­‐grey   sandstones,   and   marly   limestones.     Glen   Eyrie   shale   has   been   dated   to   the   early  
  • 27.     27   Pennsylvanian   Period   from   its   location   beneath   the   arkose   Fountain   Formation   and   index  fossils  including  conodonts,  brachiopods,  and  bryozoans  (Chronic  and  Williams,   1978).    Currently,  no  known  studies  have  tested  the  hydrocarbon  potential  of  Glen  Eyrie   shale.       Diamondoid  analysis  confirmed  the  qualitative  presence  of  hydrocarbons  in  all   Tava   samples   as   well   as   Glen   Eyrie   shale.     All   samples   contain   n-­‐alkanes,   but   only   samples  DUPLX,  and  SLT-­‐6  revealed  hopanes,  steranes,  and  diamondoids  (Table  2).    All   hydrocarbons   are   composed   of   hydrogen   and   carbon   atoms,   but   are   categorized   depending   on   their   structure   and   bonds.     N-­‐alkanes   are   simple   carbon   chains   with   single   bonds   to   hydrogen.     The   carbon   number   of   an   n-­‐alkane   identifies   how   many   carbon   atoms   make   up   the   carbon   chain.     Hopanes   and   steranes   are   comprised   of   carbon  rings  with  both  single  and  double  bonds  to  hydrogen.    Carotenoids  are  chains  of   40  carbon  atoms  that  are  produced  by  plants  and  cannot  be  made  by  animals.           • Glen  Eyrie  shale  is  composed  of  n-­‐alkanes  between  n-­‐C12  through  n-­‐C27  with   one  peak  at  n-­‐C16  that  tails  off  to  n-­‐C24.       • Sample   KRCD-­‐3   contains   n-­‐alkanes   n-­‐C15,   n-­‐C17,   and   n-­‐C18   -­‐   C28.     KRCD-­‐3   shows  a  much  smaller  peak  than  Glen  Eyrie  at  n-­‐C21  that  tails  off  on  either  side   to  n-­‐C19  and  n-­‐C23.    Sample  KRCD-­‐3  did  not  register  on  the  initial  hydrocarbon   screening,  and  yet  it  revealed  minor  traces  of  hydrocarbons  upon  diamondoid   analysis.       • Sample  PEA-­‐1  contains  n-­‐alkanes  n-­‐C13  –  C16,  n-­‐C18,  and  n-­‐C22  –  C26.  Sample   PEA-­‐1  does  not  exhibit  redox  patterns.       SLT-­‐6  and  DUPLX  were  sampled  for  quantitative  Diamondoid  analysis,  which  revealed   the  presence  of  more  complex  and  stable  hydrocarbon  molecules.      
  • 28.     28   • Sample  SLT-­‐6  contains  n-­‐C10,  n-­‐C12,  n-­‐C15,  and  n-­‐C21  –  C26  with  a  peak  at  n-­‐ C22  that  tails  down  to  n-­‐C26.    Maximum  abundances  of  n-­‐alkanes  are  n-­‐C21,  C22,   and  C23  with  28,600  ppb,  32,900  ppb,  and  29,600  ppb  respectively.    Sample  SLT-­‐ 6  also  revealed  one  carotenoid,  trimethylpentadecane  (125  ppb).       • Sample  DUPLX  revealed  the  highest  quantity  of  hydrocarbons  out  of  any  sample.     DUPLX  contains  n-­‐alkanes  n-­‐C10,  n-­‐C12,  and  n-­‐C20  –  C31  with  a  lone  peak  at  n-­‐ C20  and  an  asymmetrical  peak  at  n-­‐C29  that  tails  off  at  n-­‐C31.    DUPLX  contains   the  most  abundance  of  n-­‐alkanes  at  n-­‐C20  (223,500  ppb),  n-­‐C29  (431,000  ppb),   n-­‐C30  (379,000  ppb)  and  n-­‐C31  (138,000  ppb).    Furthermore,  DUPLX  contains   an  abundance  of  hopanes,  steranes,  and  carotenoids.    Two  species  of  triaromatic   steranes  were  revealed,  both  chlorestane  (706  ppb)  and  ergostane  (2,860  ppb).     Two  species  of  hopanes  were  also  observed,  both  trisnorhopane  (302  ppb)  and   norhopane   (150   ppb).     Three   carotenoids   were   recorded   including   trimethylpentadecane   (137   ppb),   tetramethylnonadecane   (69.9   ppb),   and   squalane  (113  ppb).         X-­‐Ray  Diffraction  (XRD)     Samples   IM-­‐126   and   SH   324-­‐VE   were   selected   for   x-­‐ray   diffraction   analysis   because  they  contain  visible  green  shale  clasts  (Figure  15).    Sample  SP313  (relative  to   PEA-­‐1)   was   also   selected.     Green-­‐grey   in   color,   these   shale   clasts   are   dispersed   sporadically  and  can  be  up  to  1.0  cm  long  and  0.25  cm  wide.    Sample  IM-­‐126  yielded   XRD  peaks  correlating  to  quartz,  illite,  and  dolomite,  while  sample  SH  324-­‐VE  revealed   quartz,   montmorillonite,   and   graphite.     Sample   SP313   contains   quartz,   albite,   and   chlorite.    The  presence  of  graphite  in  sample  SH  324-­‐VE  indicates  strong  carbon  content   within  the  shale.          
  • 29.     29   D  I  S  C  U  S  S  I  O  N        The  presence  of  hydrocarbons  in  Tava  sandstone  indicates  that  the  Tava  dike   complex  has  served  as  a  fluid  migration  pathway  for  hydrocarbons.    For  this  to  occur   there  must  be  a  source  of  mature  hydrocarbons  in  the  Front  Range  as  well  as  tectonism   to  initiate  hydrocarbon  migration.    Tava  sandstone  is  Neoproterozoic  in  age  (~750  Ma),   and  because  of  this,  Tava  hydrocarbons  may  be  as  old  as  Neoproterozoic,  or  as  young  as   Cenozoic.     The   three   most   likely   sources   of   hydrocarbons   to   migrate   through   Tava   sandstone  include  in  situ  thermal  maturation  of  microbial  material  deposited  in  Tava   sandstone   during   original   deposition,   Paleozoic   limestones   and   shales   including   the   Manitou  Limestone  and  Glen  Eyrie  Shale,  or  Cretaceous  Interior  Seaway  limestones  and   shales   such   as   the   Niobrara   Formation   and   Pierre   Shale.     Tava   sandstone   has   been   subjected  to  ~750  million  years  of  tectonism  and  alteration  from  movement  along  the   Ute  Pass  Fault  zone.    The  three  known  phases  of  tectonism  to  affect  the  Front  Range  are   extensional   rifting   during   the   Neoproterozoic   (~750   Ma),   Ancestral   Rocky   Mountain   Orogeny  (~300  Ma),  and  the  Laramide  Orogeny  (~60  Ma).    Processes  such  as  faulting,   erosion,  and  temperature  change  related  to  tectonic  exhumation  or  burial  could  have   caused  migration  or  leakage  of  hydrocarbons  during  any  of  these  stages.     Calcite  and  quartz  veins  are  the  primary  fluid  conduits  within  Tava  sandstone.     In  areas  of  strong  redox,  conjugate  veins  are  visibly  enhanced  by  redox  patterns.    The   formation   of   conjugate   veins   may   be   due   to   a   decompression   of   the   dike   margins   following  rapid,  pressurized  injection.    This  process  is  well  documented  in  sandstone   injectites  of  the  Viking  Graben  in  the  North  Sea  where  silica  has  been  precipitated  in   conjugate   veins   (Jonk   et   al.,   2005).     In   Tava   however,   calcite   vein   filling   may   have   formed  by  chemical  reactions  between  CO2  and  calcium  during  secondary  migration  of  
  • 30.     30   reducing   fluids   through   primary   conjugate   deformation   bands   (Ehrlich   and   Newman,   2009).         Cross  cutting  relationships  in  sample  PINE-­‐1  indicate  that  a  secondary  phase  of   deformation  bands  formed  within  Tava  sandstone  following  the  migration  of  reducing   fluids.    Since  the  last  tectonism  to  affect  Tava  sandstone  was  the  Laramide  Orogeny,  this   implies  that  redox,  and  therefore  hydrocarbon  migration,  must  have  occurred  prior  to   the   Laramide   Orogeny   (~60   Ma).     This   also   rules   out   all   hydrocarbon   source   rocks   younger  than  ~60  Ma  as  the  source  of  hydrocarbons  in  Tava  sandstone.         The   presence   of   n-­‐alkanes   in   the   ten   Tava   sandstone   samples   offers   possible   evidence  that  regional  hydrocarbon  migration  has  occurred  along  the  Front  Range  prior   to   the   Laramide   Orogeny   according   to   the   following   rationale.     N-­‐alkanes   are   highly   susceptible   to   biodegradation,   so   n-­‐alkanes   in   Tava   sandstone   are   likely   from   a   Paleozoic-­‐Mesozoic   regional   hydrocarbon   source   rock.     The   highest   amounts   of   n-­‐ alkanes   observed   in   Tava   sandstone   are   n-­‐C29-­‐31   at   431,000,   379,000,   and   138,000   ppb,  respectively,  within  sample  DUPLX.    The  abundance  of  these  larger  n-­‐alkanes  is   indicative   of   terrestrial   plant   wax   input.     However,   it   should   be   noted   that   biodegradation   would   preferentially   attenuate   smaller   n-­‐alkanes,   which   is   noticed   in   Tava  samples.    Disregarding  a  strong  influence  from  biodegradation,  the  abundance  of   large   n-­‐alkanes   further   narrows   the   source   of   Tava   hydrocarbons   to   post   Ordovician   (~450  Ma).    This  is  based  on  the  fact  that  terrestrial  plants  did  not  exist  until  the  Late   Ordovician.    This  further  limits  the  remaining  hydrocarbon  source  rocks  in  the  Front   Range   to   Hardscrabble   Limestone,   Glen   Eyrie   Shale,   Niobrara   Formation,   and   Pierre   Shale.         GC/MS   on   oil   samples   from   the   Florence   Oil   Field   in   Cañon   City,   Colorado   indicate   that   the   Sharon   Springs   member   of   the   Pierre   Shale   is   the   source   for   the  
  • 31.     31   Florence  field  (Lillis  et  al.,  1998).    N-­‐alkanes  within  a  sample  directly  taken  from  the  oil   field   indicate   a   peak   at   n-­‐C15   that   trails   to   n-­‐C31.     Tava   sandstone   and   the   Sharon   Springs   member   of   the   Pierre   Shale   share   mutual   maximum   n-­‐alkanes   at   n-­‐C31   potentially  indicating  a  relationship.       Tava  and  Glen  Eyrie  hydrocarbons  share  similar  maximum  n-­‐Alkanes  (n-­‐C27  for   Glen  Eyrie  and  n-­‐C31  for  Tava).    The  minimum  n-­‐Alkanes  are  n-­‐C10  for  Tava  and  n-­‐C12   for  Glen  Eyrie.    This  difference  in  minimum  n-­‐Alkanes  can  be  explained  by  preferential   biodegradation  patterns  due  to  different  surface  exposure  periods  for  the  two  samples.     Furthermore,   biodegradation   can   explain   the   attenuated   peaks   shown   in   the   chromatogram  for  Tava  sandstone.         The  high  abundances  of  boron  and  barium  in  Tava  samples  containing  redox  are   presumably   caused   by   hydrocarbon-­‐bearing   reservoir   brines.     Brines   are   known   to   carry  in  solution  excess  amounts  of  boron  and  incompatible  elements  such  as  barium.    I   propose  that  reservoir  brine  from  either  the  Denver  Basin  or  the  Florence  Oil  Field  has   introduced  hydrocarbons  into  Tava  sandstone,  therefore  leading  to  redox,  as  well  as  an   increase   in   boron   and   barium.     Brines   carrying   hydrocarbons   have   low   density   and   therefore  rise  to  the  surface  through  any  structural  or  stratigraphic  conduit  available.     These  brines  presumably  flowed  through  the  Ute  Pass  Fault  zone  and  came  into  contact   with  Tava  sandstone  during  their  upward  migration.       Sample   PEA-­‐1   (dark   brown   in   color)   contains   hydrocarbons   but   has   no   redox   indicating  that  hydrocarbons  and  redox  are  not  necessarily  associated.    Because  of  this,   no  less  than  two  sources  of  hydrocarbons  must  be  contained  within  Tava  sandstone.     For  PEA-­‐1  to  contain  hydrocarbons  but  lack  redox  implies  that  no  secondary  migration   of  hydrocarbons  has  occurred  within  PEA-­‐1  to  initiate  redox.    From  this,  I  propose  that   PEA-­‐1  contains  original  Neoproterozoic  hydrocarbons  that  matured  in  situ  within  Tava  
  • 32.     32   sandstone  during  down-­‐faulting  of  Pikes  Peak  Granite  following  the  formation  of  Tava   sandstone  injectites.       A  potential  source  of  in  situ  hydrocarbon  maturation  within  Tava  sandstone  is   randomly  dispersed  green  shale  clasts  (Figure  15).    X-­‐ray  diffraction  on  the  shale  clasts   reveals   the   presence   of   graphite   (SH   324-­‐VE),   indicating   carbon   content   within   the   shale.    Most  shale  clasts  are  green  in  color,  however  black  shale  clasts  are  observed  as   well.    A  bleached  sphere  commonly  surrounds  black  shale  clasts.    This  may  indicate  that   black  shale  clasts  have  thermally  generated  hydrocarbons  that  are  responsible  for  the   reducing  conditions  that  arose  in  the  surrounding  halo.    One  outcrop  of  green  shale  (IM-­‐ 126)  hosted  in  Pikes  Peak  Granite  is  located  near  sample  SLT-­‐6.    This  may  explain  the   abundance  of  shale  clasts  and  hydrocarbons  within  SLT-­‐6.   Aside   from   thermal   maturation,   green   shale   clasts   may   have   produced   hydrocarbons  by  a  process  known  as  microbial  methanogenesis.      The  origins  of  calcite   veins   in   Tava   sandstone   may   be   associated   with   this   same   process.     Microbial   methanogenesis   is   a   process   by   which   microbes,   known   as   methanogens,   convert   carbon   dioxide   and   hydrogen   into   methane   and   water   (Budai   et   al.,   2002).     Methane/water   fluids   created   during   microbial   methanogenesis   are   reducing   fluids   capable  of  bleaching  sandstone.    Microbial  methanogenesis  requires  the  infiltration  of   microbial   bearing   fluids   into   an   organic   carbon-­‐rich   formation.     Possible   sources   of   carbon  within  Tava  sandstone  are  the  green  shale  clasts,  determined  in  one  sample  to   contain   graphite.     Potential   times   of   fluid   infiltration   that   could   have   provided   methanogens  into  Tava  sandstone  coincide  with  tectonism  along  the  Front  Range  (i.e.   Neoproterozoic   rifting,   Pennsylvanian   ARMO,   or   Cretaceous-­‐Paleogene   Laramide   orogeny).