SlideShare a Scribd company logo
1 of 93
NDSL Copyright@2008
1.1
Chapter 4
Digital Transmission
NDSL Copyright@2008
1.2
4-1 DIGITAL-TO-DIGITAL CONVERSION
In this section, we see how we can represent digital
data by using digital signals. The conversion involves
three techniques: line coding, block coding, and
scrambling. Line coding is always needed; block
coding and scrambling may or may not be needed.
Line Coding
Line Coding Schemes
Block Coding
Scrambling
Topics discussed in this section:
NDSL Copyright@2008
1.3
Signal Element versus Data Element
• Data element
– The smallest entity that can represent a piece of
information: this is bit.
• Signal element
– The shortest unit (timewise) of a digital signal.
• In other words
– Data element are what we need to send.
– Signal elements are what we can send.
NDSL Copyright@2008
1.4
Figure 4.1 Line coding and decoding
NDSL Copyright@2008
1.5
Figure 4.2 Signal element versus data element
NDSL Copyright@2008
1.6
Data Rate versus Signal Rate
• Data rate
– The number of data elements (bits) sent in 1s
– The unit is bits per second (bps)
– Called bit rate
• Signal rate
– The number of signal elements sent in 1s
– The unit is the baud
– Signal rate is sometimes called the pulse rate, the modulation rate,
or the baud rate
• Relationship between data rate and signal rate
• S: number of signal elements, c: the case factor, N: data
rate (bps), r: data elements per signal elements
r
N
c
S
1


 baud
NDSL Copyright@2008
1.7
A signal is carrying data in which one data element is
encoded as one signal element (r = 1). If the bit rate is
100 kbps, what is the average value of the baud rate if c is
between 0 and 1?
Solution
We assume that the average value of c is 1/2 . The baud
rate is then
Example 4.1
NDSL Copyright@2008
1.8
Although the actual bandwidth of a
digital signal is infinite, the effective
bandwidth is finite.
Note
NDSL Copyright@2008
1.9
The maximum data rate of a channel (see Chapter 3) is
Nmax = 2 × B × log2 L (defined by the Nyquist formula).
Does this agree with the previous formula for Nmax?
Solution
A signal with L levels actually can carry log2L bits per
level. If each level corresponds to one signal element and
we assume the average case (c = 1/2), then we have
Example 4.2
NDSL Copyright@2008
1.10
Baseline Wandering
• In decoding a digital signal, the receiver calculates
a running average of the received signal power.
• This average is called the baseline.
• The incoming signal power is evaluated against
this baseline to determine the value of the data
element.
• A long string of 0s or 1s can cause a drift in the
baseline (baseline wandering) and make it
difficult for the receiver to decode correctly.
• A good line coding scheme needs to prevent
baseline wandering.
NDSL Copyright@2008
1.11
Figure 4.3 Effect of lack of synchronization
NDSL Copyright@2008
1.12
DC Components
• DC Components
– When the voltage level in a digital signal is constant for a
while, the spectrum creates very low frequencies (results
of Fourier analysis).
– These frequencies around zero, call DC (direct-current)
components, present problems for a system that cannot
pass low frequencies or a system that uses electrical
coupling (via a transformer).
– For example, a telephone line cannot pass frequencies
below 200 Hz.
NDSL Copyright@2008
1.13
Self-synchronization
• To correctly interpret the signals received from the
sender, the receiver’s bit intervals must correspond
exactly to the sender’s bit intervals. If the receiver
clock is faster or slower, the bit intervals are not
matched and the receiver might misinterpret the
signals.
• Self-synchronization
– Digital signal includes timing information in the data
being transmitted.
– This can be achieved if there are transitions in the signal
that alert the receiver to the beginning, middle, or end of
the pulse.
NDSL Copyright@2008
1.14
In a digital transmission, the receiver clock is 0.1 percent
faster than the sender clock. How many extra bits per
second does the receiver receive if the data rate is
1 kbps? How many if the data rate is 1 Mbps?
Solution
At 1 kbps, the receiver receives 1001 bps instead of 1000
bps.
Example 4.3
At 1 Mbps, the receiver receives 1,001,000 bps instead of
1,000,000 bps.
NDSL Copyright@2008
1.15
Figure 4.4 Line coding schemes
NDSL Copyright@2008
1.16
Figure 4.5 Unipolar NRZ scheme
Non-Return-to-Zero (NRZ)
It is called NRZ because the signal does not return to zero at the middle of the bit.
NDSL Copyright@2008
1.17
Figure 4.6 Polar NRZ-L and NRZ-I schemes
NRZ-L (NRZ-Level), NRZ-I (NRZ-Invert)
NDSL Copyright@2008
1.18
In NRZ-L the level of the voltage
determines the value of the bit.
In NRZ-I the inversion
or the lack of inversion
determines the value of the bit.
Note
NDSL Copyright@2008
1.19
NRZ-L and NRZ-I both have an average
signal rate of N/2 Bd.
Note
NDSL Copyright@2008
1.20
NRZ-L and NRZ-I both have a DC
component problem.
Note
NDSL Copyright@2008
1.21
A system is using NRZ-I to transfer 10-Mbps data. What
are the average signal rate and minimum bandwidth?
Solution
The average signal rate is S = N/2 = 500 kbaud. The
minimum bandwidth for this average baud rate is Bmin =
S = 500 kHz.
Example 4.4
NDSL Copyright@2008
1.22
Figure 4.7 Polar RZ scheme
RZ: Return-to-Zero
NDSL Copyright@2008
1.23
Figure 4.8 Polar biphase: Manchester and differential Manchester schemes
NDSL Copyright@2008
1.24
In Manchester and differential
Manchester encoding, the transition
at the middle of the bit is used for
synchronization.
Note
NDSL Copyright@2008
1.25
The minimum bandwidth of Manchester
and differential Manchester is 2 times
that of NRZ.
Note
NDSL Copyright@2008
1.26
Bipolar Schemes
• Bipolar encoding (sometimes called multilevel
binary)
– Three voltage levels: positive, negative, and zero
• Two variations of bipolar encoding
– AMI (alternate mark inversion)
• 0: neutral zero voltage
• 1: alternating positive and negative voltages
– Pseudoternary
• 1: neutral zero voltage
• 0: alternating positive and negative voltages
• Bipolar schemes have no DC component problem
NDSL Copyright@2008
1.27
In bipolar encoding, we use three levels:
positive, zero, and negative.
Note
NDSL Copyright@2008
1.28
AMI and Pseudoternary
• AMI (alternate mark inversion)
– The work mark comes from telegraphy and means 1.
– AMI means alternate 1 inversion
– The neutral zero voltage represents binary 0.
– Binary 1s are represented by alternating positive and
negative voltages.
• Pesudotenary
– Same as AMI, but 1 bit is encoded as a zero voltage and
the 0 bit is encoded as alternating positive and negative
voltages.
NDSL Copyright@2008
1.29
Figure 4.9 Bipolar schemes: AMI and pseudoternary
NDSL Copyright@2008
1.30
Multilevel Schemes
• The desire to increase the data speed or decrease the
required bandwidth has resulted in the creation of many
schemes.
• The goal is to increase the number of bits per baud by
encoding a pattern of m data elements into a pattern of n
signal elements.
• Different types of signal elements can be allowing different
signal levels.
• If we have L different levels, then we can produce Ln
combinations of signal patterns.
• The data element and signal element relation is
• mBnL coding, where m is the length of the binary pattern, B
means binary data, n is the length of the signal pattern, and
L is the number of levels in the signaling.
• B (binary, L=2), T (tenary, L=3), and Q (quaternary, L=4).
n
m
L

2
NDSL Copyright@2008
1.31
In mBnL schemes, a pattern of m data
elements is encoded as a pattern of n
signal elements in which 2m ≤ Ln.
Note
NDSL Copyright@2008
1.32
2B1Q
• 2B1Q (two binary, one quaternary)
– m=2, n=1, and L=4
– The signal rate (baud rate)
• 2B1Q is used in DSL (digital subscriber line) technology to
provide a high-speed connection to the Internet by using
subscriber telephone lines.
4
2
1
2
1
1 N
N
r
cN
S 




NDSL Copyright@2008
1.33
Figure 4.10 Multilevel: 2B1Q scheme
2
NDSL Copyright@2008
1.34
8B6T
• Eight binary, six ternary (8B6T)
– This code is used with 100BASE-4T cable.
– Encode a pattern of 8 bits as a pattern of 6 signal elements, where
the signal has three levels (ternary).
– 28=256 different data patterns and 36=478 different signal patterns.
(The mapping is shown in Appendix D.)
– There are 478-256=222 redundant signal elements that provide
synchronization and error detection.
– Part of the redundancy is also used to provide DC (direct-current)
balance.
• + (positive signal), - (negative signal), and 0 (lack of signal)
notation.
• To make whole stream DC-balanced, the sender keeps
track of the weight
NDSL Copyright@2008
1.35
Figure 4.11 Multilevel: 8B6T scheme
Invert - + + - 0 - = -1
+1
NDSL Copyright@2008
1.36
4D-PAM5
• Four-dimensional five-level pulse amplitude modulation
(4D-PAM5)
– 4D means that data is sent over four wires at the same time.
– It uses five voltage levels, such as -2, -1, 0, 1, and 2.
– The level 0 is used only for forward error detection.
– If we assume that the code is just one-dimensional, the four levels
create something similar to 8B4Q.
– The worst signal rate for this imaginary one-dimensional version is
Nx4/8, or N/2.
– 4D-PAM5 sends data over four channels (four wires). This means
the signal rate can be reduced to N/8.
– All 8 bits can be fed into a wire simultaneously and sent by using
one signal element.
– Gigabit Ethernet use this technique to send 1-Gbps data over four
copper cables that can handle 1Gbps/8 = 125Mbaud
NDSL Copyright@2008
1.37
Figure 4.12 Multilevel: 4D-PAM5 scheme
NDSL Copyright@2008
1.38
Multiline Transmission: MLT-3
• The multiline transmission, three level (MLT-3)
• Three levels (+V, 0, and –V) and three transition rules to
move the levels
– If the next bit is 0, there is no transition
– If the next bit is 1 and the current level is not 0, the next level is 0.
– If the next bit is 1 and the current level is 0, the next level is the
opposite of the last nonzero level.
• Why do we need to use MLT-3?
– The signal rate for MLT-3 is one-fourth the bit rate (N/4).
– This makes MLT-3 a suitable choice when we need to send 100
Mbps on a copper wire that cannot support more than 32 MHz
(frequencies above this level create electromagnetic emission).
NDSL Copyright@2008
1.39
Figure 4.13 Multitransition: MLT-3 scheme
NDSL Copyright@2008
1.40
Table 4.1 Summary of line coding schemes
NDSL Copyright@2008
1.41
Block Coding
• Use redundancy to ensure synchronization and to
provide some kind of inherent error detecting.
• In general, block coding changes a block of m
bits into a block of n bits, where n is larger than m.
• Block coding is referred to as an mB/nB encoding
technique.
• For example:
– 4B/5B encoding means a 4-bit code for a 5-bit group.
NDSL Copyright@2008
1.42
Block coding is normally referred to as
mB/nB coding;
it replaces each m-bit group with an
n-bit group.
Note
NDSL Copyright@2008
1.43
Figure 4.14 Block coding concept
NDSL Copyright@2008
1.44
Figure 4.15 Using block coding 4B/5B with NRZ-I line coding scheme
NDSL Copyright@2008
1.45
4B/5B Encoding
• 5-bit output that replaces the 4-bit input
• No more than one leading zero (left bit) and no
more than two trailing zeros (right bits).
• There are never more than three consecutive 0s.
• If a 5-bit group arrives that belongs to the unused
portion of the table, the receiver knows that there is
an error in the transmission.
NDSL Copyright@2008
1.46
Table 4.2 4B/5B mapping codes
NDSL Copyright@2008
1.47
Figure 4.16 Substitution in 4B/5B block coding
NDSL Copyright@2008
1.48
We need to send data at a 1-Mbps rate. What is the
minimum required bandwidth, using a combination of
4B/5B and NRZ-I or Manchester coding?
Solution
First 4B/5B block coding increases the bit rate to 1.25
Mbps. The minimum bandwidth using NRZ-I is N/2 or
625 kHz. The Manchester scheme needs a minimum
bandwidth of 1 MHz. The first choice needs a lower
bandwidth, but has a DC component problem; the second
choice needs a higher bandwidth, but does not have a DC
component problem.
Example 4.5
NDSL Copyright@2008
1.49
Figure 4.17 8B/10B block encoding
NDSL Copyright@2008
1.50
Scrambling
• Biphase schemes that are suitable for dedicated links
between stations in a LAN are not suitable for long-
distance communication because of their wide bandwidth
requirement.
• The combination of block coding and NRZ line coding is not
suitable for long-distance encoding either, because of the
DC component problem.
• Bipolar AMI encoding, on the other hand, has a narrow
bandwidth and does not create a DC component.
• However, a long sequence of 0s upsets the synchronization.
• If we can find a way to avoid a long sequence of 0s in the
original stream, we can use bipolar AMI for long distances.
• One solution is called scrambling.
NDSL Copyright@2008
1.51
Figure 4.18 AMI used with scrambling
NDSL Copyright@2008
1.52
B8ZS
• Bipolar with 8-zero substitution (B8ZS)
– Commonly used in North America
– Eight consecutive zero-level voltages are replaced by
the sequence 000VB0VB.
– The V in the sequence denotes violation; that is a
nonzero voltage that breaks an AMI rule of encoding
(opposite polarity from the previous).
– The B in the sequence denotes bipolar, which means a
nonzero level voltage in accordance with the AMI rule.
NDSL Copyright@2008
1.53
Figure 4.19 Two cases of B8ZS scrambling technique
NDSL Copyright@2008
1.54
B8ZS substitutes eight consecutive
zeros with 000VB0VB.
Note
NDSL Copyright@2008
1.55
HDB3
• High-density bipolar 3-zero (HDB3)
– Used outside of North America
– Four consecutive zero-level voltages are replaced with a
sequence of 000V or B00V.
– 1. If the number of nonzero pulses after the last
substitution is odd, the substitution pattern will be 000V,
which makes the total number of nonzero pulses even.
– 2. If the number of nonzero pulses after the last
substitution is even, the substitution pattern will be B00V,
which means makes the total number of nonzero pulses
even.
NDSL Copyright@2008
1.56
Figure 4.20 Different situations in HDB3 scrambling technique
NDSL Copyright@2008
1.57
HDB3 substitutes four consecutive
zeros with 000V or B00V depending
on the number of nonzero pulses after
the last substitution.
Note
NDSL Copyright@2008
1.58
4-2 ANALOG-TO-DIGITAL CONVERSION
We have seen in Chapter 3 that a digital signal is
superior to an analog signal. The tendency today is to
change an analog signal to digital data. In this section
we describe two techniques, pulse code modulation
and delta modulation.
Pulse Code Modulation (PCM)
Delta Modulation (DM)
Topics discussed in this section:
NDSL Copyright@2008
1.59
Figure 4.21 Components of PCM encoder
NDSL Copyright@2008
1.60
Figure 4.22 Three different sampling methods for PCM
NDSL Copyright@2008
1.61
According to the Nyquist theorem, the
sampling rate must be
at least 2 times the highest frequency
contained in the signal.
Note
NDSL Copyright@2008
1.62
Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals
NDSL Copyright@2008
1.63
For an intuitive example of the Nyquist theorem, let us
sample a simple sine wave at three sampling rates: fs = 4f
(2 times the Nyquist rate), fs = 2f (Nyquist rate), and
fs = f (one-half the Nyquist rate). Figure 4.24 shows the
sampling and the subsequent recovery of the signal.
It can be seen that sampling at the Nyquist rate can create
a good approximation of the original sine wave (part a).
Oversampling in part b can also create the same
approximation, but it is redundant and unnecessary.
Sampling below the Nyquist rate (part c) does not produce
a signal that looks like the original sine wave.
Example 4.6
NDSL Copyright@2008
1.64
Figure 4.24 Recovery of a sampled sine wave for different sampling rates
NDSL Copyright@2008
1.65
Consider the revolution of a hand of a clock. The second
hand of a clock has a period of 60 s. According to the
Nyquist theorem, we need to sample the hand every 30 s
(Ts = T or fs = 2f ). In Figure 4.25a, the sample points, in
order, are 12, 6, 12, 6, 12, and 6. The receiver of the
samples cannot tell if the clock is moving forward or
backward. In part b, we sample at double the Nyquist rate
(every 15 s). The sample points are 12, 3, 6, 9, and 12.
The clock is moving forward. In part c, we sample below
the Nyquist rate (Ts = T or fs = f ). The sample points are
12, 9, 6, 3, and 12. Although the clock is moving forward,
the receiver thinks that the clock is moving backward.
Example 4.7
NDSL Copyright@2008
1.66
Figure 4.25 Sampling of a clock with only one hand
NDSL Copyright@2008
1.67
An example related to Example 4.7 is the seemingly
backward rotation of the wheels of a forward-moving car
in a movie. This can be explained by under-sampling. A
movie is filmed at 24 frames per second. If a wheel is
rotating more than 12 times per second, the under-
sampling creates the impression of a backward rotation.
Example 4.8
NDSL Copyright@2008
1.68
Telephone companies digitize voice by assuming a
maximum frequency of 4000 Hz. The sampling rate
therefore is 8000 samples per second.
Example 4.9
NDSL Copyright@2008
1.69
A complex low-pass signal has a bandwidth of 200 kHz.
What is the minimum sampling rate for this signal?
Solution
The bandwidth of a low-pass signal is between 0 and f,
where f is the maximum frequency in the signal.
Therefore, we can sample this signal at 2 times the
highest frequency (200 kHz). The sampling rate is
therefore 400,000 samples per second.
Example 4.10
NDSL Copyright@2008
1.70
A complex bandpass signal has a bandwidth of 200 kHz.
What is the minimum sampling rate for this signal?
Solution
We cannot find the minimum sampling rate in this case
because we do not know where the bandwidth starts or
ends. We do not know the maximum frequency in the
signal.
Example 4.11
NDSL Copyright@2008
1.71
Figure 4.26 Quantization and encoding of a sampled signal
NDSL Copyright@2008
1.72
Quantization
• Quantization Levels
– Choosing lower values of L increases the quantization
error if there is a lot of fluctuation in the signal.
• Quantization Error
– If the input value is also at the middle of the zone, there
is no quantization error; otherwise, there is an error.
– It can be proven that the contribution of the quantization
error to the SNRdB of the signal depends on the number
of quantization levels L, or the bits per sample nb, as
shown in the following formula:
SNRdB = 6.02nb + 1.76 dB
NDSL Copyright@2008
1.73
What is the SNRdB in the example of Figure 4.26?
Solution
We can use the formula to find the quantization. We have
eight levels and 3 bits per sample, so
SNRdB = 6.02(3) + 1.76 = 19.82 dB
Increasing the number of levels increases the SNR.
Example 4.12
NDSL Copyright@2008
1.74
A telephone subscriber line must have an SNRdB above
40. What is the minimum number of bits per sample?
Solution
We can calculate the number of bits as
Example 4.13
Telephone companies usually assign 7 or 8 bits per
sample.
NDSL Copyright@2008
1.75
Quantization
• Uniform versus nonuniform quantization
– Changes in amplitude often occur more frequently in the
lower amplitudes than in the higher ones.
– Nonuniform quantization
• Companding
• Expanding
• Encoding
– nb = log2L
– Bit rate = sampling rate x number of bits per sample
= fs x nb
NDSL Copyright@2008
1.76
We want to digitize the human voice. What is the bit rate,
assuming 8 bits per sample?
Solution
The human voice normally contains frequencies from 0
to 4000 Hz. So the sampling rate and bit rate are
calculated as follows:
Example 4.14
NDSL Copyright@2008
1.77
Figure 4.27 Components of a PCM decoder
NDSL Copyright@2008
1.78
PCM Bandwidth
• The minimum bandwidth of the channel that can pass the
digitized signal:
• When 1/r = 1 (for NRZ or bipolar signal) and c = ½
r
B
n
c
r
f
n
c
r
N
c
B b
s
b
1
2
1
1
analog
min 











analog
min B
n
B b 

NDSL Copyright@2008
1.79
Maximum data rate of a channel
• Maximum data rate of a channel
• The data rate is
• Minimum required bandwidth
L
B
N 2
max log
2 

 bps
L
B
n
f
N b
s 2
log
2 




L
N
B
2
min
log
2
 Hz
NDSL Copyright@2008
1.80
We have a low-pass analog signal of 4 kHz. If we send the
analog signal, we need a channel with a minimum
bandwidth of 4 kHz. If we digitize the signal and send 8
bits per sample, we need a channel with a minimum
bandwidth of 8 × 4 kHz = 32 kHz.
Example 4.15
NDSL Copyright@2008
1.81
Figure 4.28 The process of delta modulation
NDSL Copyright@2008
1.82
Figure 4.29 Delta modulation components
NDSL Copyright@2008
1.83
Figure 4.30 Delta demodulation components
NDSL Copyright@2008
1.84
Adaptive DM
• Adaptive delta modulation
– A better performance can be achieved if the value of δ is
not fixed.
– The value of δ changes according to the amplitude of the
analog signal.
• Quantization Error
– DM is not perfect.
– Quantization error is always introduced in the process.
– Much less than that for PCM.
NDSL Copyright@2008
1.85
4-3 TRANSMISSION MODES
The transmission of binary data across a link can be
accomplished in either parallel or serial mode. In
parallel mode, multiple bits are sent with each clock
tick. In serial mode, 1 bit is sent with each clock tick.
While there is only one way to send parallel data, there
are three subclasses of serial transmission:
asynchronous, synchronous, and isochronous.
Parallel Transmission
Serial Transmission
Topics discussed in this section:
NDSL Copyright@2008
1.86
Figure 4.31 Data transmission and modes
NDSL Copyright@2008
1.87
Figure 4.32 Parallel transmission
NDSL Copyright@2008
1.88
Figure 4.33 Serial transmission
NDSL Copyright@2008
1.89
In asynchronous transmission, we send
1 start bit (0) at the beginning and 1 or
more stop bits (1s) at the end of each
byte. There may be a gap between
each byte.
Note
NDSL Copyright@2008
1.90
Asynchronous here means
“asynchronous at the byte level,”
but the bits are still synchronized;
their durations are the same.
Note
NDSL Copyright@2008
1.91
Figure 4.34 Asynchronous transmission
NDSL Copyright@2008
1.92
In synchronous transmission, we send
bits one after another without start or
stop bits or gaps. It is the responsibility
of the receiver to group the bits.
Note
NDSL Copyright@2008
1.93
Figure 4.35 Synchronous transmission

More Related Content

Similar to PCM-1.ppt

Data communications 4 1
Data communications 4 1Data communications 4 1
Data communications 4 1Raymond Pidor
 
Ch4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kuraleCh4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kuraleNeha Kurale
 
Signal encoding techniques
Signal encoding techniquesSignal encoding techniques
Signal encoding techniquesSyed Zaid Irshad
 
Data Communication & Computer Networks:Digital Signal Encoding
Data Communication & Computer Networks:Digital Signal EncodingData Communication & Computer Networks:Digital Signal Encoding
Data Communication & Computer Networks:Digital Signal EncodingDr Rajiv Srivastava
 
base-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.pptbase-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.pptAbyThomas54
 
line coding techniques, block coding and all type of coding
line coding techniques, block coding and all type of codingline coding techniques, block coding and all type of coding
line coding techniques, block coding and all type of codingDrZMaryLivinsaProfEC
 
Binary to digital encoding tbs 301
Binary to digital encoding tbs 301Binary to digital encoding tbs 301
Binary to digital encoding tbs 301Bhupesh Rawat
 
Chap4 d t-d conversion
Chap4 d t-d conversionChap4 d t-d conversion
Chap4 d t-d conversionarslan_akbar90
 
Data Encoding
Data EncodingData Encoding
Data EncodingLuka M G
 
Lecture 2 encoding
Lecture 2 encoding Lecture 2 encoding
Lecture 2 encoding Josh Street
 
Lecture 2 encoding
Lecture 2 encodingLecture 2 encoding
Lecture 2 encodingJosh Street
 
Chapter 5 - Signal Encoding Techniques 9e
Chapter 5 - Signal Encoding Techniques 9eChapter 5 - Signal Encoding Techniques 9e
Chapter 5 - Signal Encoding Techniques 9eadpeer
 

Similar to PCM-1.ppt (20)

Data communications 4 1
Data communications 4 1Data communications 4 1
Data communications 4 1
 
Ch05
Ch05Ch05
Ch05
 
Ch4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kuraleCh4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kurale
 
Signal encoding techniques
Signal encoding techniquesSignal encoding techniques
Signal encoding techniques
 
Dcn aasignment
Dcn aasignmentDcn aasignment
Dcn aasignment
 
Data Communication & Computer Networks:Digital Signal Encoding
Data Communication & Computer Networks:Digital Signal EncodingData Communication & Computer Networks:Digital Signal Encoding
Data Communication & Computer Networks:Digital Signal Encoding
 
Line Coding.pptx
Line Coding.pptxLine Coding.pptx
Line Coding.pptx
 
base-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.pptbase-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.ppt
 
line coding techniques, block coding and all type of coding
line coding techniques, block coding and all type of codingline coding techniques, block coding and all type of coding
line coding techniques, block coding and all type of coding
 
Binary to digital encoding tbs 301
Binary to digital encoding tbs 301Binary to digital encoding tbs 301
Binary to digital encoding tbs 301
 
class 6
class 6class 6
class 6
 
Chap4 d t-d conversion
Chap4 d t-d conversionChap4 d t-d conversion
Chap4 d t-d conversion
 
Data Encoding
Data EncodingData Encoding
Data Encoding
 
Lecture 2 encoding
Lecture 2 encoding Lecture 2 encoding
Lecture 2 encoding
 
Lecture 2 encoding
Lecture 2 encodingLecture 2 encoding
Lecture 2 encoding
 
Lecture 08
Lecture 08Lecture 08
Lecture 08
 
digital layer
digital layerdigital layer
digital layer
 
Chapter 5 - Signal Encoding Techniques 9e
Chapter 5 - Signal Encoding Techniques 9eChapter 5 - Signal Encoding Techniques 9e
Chapter 5 - Signal Encoding Techniques 9e
 
Chap4
Chap4Chap4
Chap4
 
Ch4 1 v1
Ch4 1 v1Ch4 1 v1
Ch4 1 v1
 

Recently uploaded

Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 

Recently uploaded (20)

Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 

PCM-1.ppt

  • 2. NDSL Copyright@2008 1.2 4-1 DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent digital data by using digital signals. The conversion involves three techniques: line coding, block coding, and scrambling. Line coding is always needed; block coding and scrambling may or may not be needed. Line Coding Line Coding Schemes Block Coding Scrambling Topics discussed in this section:
  • 3. NDSL Copyright@2008 1.3 Signal Element versus Data Element • Data element – The smallest entity that can represent a piece of information: this is bit. • Signal element – The shortest unit (timewise) of a digital signal. • In other words – Data element are what we need to send. – Signal elements are what we can send.
  • 4. NDSL Copyright@2008 1.4 Figure 4.1 Line coding and decoding
  • 5. NDSL Copyright@2008 1.5 Figure 4.2 Signal element versus data element
  • 6. NDSL Copyright@2008 1.6 Data Rate versus Signal Rate • Data rate – The number of data elements (bits) sent in 1s – The unit is bits per second (bps) – Called bit rate • Signal rate – The number of signal elements sent in 1s – The unit is the baud – Signal rate is sometimes called the pulse rate, the modulation rate, or the baud rate • Relationship between data rate and signal rate • S: number of signal elements, c: the case factor, N: data rate (bps), r: data elements per signal elements r N c S 1    baud
  • 7. NDSL Copyright@2008 1.7 A signal is carrying data in which one data element is encoded as one signal element (r = 1). If the bit rate is 100 kbps, what is the average value of the baud rate if c is between 0 and 1? Solution We assume that the average value of c is 1/2 . The baud rate is then Example 4.1
  • 8. NDSL Copyright@2008 1.8 Although the actual bandwidth of a digital signal is infinite, the effective bandwidth is finite. Note
  • 9. NDSL Copyright@2008 1.9 The maximum data rate of a channel (see Chapter 3) is Nmax = 2 × B × log2 L (defined by the Nyquist formula). Does this agree with the previous formula for Nmax? Solution A signal with L levels actually can carry log2L bits per level. If each level corresponds to one signal element and we assume the average case (c = 1/2), then we have Example 4.2
  • 10. NDSL Copyright@2008 1.10 Baseline Wandering • In decoding a digital signal, the receiver calculates a running average of the received signal power. • This average is called the baseline. • The incoming signal power is evaluated against this baseline to determine the value of the data element. • A long string of 0s or 1s can cause a drift in the baseline (baseline wandering) and make it difficult for the receiver to decode correctly. • A good line coding scheme needs to prevent baseline wandering.
  • 11. NDSL Copyright@2008 1.11 Figure 4.3 Effect of lack of synchronization
  • 12. NDSL Copyright@2008 1.12 DC Components • DC Components – When the voltage level in a digital signal is constant for a while, the spectrum creates very low frequencies (results of Fourier analysis). – These frequencies around zero, call DC (direct-current) components, present problems for a system that cannot pass low frequencies or a system that uses electrical coupling (via a transformer). – For example, a telephone line cannot pass frequencies below 200 Hz.
  • 13. NDSL Copyright@2008 1.13 Self-synchronization • To correctly interpret the signals received from the sender, the receiver’s bit intervals must correspond exactly to the sender’s bit intervals. If the receiver clock is faster or slower, the bit intervals are not matched and the receiver might misinterpret the signals. • Self-synchronization – Digital signal includes timing information in the data being transmitted. – This can be achieved if there are transitions in the signal that alert the receiver to the beginning, middle, or end of the pulse.
  • 14. NDSL Copyright@2008 1.14 In a digital transmission, the receiver clock is 0.1 percent faster than the sender clock. How many extra bits per second does the receiver receive if the data rate is 1 kbps? How many if the data rate is 1 Mbps? Solution At 1 kbps, the receiver receives 1001 bps instead of 1000 bps. Example 4.3 At 1 Mbps, the receiver receives 1,001,000 bps instead of 1,000,000 bps.
  • 15. NDSL Copyright@2008 1.15 Figure 4.4 Line coding schemes
  • 16. NDSL Copyright@2008 1.16 Figure 4.5 Unipolar NRZ scheme Non-Return-to-Zero (NRZ) It is called NRZ because the signal does not return to zero at the middle of the bit.
  • 17. NDSL Copyright@2008 1.17 Figure 4.6 Polar NRZ-L and NRZ-I schemes NRZ-L (NRZ-Level), NRZ-I (NRZ-Invert)
  • 18. NDSL Copyright@2008 1.18 In NRZ-L the level of the voltage determines the value of the bit. In NRZ-I the inversion or the lack of inversion determines the value of the bit. Note
  • 19. NDSL Copyright@2008 1.19 NRZ-L and NRZ-I both have an average signal rate of N/2 Bd. Note
  • 20. NDSL Copyright@2008 1.20 NRZ-L and NRZ-I both have a DC component problem. Note
  • 21. NDSL Copyright@2008 1.21 A system is using NRZ-I to transfer 10-Mbps data. What are the average signal rate and minimum bandwidth? Solution The average signal rate is S = N/2 = 500 kbaud. The minimum bandwidth for this average baud rate is Bmin = S = 500 kHz. Example 4.4
  • 22. NDSL Copyright@2008 1.22 Figure 4.7 Polar RZ scheme RZ: Return-to-Zero
  • 23. NDSL Copyright@2008 1.23 Figure 4.8 Polar biphase: Manchester and differential Manchester schemes
  • 24. NDSL Copyright@2008 1.24 In Manchester and differential Manchester encoding, the transition at the middle of the bit is used for synchronization. Note
  • 25. NDSL Copyright@2008 1.25 The minimum bandwidth of Manchester and differential Manchester is 2 times that of NRZ. Note
  • 26. NDSL Copyright@2008 1.26 Bipolar Schemes • Bipolar encoding (sometimes called multilevel binary) – Three voltage levels: positive, negative, and zero • Two variations of bipolar encoding – AMI (alternate mark inversion) • 0: neutral zero voltage • 1: alternating positive and negative voltages – Pseudoternary • 1: neutral zero voltage • 0: alternating positive and negative voltages • Bipolar schemes have no DC component problem
  • 27. NDSL Copyright@2008 1.27 In bipolar encoding, we use three levels: positive, zero, and negative. Note
  • 28. NDSL Copyright@2008 1.28 AMI and Pseudoternary • AMI (alternate mark inversion) – The work mark comes from telegraphy and means 1. – AMI means alternate 1 inversion – The neutral zero voltage represents binary 0. – Binary 1s are represented by alternating positive and negative voltages. • Pesudotenary – Same as AMI, but 1 bit is encoded as a zero voltage and the 0 bit is encoded as alternating positive and negative voltages.
  • 29. NDSL Copyright@2008 1.29 Figure 4.9 Bipolar schemes: AMI and pseudoternary
  • 30. NDSL Copyright@2008 1.30 Multilevel Schemes • The desire to increase the data speed or decrease the required bandwidth has resulted in the creation of many schemes. • The goal is to increase the number of bits per baud by encoding a pattern of m data elements into a pattern of n signal elements. • Different types of signal elements can be allowing different signal levels. • If we have L different levels, then we can produce Ln combinations of signal patterns. • The data element and signal element relation is • mBnL coding, where m is the length of the binary pattern, B means binary data, n is the length of the signal pattern, and L is the number of levels in the signaling. • B (binary, L=2), T (tenary, L=3), and Q (quaternary, L=4). n m L  2
  • 31. NDSL Copyright@2008 1.31 In mBnL schemes, a pattern of m data elements is encoded as a pattern of n signal elements in which 2m ≤ Ln. Note
  • 32. NDSL Copyright@2008 1.32 2B1Q • 2B1Q (two binary, one quaternary) – m=2, n=1, and L=4 – The signal rate (baud rate) • 2B1Q is used in DSL (digital subscriber line) technology to provide a high-speed connection to the Internet by using subscriber telephone lines. 4 2 1 2 1 1 N N r cN S     
  • 33. NDSL Copyright@2008 1.33 Figure 4.10 Multilevel: 2B1Q scheme 2
  • 34. NDSL Copyright@2008 1.34 8B6T • Eight binary, six ternary (8B6T) – This code is used with 100BASE-4T cable. – Encode a pattern of 8 bits as a pattern of 6 signal elements, where the signal has three levels (ternary). – 28=256 different data patterns and 36=478 different signal patterns. (The mapping is shown in Appendix D.) – There are 478-256=222 redundant signal elements that provide synchronization and error detection. – Part of the redundancy is also used to provide DC (direct-current) balance. • + (positive signal), - (negative signal), and 0 (lack of signal) notation. • To make whole stream DC-balanced, the sender keeps track of the weight
  • 35. NDSL Copyright@2008 1.35 Figure 4.11 Multilevel: 8B6T scheme Invert - + + - 0 - = -1 +1
  • 36. NDSL Copyright@2008 1.36 4D-PAM5 • Four-dimensional five-level pulse amplitude modulation (4D-PAM5) – 4D means that data is sent over four wires at the same time. – It uses five voltage levels, such as -2, -1, 0, 1, and 2. – The level 0 is used only for forward error detection. – If we assume that the code is just one-dimensional, the four levels create something similar to 8B4Q. – The worst signal rate for this imaginary one-dimensional version is Nx4/8, or N/2. – 4D-PAM5 sends data over four channels (four wires). This means the signal rate can be reduced to N/8. – All 8 bits can be fed into a wire simultaneously and sent by using one signal element. – Gigabit Ethernet use this technique to send 1-Gbps data over four copper cables that can handle 1Gbps/8 = 125Mbaud
  • 37. NDSL Copyright@2008 1.37 Figure 4.12 Multilevel: 4D-PAM5 scheme
  • 38. NDSL Copyright@2008 1.38 Multiline Transmission: MLT-3 • The multiline transmission, three level (MLT-3) • Three levels (+V, 0, and –V) and three transition rules to move the levels – If the next bit is 0, there is no transition – If the next bit is 1 and the current level is not 0, the next level is 0. – If the next bit is 1 and the current level is 0, the next level is the opposite of the last nonzero level. • Why do we need to use MLT-3? – The signal rate for MLT-3 is one-fourth the bit rate (N/4). – This makes MLT-3 a suitable choice when we need to send 100 Mbps on a copper wire that cannot support more than 32 MHz (frequencies above this level create electromagnetic emission).
  • 39. NDSL Copyright@2008 1.39 Figure 4.13 Multitransition: MLT-3 scheme
  • 40. NDSL Copyright@2008 1.40 Table 4.1 Summary of line coding schemes
  • 41. NDSL Copyright@2008 1.41 Block Coding • Use redundancy to ensure synchronization and to provide some kind of inherent error detecting. • In general, block coding changes a block of m bits into a block of n bits, where n is larger than m. • Block coding is referred to as an mB/nB encoding technique. • For example: – 4B/5B encoding means a 4-bit code for a 5-bit group.
  • 42. NDSL Copyright@2008 1.42 Block coding is normally referred to as mB/nB coding; it replaces each m-bit group with an n-bit group. Note
  • 43. NDSL Copyright@2008 1.43 Figure 4.14 Block coding concept
  • 44. NDSL Copyright@2008 1.44 Figure 4.15 Using block coding 4B/5B with NRZ-I line coding scheme
  • 45. NDSL Copyright@2008 1.45 4B/5B Encoding • 5-bit output that replaces the 4-bit input • No more than one leading zero (left bit) and no more than two trailing zeros (right bits). • There are never more than three consecutive 0s. • If a 5-bit group arrives that belongs to the unused portion of the table, the receiver knows that there is an error in the transmission.
  • 46. NDSL Copyright@2008 1.46 Table 4.2 4B/5B mapping codes
  • 47. NDSL Copyright@2008 1.47 Figure 4.16 Substitution in 4B/5B block coding
  • 48. NDSL Copyright@2008 1.48 We need to send data at a 1-Mbps rate. What is the minimum required bandwidth, using a combination of 4B/5B and NRZ-I or Manchester coding? Solution First 4B/5B block coding increases the bit rate to 1.25 Mbps. The minimum bandwidth using NRZ-I is N/2 or 625 kHz. The Manchester scheme needs a minimum bandwidth of 1 MHz. The first choice needs a lower bandwidth, but has a DC component problem; the second choice needs a higher bandwidth, but does not have a DC component problem. Example 4.5
  • 49. NDSL Copyright@2008 1.49 Figure 4.17 8B/10B block encoding
  • 50. NDSL Copyright@2008 1.50 Scrambling • Biphase schemes that are suitable for dedicated links between stations in a LAN are not suitable for long- distance communication because of their wide bandwidth requirement. • The combination of block coding and NRZ line coding is not suitable for long-distance encoding either, because of the DC component problem. • Bipolar AMI encoding, on the other hand, has a narrow bandwidth and does not create a DC component. • However, a long sequence of 0s upsets the synchronization. • If we can find a way to avoid a long sequence of 0s in the original stream, we can use bipolar AMI for long distances. • One solution is called scrambling.
  • 51. NDSL Copyright@2008 1.51 Figure 4.18 AMI used with scrambling
  • 52. NDSL Copyright@2008 1.52 B8ZS • Bipolar with 8-zero substitution (B8ZS) – Commonly used in North America – Eight consecutive zero-level voltages are replaced by the sequence 000VB0VB. – The V in the sequence denotes violation; that is a nonzero voltage that breaks an AMI rule of encoding (opposite polarity from the previous). – The B in the sequence denotes bipolar, which means a nonzero level voltage in accordance with the AMI rule.
  • 53. NDSL Copyright@2008 1.53 Figure 4.19 Two cases of B8ZS scrambling technique
  • 54. NDSL Copyright@2008 1.54 B8ZS substitutes eight consecutive zeros with 000VB0VB. Note
  • 55. NDSL Copyright@2008 1.55 HDB3 • High-density bipolar 3-zero (HDB3) – Used outside of North America – Four consecutive zero-level voltages are replaced with a sequence of 000V or B00V. – 1. If the number of nonzero pulses after the last substitution is odd, the substitution pattern will be 000V, which makes the total number of nonzero pulses even. – 2. If the number of nonzero pulses after the last substitution is even, the substitution pattern will be B00V, which means makes the total number of nonzero pulses even.
  • 56. NDSL Copyright@2008 1.56 Figure 4.20 Different situations in HDB3 scrambling technique
  • 57. NDSL Copyright@2008 1.57 HDB3 substitutes four consecutive zeros with 000V or B00V depending on the number of nonzero pulses after the last substitution. Note
  • 58. NDSL Copyright@2008 1.58 4-2 ANALOG-TO-DIGITAL CONVERSION We have seen in Chapter 3 that a digital signal is superior to an analog signal. The tendency today is to change an analog signal to digital data. In this section we describe two techniques, pulse code modulation and delta modulation. Pulse Code Modulation (PCM) Delta Modulation (DM) Topics discussed in this section:
  • 59. NDSL Copyright@2008 1.59 Figure 4.21 Components of PCM encoder
  • 60. NDSL Copyright@2008 1.60 Figure 4.22 Three different sampling methods for PCM
  • 61. NDSL Copyright@2008 1.61 According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal. Note
  • 62. NDSL Copyright@2008 1.62 Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals
  • 63. NDSL Copyright@2008 1.63 For an intuitive example of the Nyquist theorem, let us sample a simple sine wave at three sampling rates: fs = 4f (2 times the Nyquist rate), fs = 2f (Nyquist rate), and fs = f (one-half the Nyquist rate). Figure 4.24 shows the sampling and the subsequent recovery of the signal. It can be seen that sampling at the Nyquist rate can create a good approximation of the original sine wave (part a). Oversampling in part b can also create the same approximation, but it is redundant and unnecessary. Sampling below the Nyquist rate (part c) does not produce a signal that looks like the original sine wave. Example 4.6
  • 64. NDSL Copyright@2008 1.64 Figure 4.24 Recovery of a sampled sine wave for different sampling rates
  • 65. NDSL Copyright@2008 1.65 Consider the revolution of a hand of a clock. The second hand of a clock has a period of 60 s. According to the Nyquist theorem, we need to sample the hand every 30 s (Ts = T or fs = 2f ). In Figure 4.25a, the sample points, in order, are 12, 6, 12, 6, 12, and 6. The receiver of the samples cannot tell if the clock is moving forward or backward. In part b, we sample at double the Nyquist rate (every 15 s). The sample points are 12, 3, 6, 9, and 12. The clock is moving forward. In part c, we sample below the Nyquist rate (Ts = T or fs = f ). The sample points are 12, 9, 6, 3, and 12. Although the clock is moving forward, the receiver thinks that the clock is moving backward. Example 4.7
  • 66. NDSL Copyright@2008 1.66 Figure 4.25 Sampling of a clock with only one hand
  • 67. NDSL Copyright@2008 1.67 An example related to Example 4.7 is the seemingly backward rotation of the wheels of a forward-moving car in a movie. This can be explained by under-sampling. A movie is filmed at 24 frames per second. If a wheel is rotating more than 12 times per second, the under- sampling creates the impression of a backward rotation. Example 4.8
  • 68. NDSL Copyright@2008 1.68 Telephone companies digitize voice by assuming a maximum frequency of 4000 Hz. The sampling rate therefore is 8000 samples per second. Example 4.9
  • 69. NDSL Copyright@2008 1.69 A complex low-pass signal has a bandwidth of 200 kHz. What is the minimum sampling rate for this signal? Solution The bandwidth of a low-pass signal is between 0 and f, where f is the maximum frequency in the signal. Therefore, we can sample this signal at 2 times the highest frequency (200 kHz). The sampling rate is therefore 400,000 samples per second. Example 4.10
  • 70. NDSL Copyright@2008 1.70 A complex bandpass signal has a bandwidth of 200 kHz. What is the minimum sampling rate for this signal? Solution We cannot find the minimum sampling rate in this case because we do not know where the bandwidth starts or ends. We do not know the maximum frequency in the signal. Example 4.11
  • 71. NDSL Copyright@2008 1.71 Figure 4.26 Quantization and encoding of a sampled signal
  • 72. NDSL Copyright@2008 1.72 Quantization • Quantization Levels – Choosing lower values of L increases the quantization error if there is a lot of fluctuation in the signal. • Quantization Error – If the input value is also at the middle of the zone, there is no quantization error; otherwise, there is an error. – It can be proven that the contribution of the quantization error to the SNRdB of the signal depends on the number of quantization levels L, or the bits per sample nb, as shown in the following formula: SNRdB = 6.02nb + 1.76 dB
  • 73. NDSL Copyright@2008 1.73 What is the SNRdB in the example of Figure 4.26? Solution We can use the formula to find the quantization. We have eight levels and 3 bits per sample, so SNRdB = 6.02(3) + 1.76 = 19.82 dB Increasing the number of levels increases the SNR. Example 4.12
  • 74. NDSL Copyright@2008 1.74 A telephone subscriber line must have an SNRdB above 40. What is the minimum number of bits per sample? Solution We can calculate the number of bits as Example 4.13 Telephone companies usually assign 7 or 8 bits per sample.
  • 75. NDSL Copyright@2008 1.75 Quantization • Uniform versus nonuniform quantization – Changes in amplitude often occur more frequently in the lower amplitudes than in the higher ones. – Nonuniform quantization • Companding • Expanding • Encoding – nb = log2L – Bit rate = sampling rate x number of bits per sample = fs x nb
  • 76. NDSL Copyright@2008 1.76 We want to digitize the human voice. What is the bit rate, assuming 8 bits per sample? Solution The human voice normally contains frequencies from 0 to 4000 Hz. So the sampling rate and bit rate are calculated as follows: Example 4.14
  • 77. NDSL Copyright@2008 1.77 Figure 4.27 Components of a PCM decoder
  • 78. NDSL Copyright@2008 1.78 PCM Bandwidth • The minimum bandwidth of the channel that can pass the digitized signal: • When 1/r = 1 (for NRZ or bipolar signal) and c = ½ r B n c r f n c r N c B b s b 1 2 1 1 analog min             analog min B n B b  
  • 79. NDSL Copyright@2008 1.79 Maximum data rate of a channel • Maximum data rate of a channel • The data rate is • Minimum required bandwidth L B N 2 max log 2    bps L B n f N b s 2 log 2      L N B 2 min log 2  Hz
  • 80. NDSL Copyright@2008 1.80 We have a low-pass analog signal of 4 kHz. If we send the analog signal, we need a channel with a minimum bandwidth of 4 kHz. If we digitize the signal and send 8 bits per sample, we need a channel with a minimum bandwidth of 8 × 4 kHz = 32 kHz. Example 4.15
  • 81. NDSL Copyright@2008 1.81 Figure 4.28 The process of delta modulation
  • 82. NDSL Copyright@2008 1.82 Figure 4.29 Delta modulation components
  • 83. NDSL Copyright@2008 1.83 Figure 4.30 Delta demodulation components
  • 84. NDSL Copyright@2008 1.84 Adaptive DM • Adaptive delta modulation – A better performance can be achieved if the value of δ is not fixed. – The value of δ changes according to the amplitude of the analog signal. • Quantization Error – DM is not perfect. – Quantization error is always introduced in the process. – Much less than that for PCM.
  • 85. NDSL Copyright@2008 1.85 4-3 TRANSMISSION MODES The transmission of binary data across a link can be accomplished in either parallel or serial mode. In parallel mode, multiple bits are sent with each clock tick. In serial mode, 1 bit is sent with each clock tick. While there is only one way to send parallel data, there are three subclasses of serial transmission: asynchronous, synchronous, and isochronous. Parallel Transmission Serial Transmission Topics discussed in this section:
  • 86. NDSL Copyright@2008 1.86 Figure 4.31 Data transmission and modes
  • 87. NDSL Copyright@2008 1.87 Figure 4.32 Parallel transmission
  • 89. NDSL Copyright@2008 1.89 In asynchronous transmission, we send 1 start bit (0) at the beginning and 1 or more stop bits (1s) at the end of each byte. There may be a gap between each byte. Note
  • 90. NDSL Copyright@2008 1.90 Asynchronous here means “asynchronous at the byte level,” but the bits are still synchronized; their durations are the same. Note
  • 91. NDSL Copyright@2008 1.91 Figure 4.34 Asynchronous transmission
  • 92. NDSL Copyright@2008 1.92 In synchronous transmission, we send bits one after another without start or stop bits or gaps. It is the responsibility of the receiver to group the bits. Note
  • 93. NDSL Copyright@2008 1.93 Figure 4.35 Synchronous transmission