SlideShare a Scribd company logo
1 of 33
Course of lectures
«Physics»
Lecture №9
Potential Difference and Electric Potential.
Potential Differences in a Uniform
Electric Field. Electric Potential and Potential
Energy Due to Point Charges.
The Electric Field
An electric field is said to exist in the region of space around a
charged object—the source charge. When another charged object—
the test charge—enters this electric field, an electric force acts on it.
The electric field vector E
at a point in space is
defined as the electric force
Fe acting on a positive test
charge q0 placed at that
point divided by the test
charge:
The Gravitational Analogy Revisited
The Gravitational Analogy Revisited
Electric Potential
The electric field intensity is
acting as a force on any charges
it arrives upon.
Therefore in moving a unit
charge from P1 to P2, work must
be done against the field.
 0
F q E
Electric Fields and WORK
In order to bring two like charges near each other work
must be done. In order to separate two opposite
charges, work must be done. Remember that whenever
work gets done, energy changes form.
As the monkey does work on the positive charge, he increases the energy of
that charge. The closer he brings it, the more electrical potential energy it
has. When he releases the charge, work gets done on the charge which
changes its energy from electrical potential energy to kinetic energy. Every
time he brings the charge back, he does work on the charge. If he brought
the charge closer to the other object, it would have more electrical potential
energy. If he brought 2 or 3 charges instead of one, then he would have had
to do more work so he would have created more electrical potential
energy. Electrical potential energy could be measured in Joules just like any
other form of energy.
Electric Fields and WORK
Consider a negative charge
moving in between 2
oppositely charged parallel
plates initial KE=0 Final KE=
0, therefore in this case Work
= DPE
We call this ELECTRICAL potential
energy, UE, and it is equal to the
amount of work done by the
ELECTRIC FORCE, caused by the
ELECTRIC FIELD over distance, d,
which in this case is the plate
separation distance.
Is there a symbolic relationship with the FORMULA for gravitational
potential energy?
Electric Potential
Ed
q
W
qEd
W
U
d
x
h
E
g
q
m
W
or
U
U
mgh
U
E
E
g
g








)
(
)
(
Here we see the equation for gravitational
potential energy.
Instead of gravitational potential energy we are
talking about ELECTRIC POTENTIAL ENERGY
A charge will be in the field instead of a mass
The field will be an ELECTRIC FIELD instead of
a gravitational field
The displacement is the same in any reference
frame and use various symbols
Putting it all together!
Question: What does the LEFT side of the equation
mean in words?
The amount of Energy per charge!
Energy per charge
The amount of energy per charge
has a specific name and it is
called, VOLTAGE or ELECTRIC
POTENTIAL (difference). Why
the “difference”?
q
mv
q
K
q
W
V
2
2
1

D


D
Understanding “Difference”
The charge travels through
a “change in voltage”
much like a falling mass
experiences a “change in
height.
(Note: The electron does
the opposite)
BEWARE!!!!!!
W is Electric Potential Energy
(Joules)
is not
V is Electric Potential
(Joules/Coulomb)
a.k.a Voltage, Potential
Difference
The “other side” of that
equation?
Ed
q
W
qEd
W
U
d
x
h
E
g
q
m
W
or
U
U
mgh
U
E
E
g
g








)
(
)
(
Since the amount of energy per charge is called
Electric Potential, or Voltage, the product of the
electric field and displacement is also VOLTAGE
This makes sense as it is applied usually to a set
of PARALLEL PLATES.
DV=Ed
E
d
DV
Potential Difference
• Electric Potential Difference is a change in
electric potential – a change in the ability
to do work:
∆V = PEelectric
q
SI unit is the Volt = Joule/Coulomb
As a 1 coulomb charge moves through a
potential difference of 1 volt, the charge
loses (or gains) 1 joule of energy
When force is applied to move an object,
work is the product of the force and the
distance the object travels in the direction of
the force














2
1
2
1
2
1
2
1
0
field
e
against th
charge
the
moves
force
the
since
but
P
P
P
P
P
P
P
P
l
d
E
q
W
S
d
E
Q
S
d
E
Q
S
d
F
W
   
int 0
W F dS q E dS
    
int 0
dU W q E dS
Therefore without specifying the path
 


2
1
P
P
l
d
E
Q
W
E
P1
P2
The scalar line integral of an
Irrotational (conservative) E
field is path-independent
 
 0
l
d
E
0
q
U
V 
S
d
E
q
U
V
P
P



D

D 
2
1
0
1
2 P
P V
V
V 

D
Equipotential surfaces
Consider the plot of the
electrostatic potential contours
forming equipotential surfaces
around the point charge
superimposed over the field
lines for the point charge
A set of points with same potential forms equipotential
surface. For a point charge, equipotentials are spheres
at fixed radius r.
As we can notice the field goes into the direction of
decreasing potential
If the behavior of the potential is unknown, the electric
intensity field can be determined by finding the maximum
rate and direction of the spatial change of the potential
field
V
E 

By using the above in the following equation
we get
 


2
1
P
P
l
d
E
Q
W


















2
1
2
1
2
1
2
1
1
2
)
(
P
P
P
P
l
P
P
P
P
V
V
dV
dl
a
V
l
d
V
l
d
E
Potential difference























 

Q
W
V
R
Q
V
V
V
R
R
Q
R
Q
a
dR
a
R
Q
l
d
E
V
P
P
P
P
R
R
P
P
P
P
0
1
2
0
0
2
0
21
4
1
1
4
4
4
2
1
2
1
2
1
2
1




Absolute potential at some finite
radius from a point charge fixed at
the origin (reference voltage of zero
at an infinite radius)
Work per Coulomb required to pull a
charge from infinity to the radius R
For a collection of charges of continuous
distribution
(V)
4
1
(V)
4
1
4
(V)
4
1
0
0
0
0
dl
R
V
ds
R
V
R
dQ
V
dv
R
V
l
l
s
s
v
v
















Lecture 9 Electric Potential.ppt
Lecture 9 Electric Potential.ppt

More Related Content

Similar to Lecture 9 Electric Potential.ppt

electrostatics_2.ppt
electrostatics_2.pptelectrostatics_2.ppt
electrostatics_2.pptmragarwal
 
electrostatics_2.ppt
electrostatics_2.pptelectrostatics_2.ppt
electrostatics_2.pptmragarwal
 
Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2Amit Gupta
 
Ppt djy 2011 topic 5.1 electric potential difference sl
Ppt djy 2011   topic 5.1 electric potential difference slPpt djy 2011   topic 5.1 electric potential difference sl
Ppt djy 2011 topic 5.1 electric potential difference slDavid Young
 
electrical_potential_ppt6mrwilson_azedit.ppt
electrical_potential_ppt6mrwilson_azedit.pptelectrical_potential_ppt6mrwilson_azedit.ppt
electrical_potential_ppt6mrwilson_azedit.pptAliceRivera13
 
electrostatics 2.ppt
electrostatics 2.pptelectrostatics 2.ppt
electrostatics 2.pptArsh Kumar
 
Electric Potential
Electric PotentialElectric Potential
Electric PotentialPaula Mills
 
Lecture21 potential
Lecture21 potentialLecture21 potential
Lecture21 potentialAlex Klein
 
Polarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | DielectricsPolarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | DielectricsAyush Agarwal
 
ELECTROSTATIC POTENTIAL ENERGY (1).pptx
ELECTROSTATIC POTENTIAL ENERGY (1).pptxELECTROSTATIC POTENTIAL ENERGY (1).pptx
ELECTROSTATIC POTENTIAL ENERGY (1).pptxSonuJain71
 
Electrostatic Field
Electrostatic FieldElectrostatic Field
Electrostatic Fieldirfan sultan
 
10.1 describing fields 2017
10.1 describing fields 201710.1 describing fields 2017
10.1 describing fields 2017Paula Mills
 
10.1 describing fields 2015
10.1 describing fields 201510.1 describing fields 2015
10.1 describing fields 2015Paula Mills
 

Similar to Lecture 9 Electric Potential.ppt (20)

electrostatics_2.ppt
electrostatics_2.pptelectrostatics_2.ppt
electrostatics_2.ppt
 
electrostatics_2.ppt
electrostatics_2.pptelectrostatics_2.ppt
electrostatics_2.ppt
 
electrostatics_2.ppt
electrostatics_2.pptelectrostatics_2.ppt
electrostatics_2.ppt
 
Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2
 
Ppt djy 2011 topic 5.1 electric potential difference sl
Ppt djy 2011   topic 5.1 electric potential difference slPpt djy 2011   topic 5.1 electric potential difference sl
Ppt djy 2011 topic 5.1 electric potential difference sl
 
electrical_potential_ppt6mrwilson_azedit.ppt
electrical_potential_ppt6mrwilson_azedit.pptelectrical_potential_ppt6mrwilson_azedit.ppt
electrical_potential_ppt6mrwilson_azedit.ppt
 
electric potencial energy.ppt
electric potencial energy.pptelectric potencial energy.ppt
electric potencial energy.ppt
 
electrostatics 2.ppt
electrostatics 2.pptelectrostatics 2.ppt
electrostatics 2.ppt
 
Electric Potential
Electric PotentialElectric Potential
Electric Potential
 
Electric potential
Electric potentialElectric potential
Electric potential
 
Lecture21 potential
Lecture21 potentialLecture21 potential
Lecture21 potential
 
Polarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | DielectricsPolarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | Dielectrics
 
ELECTROSTATIC POTENTIAL ENERGY (1).pptx
ELECTROSTATIC POTENTIAL ENERGY (1).pptxELECTROSTATIC POTENTIAL ENERGY (1).pptx
ELECTROSTATIC POTENTIAL ENERGY (1).pptx
 
Electrostatic Field
Electrostatic FieldElectrostatic Field
Electrostatic Field
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2
 
Electrostatics - 203PHYS
Electrostatics - 203PHYSElectrostatics - 203PHYS
Electrostatics - 203PHYS
 
10.1 describing fields 2017
10.1 describing fields 201710.1 describing fields 2017
10.1 describing fields 2017
 
Electric Fields
Electric FieldsElectric Fields
Electric Fields
 
10.1 describing fields 2015
10.1 describing fields 201510.1 describing fields 2015
10.1 describing fields 2015
 

Recently uploaded

Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)itwameryclare
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx023NiWayanAnggiSriWa
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 

Recently uploaded (20)

Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 

Lecture 9 Electric Potential.ppt

  • 2. Potential Difference and Electric Potential. Potential Differences in a Uniform Electric Field. Electric Potential and Potential Energy Due to Point Charges.
  • 3. The Electric Field An electric field is said to exist in the region of space around a charged object—the source charge. When another charged object— the test charge—enters this electric field, an electric force acts on it. The electric field vector E at a point in space is defined as the electric force Fe acting on a positive test charge q0 placed at that point divided by the test charge:
  • 4.
  • 5.
  • 6.
  • 7.
  • 10. Electric Potential The electric field intensity is acting as a force on any charges it arrives upon. Therefore in moving a unit charge from P1 to P2, work must be done against the field.  0 F q E
  • 11. Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to separate two opposite charges, work must be done. Remember that whenever work gets done, energy changes form. As the monkey does work on the positive charge, he increases the energy of that charge. The closer he brings it, the more electrical potential energy it has. When he releases the charge, work gets done on the charge which changes its energy from electrical potential energy to kinetic energy. Every time he brings the charge back, he does work on the charge. If he brought the charge closer to the other object, it would have more electrical potential energy. If he brought 2 or 3 charges instead of one, then he would have had to do more work so he would have created more electrical potential energy. Electrical potential energy could be measured in Joules just like any other form of energy.
  • 12.
  • 13. Electric Fields and WORK Consider a negative charge moving in between 2 oppositely charged parallel plates initial KE=0 Final KE= 0, therefore in this case Work = DPE We call this ELECTRICAL potential energy, UE, and it is equal to the amount of work done by the ELECTRIC FORCE, caused by the ELECTRIC FIELD over distance, d, which in this case is the plate separation distance. Is there a symbolic relationship with the FORMULA for gravitational potential energy?
  • 14. Electric Potential Ed q W qEd W U d x h E g q m W or U U mgh U E E g g         ) ( ) ( Here we see the equation for gravitational potential energy. Instead of gravitational potential energy we are talking about ELECTRIC POTENTIAL ENERGY A charge will be in the field instead of a mass The field will be an ELECTRIC FIELD instead of a gravitational field The displacement is the same in any reference frame and use various symbols Putting it all together! Question: What does the LEFT side of the equation mean in words? The amount of Energy per charge!
  • 15.
  • 16. Energy per charge The amount of energy per charge has a specific name and it is called, VOLTAGE or ELECTRIC POTENTIAL (difference). Why the “difference”? q mv q K q W V 2 2 1  D   D
  • 17. Understanding “Difference” The charge travels through a “change in voltage” much like a falling mass experiences a “change in height. (Note: The electron does the opposite)
  • 18.
  • 19. BEWARE!!!!!! W is Electric Potential Energy (Joules) is not V is Electric Potential (Joules/Coulomb) a.k.a Voltage, Potential Difference
  • 20.
  • 21. The “other side” of that equation? Ed q W qEd W U d x h E g q m W or U U mgh U E E g g         ) ( ) ( Since the amount of energy per charge is called Electric Potential, or Voltage, the product of the electric field and displacement is also VOLTAGE This makes sense as it is applied usually to a set of PARALLEL PLATES. DV=Ed E d DV
  • 22. Potential Difference • Electric Potential Difference is a change in electric potential – a change in the ability to do work: ∆V = PEelectric q SI unit is the Volt = Joule/Coulomb As a 1 coulomb charge moves through a potential difference of 1 volt, the charge loses (or gains) 1 joule of energy
  • 23. When force is applied to move an object, work is the product of the force and the distance the object travels in the direction of the force               2 1 2 1 2 1 2 1 0 field e against th charge the moves force the since but P P P P P P P P l d E q W S d E Q S d E Q S d F W     int 0 W F dS q E dS      int 0 dU W q E dS
  • 24. Therefore without specifying the path     2 1 P P l d E Q W E P1 P2 The scalar line integral of an Irrotational (conservative) E field is path-independent    0 l d E 0 q U V  S d E q U V P P    D  D  2 1 0 1 2 P P V V V   D
  • 25. Equipotential surfaces Consider the plot of the electrostatic potential contours forming equipotential surfaces around the point charge superimposed over the field lines for the point charge A set of points with same potential forms equipotential surface. For a point charge, equipotentials are spheres at fixed radius r.
  • 26.
  • 27.
  • 28. As we can notice the field goes into the direction of decreasing potential If the behavior of the potential is unknown, the electric intensity field can be determined by finding the maximum rate and direction of the spatial change of the potential field V E  
  • 29. By using the above in the following equation we get     2 1 P P l d E Q W                   2 1 2 1 2 1 2 1 1 2 ) ( P P P P l P P P P V V dV dl a V l d V l d E Potential difference
  • 30.                           Q W V R Q V V V R R Q R Q a dR a R Q l d E V P P P P R R P P P P 0 1 2 0 0 2 0 21 4 1 1 4 4 4 2 1 2 1 2 1 2 1     Absolute potential at some finite radius from a point charge fixed at the origin (reference voltage of zero at an infinite radius) Work per Coulomb required to pull a charge from infinity to the radius R
  • 31. For a collection of charges of continuous distribution (V) 4 1 (V) 4 1 4 (V) 4 1 0 0 0 0 dl R V ds R V R dQ V dv R V l l s s v v                

Editor's Notes

  1. we linked our new study of electromagnetism to our earlier studies of force. Now we make a new link to our earlier investigations into energy. By using the law of conservation of energy, we could solve various problems in mechanics that were insoluble with an approach using forces. The concept of potential energy is also of great value in the study of electricity. Because the electrostatic force is conservative, electrostatic phenomena can be conveniently described in terms of an electric potential energy. This idea enables us to define a quantity known as electric potential. Because the electric potential at any point in an electric field is a scalar quantity, we can use it to describe electrostatic phenomena more simply than if we were to rely only on the electric field and electric forces. The concept of electric potential is of great practical value in the operation of electric circuits and devices that we will study in later chapters. мы связали наше новое исследование электромагнетизма с нашими более ранними исследованиями силы. Теперь мы делаем новую ссылку на наши ранние исследования в области энергетики. Используя закон сохранения энергии, мы могли бы решить различные проблемы в механике, которые были неразрешимы при подходе с использованием сил. Концепция потенциальной энергии также имеет большое значение при изучении электричества. Поскольку электростатическая сила является консервативной, электростатические явления могут быть удобно описаны в терминах энергии электрического потенциала. Эта идея позволяет нам определить величину, известную как электрический потенциал. Поскольку электрический потенциал в любой точке электрического поля является скалярной величиной, мы можем использовать его для описания электростатических явлений проще, чем если бы мы полагались только на электрическое поле и электрические силы. Концепция электрического потенциала имеет большое практическое значение в работе электрических цепей и устройств, которые мы изучим в следующих главах.
  2. The concept of a field was developed by Michael Faraday in the context of electric forces. In this approach, an electric field is said to exist in the region of space around a charged object, the source charge. When another charged object—the test charge—enters this electric field, an electric force acts on it. As an example, a small positive test charge q0 placed near a second object carrying a much greater positive charge Q. We define the electric field due to the source charge at the location of the test charge to be the electric force on the test charge per unit charge, or, to be more specific, the electric field vector E at a point in space is defined as the electric force Fe acting on a positive test charge q0 placed at that point divided by the test charge: Концепция поля была разработана Майклом Фарадеем в контексте электрических сил. При таком подходе электрическое поле, как говорят, существует в области пространства вокруг заряженного объекта, источника заряда. Когда другой заряженный объект - пробный заряд - входит в это электрическое поле, на него действует электрическая сила. В качестве примера, небольшой положительный пробный заряд q0, помещенный рядом со вторым объектом, несущим гораздо больший положительный заряд Q. Мы определяем электрическое поле, обусловленное зарядом источника в месте пробного заряда, как электрическую силу на пробном заряде в единичный заряд или, если быть более точным, вектор E электрического поля в точке пространства определяется как электрическая сила Fe, действующая на положительный испытательный заряд q0, помещенный в эту точку, деленная на испытательный заряд:
  3. we linked our new study of electromagnetism to our earlier studies of force. Now we make a new link to our earlier investigations into energy. The concept of potential energy in connection with such conservative forces as the gravitational force and the elastic force exerted by a spring. A gravitational field exists about the Earth that exerts gravitational influences upon all masses located in the space surrounding it. Moving an object upward against the gravitational field increases its gravitational potential energy. An object moving downward within the gravitational field would lose gravitational potential energy. When gravitational potential energy was introduced, it was defined as the energy stored in an object due to its vertical position above the Earth. The amount of gravitational potential energy stored in an object depended upon the amount of mass the object possessed and the amount of height to which it was raised. Gravitational potential energy depended upon object mass and object height. An object with twice the mass would have twice the potential energy and an object with twice the height would have twice the potential energy. It is common to refer to high positions as high potential energy locations. A glance at the diagram at the right reveals the fallacy of such a statement. Observe that the 1 kg mass held at a height of 2 meters has the same potential energy as a 2 kg mass held at a height of 1 meter. Potential energy depends upon more than just location; it also depends upon mass. In this sense, gravitational potential energy depends upon at least two types of quantities: Mass - a property of the object experiencing the gravitational field, and2) Height - the location within the gravitational field Существует гравитационное поле вокруг Земли, которое оказывает гравитационное воздействие на все массы, расположенные в окружающем его пространстве. Движение объекта вверх против гравитационного поля увеличивает его гравитационную потенциальную энергию. Объект, движущийся вниз в гравитационном поле, потеряет гравитационную потенциальную энергию. Когда была введена энергия гравитационного потенциала, она определялась как энергия, хранящаяся в объекте из-за его вертикального положения над Землей. Количество гравитационной потенциальной энергии, хранящейся в объекте, зависело от количества массы, которой обладали объекты, и величины высоты, на которую она была поднята. Гравитационная потенциальная энергия зависела от массы объекта и высоты объекта. Объект с удвоенной массой имел бы вдвое больше потенциальной энергии, а объект с удвоенной высотой имел бы вдвое больше потенциальной энергии. Общепринято относиться к высоким позициям в местах с высокой потенциальной энергией. Взгляд на диаграмму справа показывает ошибочность такого утверждения. Обратите внимание, что масса 1 кг, удерживаемая на высоте 2 м, имеет ту же потенциальную энергию, что и масса 2 кг, удерживаемая на высоте 1 метр. Потенциальная энергия зависит не только от местоположения; это также зависит от массы. В этом смысле гравитационная потенциальная энергия зависит, по крайней мере, от двух типов величин: Масса - свойство объекта, испытывающего гравитационное поле, и2) Высота - местоположение в гравитационном поле
  4. If gravitational potential is a means of rating various locations within a gravitational field in terms of the amount of potential energy per unit of mass, then the concept of electric potential must have a similar meaning. Consider the electric field created by a positively charged Van de Graaff generator. The direction of the electric field is in the direction that a positive test charge would be pushed; in this case, the direction is outward away from the Van de Graaff sphere. Work would be required to move a positive test charge towards the sphere against the electric field. The amount of force involved in doing the work is dependent upon the amount of charge being moved (according to Coulomb's law of electric force). The greater the charge on the test charge, the greater the repulsive force and the more work that would have to be done on it to move it the same distance. If two objects of different charge - with one being twice the charge of the other - are moved the same distance into the electric field, then the object with twice the charge would require twice the force and thus twice the amount of work. This work would change the potential energy by an amount that is equal to the amount of work done. Thus, the electric potential energy is dependent upon the amount of charge on the object experiencing the field and upon the location within the field. Just like gravitational potential energy, electric potential energy is dependent upon at least two types of quantities: Electric charge - a property of the object experiencing the electrical field, and2) Distance from source - the location within the electric field Если гравитационный потенциал является средством оценки различных местоположений в гравитационном поле в терминах величины потенциальной энергии на единицу массы, то понятие электрического потенциала должно иметь аналогичный смысл. Рассмотрим электрическое поле, созданное положительно заряженным генератором Ван де Граафа. Направление электрического поля находится в направлении толкания положительного тестового заряда; в этом случае направление выходит наружу от сферы Ван де Граафа. Требуется работа по переносу положительного контрольного заряда в сферу против электрического поля. Количество силы, участвующей в выполнении работы, зависит от количества перемещаемого заряда (согласно закону электрической силы Кулона). Чем больше заряд на тестовом заряде, тем больше сила отталкивания и больше работы, которая должна быть сделана на нем, чтобы перемещать его на одинаковое расстояние. Если два объекта разного заряда - с одним, вдвое превышающим заряд другого, - перемещаются на одно и то же расстояние в электрическое поле, тогда объект с удвоенным зарядом потребует в два раза силы и, следовательно, вдвое больше работы. Эта работа изменила бы потенциальную энергию на сумму, равную сумме выполненной работы. Таким образом, электрическая потенциальная энергия зависит от количества заряда на объекте, испытывающем поле, и от местоположения внутри поля. Подобно гравитационной потенциальной энергии, электрическая потенциальная энергия зависит, по крайней мере, от двух типов величин: 1) Электрический заряд - свойство объекта, испытывающего электрическое поле, и2) Расстояние от источника - местоположение в электрическом поле
  5. Because the electric potential at any point in an electric field is a scalar quantity, we can use it to describe electrostatic phenomena more simply than if we were to rely only on the electric field and electric forces. The concept of electric potential is of great practical value in the operation of electric circuits and devices that we will study later. When a test charge q0 is placed in an electric field E created by some source charge distribution, the electric force acting on the test charge is qE. The force F =qE is conservative because the force between charges described by Coulomb’s law is conservative. When the test charge is moved in the field by some external agent, the work done by the field on the charge is equal to the negative of the work done by the external agent causing the displacement. This situation is analogous to that of lifting an object with mass in a gravitational field: the work done by the external agent is mgh, and the work done by the gravitational force is 2mgh. Поскольку электрический потенциал в любой точке электрического поля является скалярной величиной, мы можем использовать его для более простого описания электростатических явлений, чем если бы мы полагались только на электрическое поле и электрические силы. Концепция электрического потенциала имеет большое практическое значение в работе электрических цепей и устройств, которые мы рассмотрим позже. Когда тестовый заряд q0 помещается в электрическое поле E, созданное некоторым распределением заряда источника, электрическая сила, действующая на испытательный заряд, равна qE. Сила F = qE консервативна, поскольку сила между зарядами, описываемая законом Кулона, является консервативной. Когда тестовый заряд перемещается в поле каким-то внешним агентом, работа, выполняемая полем на зарядке, равна отрицательному результату работы внешнего агента, вызывающего смещение. Эта ситуация аналогична ситуации подъема объекта с массой в гравитационном поле: работа внешнего агента равна mgh, а работа гравитационной силы равна -mgh.
  6. By using the law of conservation of energy, we could solve various problems in mechanics that were insoluble with an approach using forces. The concept of potential energy is also of great value in the study of electricity. Because the electrostatic force is conservative, electrostatic phenomena can be conveniently described in terms of an electric potential energy. This idea enables us to define a quantity known as electric potential. Используя закон сохранения энергии, мы могли бы решить различные проблемы в механике, которые были неразрешимы при подходе с использованием сил. Концепция потенциальной энергии также имеет большое значение для изучения электричества. Поскольку электростатическая сила консервативна, электростатические явления удобно описывать в терминах электрической потенциальной энергии. Эта идея позволяет определить величину, известную как электрический потенциал.
  7. Let’s say we have a proton placed between a set of charged plates. If the proton is held fixed at the positive plate, the ELECTRIC FIELD will apply a FORCE on the proton (charge). Since like charges repel, the proton is considered to have a high potential (voltage) similar to being above the ground. It moves towards the negative plate or low potential (voltage). The plates are charged using a battery source where one side is positive and the other is negative. The positive side is at 9V, for example, and the negative side is at 0V. So basically the charge travels through a “change in voltage” much like a falling mass experiences a “change in height. (Note: The electron does the opposite) Скажем, у нас есть протон, расположенный между набором заряженных пластин. Если протон проходят фиксируются на положительной пластине, электрическое поле будет прикладывать усилие на протоне (заряд). Поскольку подобные заряды отталкиваются, считается, что протон обладает высоким потенциалом (напряжением), подобным тому, что он находится над землей. Он движется к отрицательной пластине или низкому потенциалу (напряжению). Пластины заряжаются с использованием источника батареи, где одна сторона положительная, а другая - отрицательная. Положительная сторона, например, равна 9 В, а отрицательная сторона равна 0 В. Таким образом, в основном заряд проходит через «изменение напряжения», так же, как падающая масса испытывает «изменение высоты». (Примечание: электрон делает обратное)
  8. For an infinitesimal displacement ds of a point charge q0 immersed in an electric field, the work done within the charge–field system by the electric field on the charge is Wint Fe . As this amount of work is done by the field, the potential energy of the charge–field system is changed by an amount For a finite displacement of the charge from point to point , the change in potential energy of the system is The integration is performed along the path that q0 follows as it moves from P1 to P2. Because the force q0E is conservative, this line integral does not depend on the path taken from P1 to P2. Для бесконечно малого смещения ds точечного заряда q0, погруженного в электрическое поле, работа в системе зарядового поля электрическим полем на заряде Wint Fe. Поскольку этот объем работы выполняется полем, потенцированная энергия системы зарядового поля изменяется на величину. Для конечного смещения заряда от точки к точке изменение потенциальной энергии системы равно Интеграция выполняется по пути, который следует q0, когда он перемещается из P1 в P2. Поскольку сила q0E консервативна, этот интеграл линии не зависит от путь, взятый из P1 в P2.
  9. For a given position of the test charge in the field, the charge–field system has a potential energy U relative to the configuration of the system that is defined as U =0. Dividing the potential energy by the test charge gives a physical quantity that depends only on the source charge distribution and has a value at every point in an electric field. This quantity is called the electric potential (or simply the potential) V: Because potential energy is a scalar quantity, electric potential also is a scalar quantity. As described, if the test charge is moved between two positions and in an electric field, the charge–field system experiences a change in potential energy. The potential difference between two points and in an electric field is defined as the change in potential energy of the system when a test charge q0 is moved between the points divided by the test charge: Для заданной позиции тестового заряда в поле система зарядового поля имеет потенциальную энергию U относительно конфигурации системы, которая определяется как U = 0. Разделение потенциальной энергии на тестовый заряд дает физическую величину, которая зависит только от распределения заряда источника и имеет значение в каждой точке электрического поля. Эта величина называется электрическим потенциалом (или просто потенциалом) V: Поскольку потенциальная энергия является скалярной величиной, электрический потенциал также является скалярной величиной. Как описано, если тестовый заряд перемещается между двумя положениями и в электрическом поле, система зарядового поля испытывает изменение потенциальной энергии. Разность потенциалов между двумя точками и в электрическом поле определяется как изменение потенциальной энергии системы, когда тестовый заряд q0 перемещается между точками, деленными на тестовый заряд:
  10. Множество точек с одинаковыми потенциальными формами эквипотенциальной поверхности. Для точечного заряда эквипотенциалы представляют собой сферы с фиксированным радиусом r. Рассмотрим график контуров электростатического потенциала, образующих эквипотенциальные поверхности вокруг точечного заряда, наложенного поверх линий поля для точечного заряда
  11. Поскольку мы можем заметить, что поле переходит в сторону уменьшения потенциала Если поведение потенциала неизвестно, поле электрической интенсивности может быть определено путем нахождения максимальной скорости и направления пространственного изменения потенциального поля