SlideShare a Scribd company logo
1 of 24
Download to read offline
Why ⇌ How
Exploring (some of) the equations,
physiology and mechanisms which
inform and underlie our practice.
Adam Bell, BS, CCEMT-P, CPTC,
Donor Network of Arizona, AZOB
NATCO Annual Meeting
Aug 8, 2015
“What senses do
we lack that we
cannot see or
hear another
world all around
us?”
-Frank Herbert, DUNE
Objectives
 Provide an example of an order for a bicarbonate drip
which will also lower sodium in the setting of
hypernatremia and an indication for the same and define
a % solution
 Calculate a mean airway pressure given PIP, PEEP and I:E
ratio
 Demonstrate how to predict CO2 with vent rate change
assuming apneic pt on vent with constant compliance and
volume
 Verbalize the two most significant factors in delivery of
O2 to tissues and two interventions to support each
factor
Which sounds hard, right?
“…A lot of what we do in the (ICU)…at
least the biology and the chemistry, is
really strongly founded on what I learned
in high school science…A lot of the science
really isn’t that highbrow…”
-Dr. Jeffery Guy,
ICU Rounds Podcast, “Colloids: Details and Myths” 2012
“All vague notions must fall before the
pupil can call himself a master”- Bruce Lee
• Why do we breathe?
• How many of us were told “CO2 Level?”
• Typical DKA ABG: 7.19/27/110/15/98%
• pH of CSF
DEFINITIONS & PRECISION
How does a tension pneumothorax kill you?
What does CVP Measure?
What are preload and afterload?
Where does vasoconstriction mostly occur?
Mean Airway Pressure (MAWP)
• What is the formula for Mean Arterial
Pressure and why does it make sense?
Hint: Time Averaged Pressure
Calculating MAWP
• Find I:E ratio, for each unit of I time add 1x
PIP, for each unit of E time: add 1x PEEP,
then divide by total units of time
• e.g. PIP 25 PEEP 5, I:E 4:1:
4 x 25 =100 ( for this 4 units of PIP)
+ 1 X 5 [ for single unit of PEEP] = 105 / 5
( the total units of PIP + units of PEEP) =
MAWP of 21 cm H2O
I:E Ratio 1:2 1:1 3:1 11:1 1:2
PIP 30 30 30 30 40
PEEP 5 5 5 0 15
Equation (30+5+5)/3 (30+5) /2 (30+30+
30+5) /4
(30x11)
+0/12
(40 +15+15)
/3
MAP 13.3 17.5 23.75 27.5 23.3
MV changes and PaCO2
Master Equations
• Minute Volume (MV) =
(tidal volume/ breath) X (breaths/ min)
• (MV X PaCO2) / desired PaCO2 = Desired
MV
&
• (MV X PaCO2) / New MV = Predicted
PaCO2
Predicting CO2 changes w/volume changes
• Vent volume assuming you keep same
rate:
• (Current PaCO2 x Current tidal volume)/ Desired
PaCO2 = Desired tidal volume to normalize CO2
• And so:
(Current PaCO2 x Current tidal volume)/
New Tidal Volume = new predicated
PaCO2
Rate Changes and PaCO2:
Vent Rate assuming constant tidal
volume:
(Current PaCO2 x Current Vent Rate)/
Desired PaCO2 = Desired Vent Rate
“Repetition of error is not experience”
-Dr. Jeffery Guy, ICU Rounds Podcast
Same Donor, top ABG is earlier,
No Bicarb given
BD Donors still compensate for hyperventilation
Anion Gap, AG (in one slide)
• The body must be electrically neutral. Charges must
balance.
• <12 (+/-2)
• Na+ - ( Cl- + HCO3-)
• The “gap” represents other normally unmeasured anions
such as phosphate, sulfates and proteins in serum plasma
• Low Albumin lowers Anion gap drop of 1gm Albumin yields
drop of 2.5 in gap calculation
• w/ Acidosis: Pos AG: treat cause, Neg AG: give bicarb
Bicarb Drips (back to chemistry class)
• mEq measure electrical charge
• mg measure mass
• % solution means:
X grams solute/100ml fluid where X=
the %
Mass Charge
23 mg Na + 1 mEq
39 mg K+ 1 mEq
36 mg Cl- 1 mEq
30 mg HCO3- 1 mEq
The solution to pollution is dilution?!
Serum Na
mEq/L
DONORS
3% NaCl
mEq/L
Na, Cl
0.9 %
NaCl
mEq/L
Na, Cl
(5% alb is
in NS)
3 “amps”
bicarb/L
Sterile
H2O
LR
mEq/L
Na:
0.45 % NS
& D5 ½ NS
mEq/L Na:
D5W
50 gm
Dextrose/L
mEq/L Na:
175 513,
(513 Cl)
154,
(154 Cl)
150
(0 Cl)
130
(110 Cl)
77
(77 Cl)
0
(0 Cl)
155 513 154 * 150
(0 Cl)
130 77 0
(0 Cl)
145 513 154 150
(0 Cl)
130 77 0
(0 Cl)
135 513 154 150
(0 Cl)
130 * 77 0
(0 Cl)
Bicarb Drips Cont.
• 0.45% NaCl has 450 mg NaCl/
100ml or 4,500 NaCl mg/L which =
• 77 mEq each of Na+ and Cl- /L
Thus 1771 mg Na+ electrically
balance 2772 mg Cl- for total mass of
4543 mg /L
Why do you care???
Bicarb Drips Cont.
• In hypernatremia we’d like to
lower Na+
• Thus if we want a bicarb gtts w/
same Na+ of 0.45% NaCl:
We can calculate how much bicarb
to use and not let our Na+ rise!
Replacement Formulae
• Bicarb Replacement:
• 0.15 x weight {in kg} x Base Deficit = mEq
NaHCO3 for replacement of 50% of Deficit
• K+ Replacement (assumes no continuing losses)
• Desired K - Current K x 20 = mEq to
replace
• Note: K-Phos has:
approx. 1.5 mEq K+/mmol K-Phos
(30 mmol k-Phos = 44- 45 mEq K+)
Delivered O2
Delivered O2 =
CO x {1.36 x Hbg x SaO2} + {0.0031 x PaO2}
BP 48/33 Good? Bad?
ECMO pt: Flow 4.5 L/min
If you double the diameter of a tube: flow
increases 16X, and speed & pressure drop.
Putting it all together
Consider a brain dead pt:
Cardiac/Fluid Status:
200 mcg/min Neo, 60
mcg/min Levo, Vasopressin
0.04u/min, Fluid -2L, 100/86,
CVP 8, CO 3, CI 1.2, SVV 38,
SVI 24
Respiratory/Pulmonary
Status:
Peep +15, , FiO2 1.0, SpO2 92%
Chemistry Status:
lactate 7, Alb 1.9, TP 3.8,
Hbg 8.6,
Sources Used
· Mosby’s Pocket Guide to Fluids and Electrolytes 4th Ed.
· Quick Reference to Critical Care 3rd Ed.
· Online Database of “Progress in Transplantation”
· The ICU Book 2nd Ed.
· ICU Rounds Podcast by Dr. J Guy
· Critical Care Medicine 3rd Ed.
· Egans- Fundamentals of Respiratory Care
· Oaks- Guides to: Hemodynamics and Ventilator Management
· Robbins- Pathologic Basis of Disease
· Pulmonary Physiology and Pathophysiology 2nd Ed.
· Jones and Bartlett – Critical care Transport
· Epocrates Free Version Apple app.
· Principles of Anatomy and Physiology 9th Ed.
· Sauders- Pharmacology for Nursing Care 4th Ed.
· Harrison’s Internal Medicine, e-book Ed.
· Lehninger- Principles of Biochemistry

More Related Content

Similar to Why ⇌ How NATCO version

Donor management with simulation
Donor management with simulationDonor management with simulation
Donor management with simulationColleen Gerber
 
TERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptx
TERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptxTERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptx
TERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptxnabilarasyida1
 
Acid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku JosephAcid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku JosephDr.Tinku Joseph
 
EXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid VaporEXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid VaporRashid Alsuwaidi
 
Acid base disorders (ARTERIAL BLOOD GASES)
Acid base disorders (ARTERIAL BLOOD GASES)Acid base disorders (ARTERIAL BLOOD GASES)
Acid base disorders (ARTERIAL BLOOD GASES)Mohamed Elbhnasawy
 
abg objetives.pptx
abg objetives.pptxabg objetives.pptx
abg objetives.pptxjavier
 
Spirometry2300
Spirometry2300Spirometry2300
Spirometry2300esther20
 
Arterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant KumarArterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant KumarDr. Prashant Kumar
 
Arterial blood gas analysis in respiratory disorders
Arterial blood gas analysis in respiratory disordersArterial blood gas analysis in respiratory disorders
Arterial blood gas analysis in respiratory disordersSelva Kumar
 
Abg analysis in emergency medicine department
Abg analysis in emergency medicine departmentAbg analysis in emergency medicine department
Abg analysis in emergency medicine departmentDrRahulyadav7
 
Arterial blood gas.ppt1 (1)
Arterial blood gas.ppt1 (1)Arterial blood gas.ppt1 (1)
Arterial blood gas.ppt1 (1)Manu Jacob
 
acido base jeringa.pptx
acido base jeringa.pptxacido base jeringa.pptx
acido base jeringa.pptxjavier
 
6 respiration -_energy_conversion
6 respiration -_energy_conversion6 respiration -_energy_conversion
6 respiration -_energy_conversionJaden Francis
 
Arterial Blood Gas (Dr George).ppt
Arterial Blood Gas (Dr George).pptArterial Blood Gas (Dr George).ppt
Arterial Blood Gas (Dr George).pptDeepaNesam1
 

Similar to Why ⇌ How NATCO version (20)

Donor management with simulation
Donor management with simulationDonor management with simulation
Donor management with simulation
 
TERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptx
TERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptxTERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptx
TERAPI CAIRAN DALAM PRAKTEK SEHARI-HARI OLEH dr.SUMARA NIMAN,Sp.An.pptx
 
Acid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku JosephAcid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku Joseph
 
fluidmgmt-a balanced approach
fluidmgmt-a balanced approachfluidmgmt-a balanced approach
fluidmgmt-a balanced approach
 
EXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid VaporEXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid Vapor
 
Acid base disorders
Acid base disordersAcid base disorders
Acid base disorders
 
Acid base disorders (ARTERIAL BLOOD GASES)
Acid base disorders (ARTERIAL BLOOD GASES)Acid base disorders (ARTERIAL BLOOD GASES)
Acid base disorders (ARTERIAL BLOOD GASES)
 
abg objetives.pptx
abg objetives.pptxabg objetives.pptx
abg objetives.pptx
 
Spirometry2300
Spirometry2300Spirometry2300
Spirometry2300
 
Arterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant KumarArterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant Kumar
 
Abg interpretation
Abg interpretationAbg interpretation
Abg interpretation
 
new BLOOD GASES AND.pptx
new BLOOD GASES AND.pptxnew BLOOD GASES AND.pptx
new BLOOD GASES AND.pptx
 
MRCP-ABG.pptx
MRCP-ABG.pptxMRCP-ABG.pptx
MRCP-ABG.pptx
 
Arterial blood gas analysis in respiratory disorders
Arterial blood gas analysis in respiratory disordersArterial blood gas analysis in respiratory disorders
Arterial blood gas analysis in respiratory disorders
 
Abg analysis in emergency medicine department
Abg analysis in emergency medicine departmentAbg analysis in emergency medicine department
Abg analysis in emergency medicine department
 
Arterial blood gas.ppt1 (1)
Arterial blood gas.ppt1 (1)Arterial blood gas.ppt1 (1)
Arterial blood gas.ppt1 (1)
 
ABG Interpretation.pptx
ABG Interpretation.pptxABG Interpretation.pptx
ABG Interpretation.pptx
 
acido base jeringa.pptx
acido base jeringa.pptxacido base jeringa.pptx
acido base jeringa.pptx
 
6 respiration -_energy_conversion
6 respiration -_energy_conversion6 respiration -_energy_conversion
6 respiration -_energy_conversion
 
Arterial Blood Gas (Dr George).ppt
Arterial Blood Gas (Dr George).pptArterial Blood Gas (Dr George).ppt
Arterial Blood Gas (Dr George).ppt
 

Why ⇌ How NATCO version

  • 1. Why ⇌ How Exploring (some of) the equations, physiology and mechanisms which inform and underlie our practice. Adam Bell, BS, CCEMT-P, CPTC, Donor Network of Arizona, AZOB NATCO Annual Meeting Aug 8, 2015
  • 2. “What senses do we lack that we cannot see or hear another world all around us?” -Frank Herbert, DUNE
  • 3. Objectives  Provide an example of an order for a bicarbonate drip which will also lower sodium in the setting of hypernatremia and an indication for the same and define a % solution  Calculate a mean airway pressure given PIP, PEEP and I:E ratio  Demonstrate how to predict CO2 with vent rate change assuming apneic pt on vent with constant compliance and volume  Verbalize the two most significant factors in delivery of O2 to tissues and two interventions to support each factor Which sounds hard, right?
  • 4. “…A lot of what we do in the (ICU)…at least the biology and the chemistry, is really strongly founded on what I learned in high school science…A lot of the science really isn’t that highbrow…” -Dr. Jeffery Guy, ICU Rounds Podcast, “Colloids: Details and Myths” 2012
  • 5. “All vague notions must fall before the pupil can call himself a master”- Bruce Lee • Why do we breathe? • How many of us were told “CO2 Level?” • Typical DKA ABG: 7.19/27/110/15/98% • pH of CSF
  • 6. DEFINITIONS & PRECISION How does a tension pneumothorax kill you? What does CVP Measure? What are preload and afterload? Where does vasoconstriction mostly occur?
  • 7. Mean Airway Pressure (MAWP) • What is the formula for Mean Arterial Pressure and why does it make sense? Hint: Time Averaged Pressure
  • 8. Calculating MAWP • Find I:E ratio, for each unit of I time add 1x PIP, for each unit of E time: add 1x PEEP, then divide by total units of time • e.g. PIP 25 PEEP 5, I:E 4:1: 4 x 25 =100 ( for this 4 units of PIP) + 1 X 5 [ for single unit of PEEP] = 105 / 5 ( the total units of PIP + units of PEEP) = MAWP of 21 cm H2O
  • 9. I:E Ratio 1:2 1:1 3:1 11:1 1:2 PIP 30 30 30 30 40 PEEP 5 5 5 0 15 Equation (30+5+5)/3 (30+5) /2 (30+30+ 30+5) /4 (30x11) +0/12 (40 +15+15) /3 MAP 13.3 17.5 23.75 27.5 23.3
  • 10. MV changes and PaCO2 Master Equations • Minute Volume (MV) = (tidal volume/ breath) X (breaths/ min) • (MV X PaCO2) / desired PaCO2 = Desired MV & • (MV X PaCO2) / New MV = Predicted PaCO2
  • 11. Predicting CO2 changes w/volume changes • Vent volume assuming you keep same rate: • (Current PaCO2 x Current tidal volume)/ Desired PaCO2 = Desired tidal volume to normalize CO2 • And so: (Current PaCO2 x Current tidal volume)/ New Tidal Volume = new predicated PaCO2
  • 12. Rate Changes and PaCO2: Vent Rate assuming constant tidal volume: (Current PaCO2 x Current Vent Rate)/ Desired PaCO2 = Desired Vent Rate “Repetition of error is not experience” -Dr. Jeffery Guy, ICU Rounds Podcast
  • 13. Same Donor, top ABG is earlier, No Bicarb given BD Donors still compensate for hyperventilation
  • 14. Anion Gap, AG (in one slide) • The body must be electrically neutral. Charges must balance. • <12 (+/-2) • Na+ - ( Cl- + HCO3-) • The “gap” represents other normally unmeasured anions such as phosphate, sulfates and proteins in serum plasma • Low Albumin lowers Anion gap drop of 1gm Albumin yields drop of 2.5 in gap calculation • w/ Acidosis: Pos AG: treat cause, Neg AG: give bicarb
  • 15. Bicarb Drips (back to chemistry class) • mEq measure electrical charge • mg measure mass • % solution means: X grams solute/100ml fluid where X= the % Mass Charge 23 mg Na + 1 mEq 39 mg K+ 1 mEq 36 mg Cl- 1 mEq 30 mg HCO3- 1 mEq
  • 16. The solution to pollution is dilution?! Serum Na mEq/L DONORS 3% NaCl mEq/L Na, Cl 0.9 % NaCl mEq/L Na, Cl (5% alb is in NS) 3 “amps” bicarb/L Sterile H2O LR mEq/L Na: 0.45 % NS & D5 ½ NS mEq/L Na: D5W 50 gm Dextrose/L mEq/L Na: 175 513, (513 Cl) 154, (154 Cl) 150 (0 Cl) 130 (110 Cl) 77 (77 Cl) 0 (0 Cl) 155 513 154 * 150 (0 Cl) 130 77 0 (0 Cl) 145 513 154 150 (0 Cl) 130 77 0 (0 Cl) 135 513 154 150 (0 Cl) 130 * 77 0 (0 Cl)
  • 17. Bicarb Drips Cont. • 0.45% NaCl has 450 mg NaCl/ 100ml or 4,500 NaCl mg/L which = • 77 mEq each of Na+ and Cl- /L Thus 1771 mg Na+ electrically balance 2772 mg Cl- for total mass of 4543 mg /L Why do you care???
  • 18. Bicarb Drips Cont. • In hypernatremia we’d like to lower Na+ • Thus if we want a bicarb gtts w/ same Na+ of 0.45% NaCl: We can calculate how much bicarb to use and not let our Na+ rise!
  • 19. Replacement Formulae • Bicarb Replacement: • 0.15 x weight {in kg} x Base Deficit = mEq NaHCO3 for replacement of 50% of Deficit • K+ Replacement (assumes no continuing losses) • Desired K - Current K x 20 = mEq to replace • Note: K-Phos has: approx. 1.5 mEq K+/mmol K-Phos (30 mmol k-Phos = 44- 45 mEq K+)
  • 20. Delivered O2 Delivered O2 = CO x {1.36 x Hbg x SaO2} + {0.0031 x PaO2} BP 48/33 Good? Bad? ECMO pt: Flow 4.5 L/min If you double the diameter of a tube: flow increases 16X, and speed & pressure drop.
  • 21. Putting it all together Consider a brain dead pt: Cardiac/Fluid Status: 200 mcg/min Neo, 60 mcg/min Levo, Vasopressin 0.04u/min, Fluid -2L, 100/86, CVP 8, CO 3, CI 1.2, SVV 38, SVI 24 Respiratory/Pulmonary Status: Peep +15, , FiO2 1.0, SpO2 92% Chemistry Status: lactate 7, Alb 1.9, TP 3.8, Hbg 8.6,
  • 22.
  • 23.
  • 24. Sources Used · Mosby’s Pocket Guide to Fluids and Electrolytes 4th Ed. · Quick Reference to Critical Care 3rd Ed. · Online Database of “Progress in Transplantation” · The ICU Book 2nd Ed. · ICU Rounds Podcast by Dr. J Guy · Critical Care Medicine 3rd Ed. · Egans- Fundamentals of Respiratory Care · Oaks- Guides to: Hemodynamics and Ventilator Management · Robbins- Pathologic Basis of Disease · Pulmonary Physiology and Pathophysiology 2nd Ed. · Jones and Bartlett – Critical care Transport · Epocrates Free Version Apple app. · Principles of Anatomy and Physiology 9th Ed. · Sauders- Pharmacology for Nursing Care 4th Ed. · Harrison’s Internal Medicine, e-book Ed. · Lehninger- Principles of Biochemistry