SlideShare a Scribd company logo
1 of 7
Download to read offline
G I S             Defining    adjacency  and
                   proximity of forest stands
                   for harvest blocking




96
                                               Karl R. Walters

                                             Associate-Remsoft Inc.
                                            620 George Street, Suite 5
                                      Fredericton, NB, CANADA E3B 1K3
                                    (506) 450-1511 email: mail@remsoft.com


   GIS’96                                           Abstract
                   Harvest blocking is a fundamental decision of timber management. The size,
Symposium          location and timing of harvest blocks directly affects the development and
                   structure of the forest at the current time, but for future time periods as well.
                   In developing automated blocking tools, we have found that obtaining the
  Vancouver        required adjacency and proximity information to implement these tools
                   properly can be problematic. Part of the problem lies with semantics -- in
British Columbia   general, we all know what is meant by adjacency and proximity. Depending
                   on the task at hand (blocking versus scheduling) it takes some forethought
  March 1996
                   about the relationships among stands to avoid adjacency and maximum
                   opening size constraint violations.
                   In many cases, the required adjacency or proximity information cannot be
                   readily obtained from the geographic information system. For example, using
                   a vector-based system, it is not a trivial task to determine whether two harvest
                   blocks composed of several stands each are more than a minimal distance
                   apart without displaying them and selecting the two closest points visually. A
                   raster system is more amenable to this problem, but suffers from the
                   inefficiencies of many more allocation units (cells versus stands) and the loss
                   of resolution.
                   Keywords: spatially constrained harvest scheduling, harvest blocking,
                             adjacency, proximity

                   Introduction
                   Harvest blocking is the foundation for modern timber management. With
                   increasing concern for the environment have come a host of rules and
                   regulations that make the blocking process a technically challenging task. In
                   years past, the location of harvest blocks was predicated largely on the
                   volume of wood available and the cost of transportation to the processing site;
                   now, these factors are still important but considerations such as opening size,
                   proximity to other openings, and timing of harvest are critical to ensuring
                   economical and sustained harvest levels. In order to comply with various
                   constraints on the harvest, the analyst charged with developing a blocked
                   harvest schedule faces a daunting challenge.
At Remsoft, we have been studying the problem of           These regulations are not nearly as complicated as
spatially constrained harvest scheduling for several       some of those in other jurisdictions (e.g., Maine or
years and we have developed some software tools to         the Pacific Northwest) but they will be sufficient to
aid in the process. Obviously, geographic                  make my points.
information systems (GIS) play an integral role in the
harvest blocking process, but we have found that           Forming a harvest unit
some information, critical to an automated planning        In New Brunswick, the forest land base is
process, is difficult or impossible to obtain from         significantly fragmented due to ownership patterns
commercial GIS products. The purpose of this paper         and past logging or catastrophic events; the average
is to introduce to you the concepts of adjacency and       stand size is only about 3 or 4 hectares. To make a
proximity as we use them at Remsoft, and why they          feasible harvest unit of, say 20 ha, may require 5 or 6
are important to spatial management planning.              contiguous stands grouped together as a single
                                                           harvest unit. To determine the location of such a
Definitions                                                harvest block, our harvest blocking tool starts with a
The American Heritage Dictionary defines adjacency         given stand and looks for adjacent stands to group
as “the state of being adjacent; contiguity.” and          with it. The program requires a comprehensive list of
proximity as “the state, quality, sense, or fact of        neighboring stands which is derived from GIS
being near or next; closeness.” The definitions            databases. However, as we only discovered recently,
themselves are fine, but sometimes the precise             individual GIS vendors use different implementations
meaning of the words has been lost in application. In      of contiguity to determine adjacency.
many jurisdictions, regulations have extended the
definition of adjacency to include areas that are not
physically contiguous (e.g., any area within 100
metres of a forest opening is considered to be
adjacent and is thus ineligible for harvesting) or they
have limited the scope of adjacency (e.g., if two
harvest block boundaries overlap by less than 100
metres the blocks are not considered adjacent). The
word proximity tends not to be used in regulatory
language, even though it is the basis for virtually all
green-up delay requirements.
                                                           Figure 1. Spatial arrangement of stands in a
I don’t intend to write a long discourse on semantics      hypothetical forest.
and proper usage, but I think it is a valid point to
make that many of the difficulties that arise in trying    Consider the spatial arrangement of stands in Figure
to comply with rules and regulations are the result of     1. If we were to create a harvest block composed of 4
imprecise language. Therefore, to maintain clarity         adjacent stands, we could use A-B-C-D or E-H-I-J
throughout this paper, I will maintain that objects that   without hesitation. But what about a block composed
are physically contiguous are adjacent whereas             of stands E-F-H-J? If we use a GIS that defines
objects that are near each other but not touching are      contiguous polygons to be those with a common
proximate.                                                 vertex, then stands E and F are adjacent and the block
                                                           E-F-H-J is valid. Conversely, if we use a GIS that
An example problem                                         determines adjacency based on common arcs, then
                                                           block E-F-H-J is not a valid block because polygons
Let us consider a hypothetical management problem          E and F do not share a common arc and are thus not
where the task is to develop a blocked harvest             considered adjacent.
schedule under the following regulations:
• clearcut harvest blocks may not exceed 120 acres         From a practical standpoint, stands linked by a
    in size and,                                           common point are not really practical components of
• no harvesting is permitted within 300 feet of a          a harvest block. For example, suppose you have two
    clearcut harvest block for a period of 10 years        blocks E-F and G-K. If you were to implement a
    (green-up delay).                                      corridor linking E and F then stands G and K would
no longer be contiguous. Although it is probably easy      greater the extent of forest area tied up due to the
to deal with this problem through manual                   green-up requirements. Scheduling the harvest of
intervention, it becomes more of a problem with an         these harvest units to minimize the impact of spatial
algorithmic approach that deals with thousands of          constraints is a computationally difficult problem to
blocks at a time. The problem is exacerbated using a       solve. Our approach so far has been to combine
raster-based GIS because every cell potentially has 4      Monte Carlo integer programming techniques with
single point adjacencies.                                  heuristics to yield good feasible solutions.
Although a harvest unit composed of contiguous
stand area is a necessity for most operations, the
requirement for contiguity breaks down when a road
is involved. Even though stands A, B, I and J are not
strictly contiguous, from an operational standpoint,
they would make a feasible harvest unit since
machinery can readily traverse the road. In this case
the stands are not adjacent, but because of the road
and their close proximity they can be grouped to                     Period 1 harvest
form a feasible harvest block. Had stands I and J
been located several miles down the road however,                    Period 2 harvest
the presence of the road would not have justified
forming a harvest unit.                                              Period 3 harvest

Developing a viable harvest unit generally requires                  Period 4 harvest
contiguous forest stands linked by a common
boundary rather than a single point. Obtaining                       Period 5 harvest
adjacency information that excludes single point
adjacencies may be difficult from some geographic
information    systems.     Furthermore,     practical
considerations such as the possibility of road or
stream crossings permit the use of non-adjacent
stands in the development of blocks, along with the
obvious considerations of stand area to limit opening
sizes.
                                                                    Period 1 harvest
Scheduling harvest units
Once the harvest units have been developed, the                     Period 2 harvest
timing of harvest for each of them must be
determined such that green-up requirements are met.                 Period 3 harvest
Although one could simply implement buffer strips                   Period 4 harvest
around each harvest block, there are drawbacks to
doing so. Consider Figure 2. First, in the forest on the
left, the residual forest in the buffer strips may not     Figure 2. Alternative ways to comply with green-up
yield desirable harvest blocks because they are both       requirements in blocking.
long and narrow, and they are not uniform in shape.
Second, it requires 5 passes to harvest the entire         For the scheduler to work, we must provide it with
forest area (one block is half the area of the others).    proximity information on harvest units. Since we
In contrast, the arrangement on the right has uniform      know which stands belong to each harvest unit, the
harvest blocks and requires only 4 passes to harvest       stand adjacency information we developed earlier
the entire forest area (one block is also half the area    can be used to determine adjacency among harvest
of the others).                                            units by eliminating selfs (adjacency relationships
                                                           between 2 stands in the same block). Whereas the
If harvest units are significantly smaller than the        inclusion of single point adjacencies in the adjacency
maximum opening size, combining 2 or more of               list for the blocking tool was a disadvantage,
these units to create a single harvest block can           including those adjacencies in the scheduling process
alleviate some problems with green-up delays.              is desirable.
However, as the harvest block increases in size, the
one another. In a raster GIS, it is obvious that each
                                                             cell will have four adjacent neighbors and four
                                                             corner-point neighbors. In a vector based system, the
                                                             number of corner-point proximate polygons depends
                                                             on how many lines cross each other – a T-
                                                             intersection generates true adjacencies, not single-
                                                             point adjacencies. To determine whether the single
Figure 3. The impact of line intersections on point          point adjacencies are significant or not, we processed
adjacencies.                                                 a Forest Development Survey map from New
Consider the polygons illustrated in Figure 3. The           Brunswick using our adjacency procedure and found
equilateral triangles represent the situation where 3        that the number of adjacency records fell from
lines cross at a given point. The red polygon has 9          24,720 to 18,738 when single point adjacencies were
corner point adjacencies and just 3 common arc               excluded from the list.
adjacencies. The square grid represents the situation        Since the tolerance for comparison can be set to any
where 2 lines cross, and there are equal numbers of          arbitrary distance, two polygons which have points
common arc and corner point adjacencies. The                 separated by less than the comparison tolerance (x)
hexagonal grid exhibits no corner point adjacencies          are considered to be x-distance proximate to each
at all. Now, if we were to create a harvest block            other. Obviously, the larger the tolerance, the greater
composed of the red polygon and one of its yellow            the number of comparisons to be made – in fact, the
neighbors we will violate the green-up requirements          number of comparisons grows exponentially – and so
if we do not recognize the single point adjacencies in       practical limits on processing time require relatively
the triangular and square grids, but the hexagonal           small tolerances. For small tolerance limits, the
grid will present no such difficulties. Furthermore, if      procedure works quickly and we have used it to
the length of one side of a hexagon is equal to the          generate adjacency relationships among stands that
minimum distance allowed between simultaneously              border roads, streams and other line features. We
harvested blocks, then it is guaranteed that all non-        have also used it to establish adjacency relationships
contiguous blocks will be sufficiently spaced from           among stands on map boundaries which is very
one another.                                                 useful if maps have not been properly edge-matched
Some researchers have used centroids to determine            or if the routines provided by the GIS are slow to run
proximate blocks because almost all GIS vendors              on a large number of maps.
provide ready means of accessing this information.           In the figures that follow, a uniform, square forest
However, centroids are a poor substitute because the         was subdivided into a 20 x 20 grid and our automated
green-up restrictions require that all points on the         blocking/scheduling tool was applied to maximize
boundaries of two polygons be at least a given               even flow harvest for four planning periods. The
distance apart, not that the bulk of their area be more      minimum harvest block size was one cell and no
than a given distance apart. To determine this               maximum size limit was established. A one period
relationship for all polygons requires point-to-point        harvest delay constraint was applied, such that a
distance calculations for all the vertices in all arcs – a   block adjacent to a block harvested in period one
huge computational effort for a vector-based GIS;            could be harvested no earlier than period three. The
although the computational burden for a raster               algorithm tries to make blocks as large as possible,
system is considerably less, it is still not trivial.        with shape controls applied to avoid very irregular
                                                             shaped blocks.
Some observations
                                                             In Figure 4, you can readily determine that the
Given that different GIS vendors use either the              algorithm was quite successful in allocating the
common point method or the common arc method for             harvest to meet the green-up delay requirements.
determining adjacency in vector-based systems, and           Since corner point adjacencies were not included in
that problems arise when either approach is used             the algorithm’s adjacency list, it left cells
exclusively for spatial harvest scheduling, we               unharvested between the red block in the upper right
developed a program that scans the nodes of an arc to        corner and green block below it, to act as buffers
determine      both    adjacency     and    proximity        between the two harvest blocks. Similarly, the blue J-
relationships. If two polygons share a common point,         shaped block located in the lower middle of the forest
they are proximate to each other; if they share two or       is considered a separate block from the nearby larger
more common points, they are considered adjacent to
blue block. However, both of these instances clearly   violate the intent of the adjacency restrictions.
When the corner point adjacencies were included in            their parent blocks with corridors would result in
the adjacency list the blocking/scheduling algorithm          adjacency violations as well.
yielded a very different block pattern, as illustrated in
                                                              If we extrapolate these results to real world
Figure 5. Notice that in this block configuration there
                                                              situations, we would expect to find that our
are no instances where the adjacency restrictions are
                                                              blocking/scheduling algorithm would perform well
violated – cells are either left unharvested or there is
                                                              on forests composed of relatively uniform stands of
a minimum one period delay for the intervening cells
                                                              fairly regular shape and with few intersecting lines
between blocks. However, the harvest blocks
                                                              (such as property boundaries) without corner point
themselves are less desirable than those in Figure 4.
                                                              adjacencies considered. The few adjacency violations
For example, all of the blue cells constitute a single        that resulted could likely be handled easily through
large harvest block, but there are isolated pieces that       manual intervention. Conversely, if the algorithm
are problematic from an operational standpoint. Any           were applied to a forest composed of many small
attempt to connect these small islands with the main          woodlots or other holdings and/or with highly
portion of the block could mean completely severing           irregular stand geometries, the number of adjacency
another island from its parent block – for example,           violations would increase dramatically, severely
the blue and cyan blocks on the lower boundary of             limiting the utility of an automated process.
the forest. In other cases, connecting these islands to
                                                              Summary




Figure 4. Block configuration 1 - corner point adjacencies omitted.
Figure 5. Block configuration 2 - corner point adjacencies included.
Although we at Remsoft are by no means experts on             implement. Many factors that influence the size and
any GIS, we have been exposed to a number of                  shape of a feasible harvest block are patently obvious
vector-based geographic information systems and we            to a human observer, but these same factors can
have yet to see a system that can readily provide             confound an algorithm working under a complex set
adjacency relationships for all stands across multiple        of guidelines. In our approach, we use a strict
map boundaries. Even those systems that provide               definition of adjacency that omits corner-point
adjacency information in a relatively accessible form,        adjacencies to develop harvest blocks, but includes
do not provide methods to differentiate common-               proximate stands which are obvious candidates for
point adjacencies from common-arc adjacencies                 inclusion (e.g., stands which are on either side of a
without a significant programming effort. Being able          road). Then, when harvest blocks are scheduled
to access data structures directly allowed us to              under opening size and adjacency constraints, we
generate adjacency relationships, but the situation           expand the adjacency list to include not only the
would be vastly improved if system vendors provided           corner point adjacent stands but proximate stands that
these functions directly. Unfortunately, these very           have nodes within a given distance away.
basic functions are absolutely necessary to implement         Admittedly, our proximate stands list is not perfect,
automated blocking tools, but the inability to access         but it is an improvement over proxies like centroids.
data structures or system functions to provide the
required information hampers deployment of spatial
forest management tools.
An automated procedure for developing harvest
blocks and scheduling is not a trivial program to

More Related Content

Similar to Defining adjacency and proximity of forest stands for harvest blocking

Spatial forest planning on industrial land: A problem in combinatorial optimi...
Spatial forest planning on industrial land: A problem in combinatorial optimi...Spatial forest planning on industrial land: A problem in combinatorial optimi...
Spatial forest planning on industrial land: A problem in combinatorial optimi...KR Walters Consulting Services
 
A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...
A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...
A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...KR Walters Consulting Services
 
An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...
An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...
An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...KR Walters Consulting Services
 
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...butest
 
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...butest
 
Ecological Connectivity in Delaware, Ohio
Ecological Connectivity in Delaware, OhioEcological Connectivity in Delaware, Ohio
Ecological Connectivity in Delaware, OhioStefanie Hauck
 

Similar to Defining adjacency and proximity of forest stands for harvest blocking (6)

Spatial forest planning on industrial land: A problem in combinatorial optimi...
Spatial forest planning on industrial land: A problem in combinatorial optimi...Spatial forest planning on industrial land: A problem in combinatorial optimi...
Spatial forest planning on industrial land: A problem in combinatorial optimi...
 
A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...
A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...
A Comparative Study Of Analytical Tools For Strategic & Tactical Forest Manag...
 
An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...
An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...
An Empirical Evaluation of Spatial Restrictions in Industrial Harvest Schedul...
 
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
 
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
DATA-DEPENDENT MODELS OF SPECIES-HABITAT RELATIONSHIPS D. Todd ...
 
Ecological Connectivity in Delaware, Ohio
Ecological Connectivity in Delaware, OhioEcological Connectivity in Delaware, Ohio
Ecological Connectivity in Delaware, Ohio
 

More from KR Walters Consulting Services

Barber Revisited: Aggregate Analysis in Harvest Scheduling Models
Barber Revisited: Aggregate Analysis in Harvest Scheduling ModelsBarber Revisited: Aggregate Analysis in Harvest Scheduling Models
Barber Revisited: Aggregate Analysis in Harvest Scheduling ModelsKR Walters Consulting Services
 
Here’s how to decide between stumpage- or delivered price harvest scheduling ...
Here’s how to decide between stumpage- or delivered price harvest scheduling ...Here’s how to decide between stumpage- or delivered price harvest scheduling ...
Here’s how to decide between stumpage- or delivered price harvest scheduling ...KR Walters Consulting Services
 
Design and development of a generalized forest management modeling system: Wo...
Design and development of a generalized forest management modeling system: Wo...Design and development of a generalized forest management modeling system: Wo...
Design and development of a generalized forest management modeling system: Wo...KR Walters Consulting Services
 
Management of timber under a habitat conservation plan (HCP) in the Pacific N...
Management of timber under a habitat conservation plan (HCP) in the Pacific N...Management of timber under a habitat conservation plan (HCP) in the Pacific N...
Management of timber under a habitat conservation plan (HCP) in the Pacific N...KR Walters Consulting Services
 
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...KR Walters Consulting Services
 
Management of Timber Under A Habitat Conservation Plan in the Pacific Northwest
Management of Timber Under A Habitat Conservation Plan in the Pacific NorthwestManagement of Timber Under A Habitat Conservation Plan in the Pacific Northwest
Management of Timber Under A Habitat Conservation Plan in the Pacific NorthwestKR Walters Consulting Services
 

More from KR Walters Consulting Services (13)

SSAFR_2013_Walters_KR
SSAFR_2013_Walters_KRSSAFR_2013_Walters_KR
SSAFR_2013_Walters_KR
 
Operationalizing Analytics in Forestry
Operationalizing Analytics in ForestryOperationalizing Analytics in Forestry
Operationalizing Analytics in Forestry
 
SSAFR_2015_WaltersKR
SSAFR_2015_WaltersKRSSAFR_2015_WaltersKR
SSAFR_2015_WaltersKR
 
Barber Revisited: Aggregate Analysis in Harvest Scheduling Models
Barber Revisited: Aggregate Analysis in Harvest Scheduling ModelsBarber Revisited: Aggregate Analysis in Harvest Scheduling Models
Barber Revisited: Aggregate Analysis in Harvest Scheduling Models
 
Here’s how to decide between stumpage- or delivered price harvest scheduling ...
Here’s how to decide between stumpage- or delivered price harvest scheduling ...Here’s how to decide between stumpage- or delivered price harvest scheduling ...
Here’s how to decide between stumpage- or delivered price harvest scheduling ...
 
Design and development of a generalized forest management modeling system: Wo...
Design and development of a generalized forest management modeling system: Wo...Design and development of a generalized forest management modeling system: Wo...
Design and development of a generalized forest management modeling system: Wo...
 
Management of timber under a habitat conservation plan (HCP) in the Pacific N...
Management of timber under a habitat conservation plan (HCP) in the Pacific N...Management of timber under a habitat conservation plan (HCP) in the Pacific N...
Management of timber under a habitat conservation plan (HCP) in the Pacific N...
 
A system for solving spatial forest planning problems
A system for solving spatial forest planning problemsA system for solving spatial forest planning problems
A system for solving spatial forest planning problems
 
Harvest Scheduling and Policy Analysis
Harvest Scheduling and Policy AnalysisHarvest Scheduling and Policy Analysis
Harvest Scheduling and Policy Analysis
 
National Forest Planning and NFMA Requirements
National Forest Planning and NFMA RequirementsNational Forest Planning and NFMA Requirements
National Forest Planning and NFMA Requirements
 
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
 
Management of Timber Under A Habitat Conservation Plan in the Pacific Northwest
Management of Timber Under A Habitat Conservation Plan in the Pacific NorthwestManagement of Timber Under A Habitat Conservation Plan in the Pacific Northwest
Management of Timber Under A Habitat Conservation Plan in the Pacific Northwest
 
Error Propagation in Forest Planning Models
Error Propagation in Forest Planning ModelsError Propagation in Forest Planning Models
Error Propagation in Forest Planning Models
 

Recently uploaded

Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionMintel Group
 
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadIslamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadAyesha Khan
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCRashishs7044
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Riya Pathan
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...ShrutiBose4
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailAriel592675
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCRashishs7044
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menzaictsugar
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Servicecallgirls2057
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyotictsugar
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckPitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckHajeJanKamps
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCRashishs7044
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationAnamaria Contreras
 

Recently uploaded (20)

Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted Version
 
Corporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information TechnologyCorporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information Technology
 
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadIslamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detail
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyot
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckPitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement Presentation
 

Defining adjacency and proximity of forest stands for harvest blocking

  • 1. G I S Defining adjacency and proximity of forest stands for harvest blocking 96 Karl R. Walters Associate-Remsoft Inc. 620 George Street, Suite 5 Fredericton, NB, CANADA E3B 1K3 (506) 450-1511 email: mail@remsoft.com GIS’96 Abstract Harvest blocking is a fundamental decision of timber management. The size, Symposium location and timing of harvest blocks directly affects the development and structure of the forest at the current time, but for future time periods as well. In developing automated blocking tools, we have found that obtaining the Vancouver required adjacency and proximity information to implement these tools properly can be problematic. Part of the problem lies with semantics -- in British Columbia general, we all know what is meant by adjacency and proximity. Depending on the task at hand (blocking versus scheduling) it takes some forethought March 1996 about the relationships among stands to avoid adjacency and maximum opening size constraint violations. In many cases, the required adjacency or proximity information cannot be readily obtained from the geographic information system. For example, using a vector-based system, it is not a trivial task to determine whether two harvest blocks composed of several stands each are more than a minimal distance apart without displaying them and selecting the two closest points visually. A raster system is more amenable to this problem, but suffers from the inefficiencies of many more allocation units (cells versus stands) and the loss of resolution. Keywords: spatially constrained harvest scheduling, harvest blocking, adjacency, proximity Introduction Harvest blocking is the foundation for modern timber management. With increasing concern for the environment have come a host of rules and regulations that make the blocking process a technically challenging task. In years past, the location of harvest blocks was predicated largely on the volume of wood available and the cost of transportation to the processing site; now, these factors are still important but considerations such as opening size, proximity to other openings, and timing of harvest are critical to ensuring economical and sustained harvest levels. In order to comply with various constraints on the harvest, the analyst charged with developing a blocked harvest schedule faces a daunting challenge.
  • 2. At Remsoft, we have been studying the problem of These regulations are not nearly as complicated as spatially constrained harvest scheduling for several some of those in other jurisdictions (e.g., Maine or years and we have developed some software tools to the Pacific Northwest) but they will be sufficient to aid in the process. Obviously, geographic make my points. information systems (GIS) play an integral role in the harvest blocking process, but we have found that Forming a harvest unit some information, critical to an automated planning In New Brunswick, the forest land base is process, is difficult or impossible to obtain from significantly fragmented due to ownership patterns commercial GIS products. The purpose of this paper and past logging or catastrophic events; the average is to introduce to you the concepts of adjacency and stand size is only about 3 or 4 hectares. To make a proximity as we use them at Remsoft, and why they feasible harvest unit of, say 20 ha, may require 5 or 6 are important to spatial management planning. contiguous stands grouped together as a single harvest unit. To determine the location of such a Definitions harvest block, our harvest blocking tool starts with a The American Heritage Dictionary defines adjacency given stand and looks for adjacent stands to group as “the state of being adjacent; contiguity.” and with it. The program requires a comprehensive list of proximity as “the state, quality, sense, or fact of neighboring stands which is derived from GIS being near or next; closeness.” The definitions databases. However, as we only discovered recently, themselves are fine, but sometimes the precise individual GIS vendors use different implementations meaning of the words has been lost in application. In of contiguity to determine adjacency. many jurisdictions, regulations have extended the definition of adjacency to include areas that are not physically contiguous (e.g., any area within 100 metres of a forest opening is considered to be adjacent and is thus ineligible for harvesting) or they have limited the scope of adjacency (e.g., if two harvest block boundaries overlap by less than 100 metres the blocks are not considered adjacent). The word proximity tends not to be used in regulatory language, even though it is the basis for virtually all green-up delay requirements. Figure 1. Spatial arrangement of stands in a I don’t intend to write a long discourse on semantics hypothetical forest. and proper usage, but I think it is a valid point to make that many of the difficulties that arise in trying Consider the spatial arrangement of stands in Figure to comply with rules and regulations are the result of 1. If we were to create a harvest block composed of 4 imprecise language. Therefore, to maintain clarity adjacent stands, we could use A-B-C-D or E-H-I-J throughout this paper, I will maintain that objects that without hesitation. But what about a block composed are physically contiguous are adjacent whereas of stands E-F-H-J? If we use a GIS that defines objects that are near each other but not touching are contiguous polygons to be those with a common proximate. vertex, then stands E and F are adjacent and the block E-F-H-J is valid. Conversely, if we use a GIS that An example problem determines adjacency based on common arcs, then block E-F-H-J is not a valid block because polygons Let us consider a hypothetical management problem E and F do not share a common arc and are thus not where the task is to develop a blocked harvest considered adjacent. schedule under the following regulations: • clearcut harvest blocks may not exceed 120 acres From a practical standpoint, stands linked by a in size and, common point are not really practical components of • no harvesting is permitted within 300 feet of a a harvest block. For example, suppose you have two clearcut harvest block for a period of 10 years blocks E-F and G-K. If you were to implement a (green-up delay). corridor linking E and F then stands G and K would
  • 3. no longer be contiguous. Although it is probably easy greater the extent of forest area tied up due to the to deal with this problem through manual green-up requirements. Scheduling the harvest of intervention, it becomes more of a problem with an these harvest units to minimize the impact of spatial algorithmic approach that deals with thousands of constraints is a computationally difficult problem to blocks at a time. The problem is exacerbated using a solve. Our approach so far has been to combine raster-based GIS because every cell potentially has 4 Monte Carlo integer programming techniques with single point adjacencies. heuristics to yield good feasible solutions. Although a harvest unit composed of contiguous stand area is a necessity for most operations, the requirement for contiguity breaks down when a road is involved. Even though stands A, B, I and J are not strictly contiguous, from an operational standpoint, they would make a feasible harvest unit since machinery can readily traverse the road. In this case the stands are not adjacent, but because of the road and their close proximity they can be grouped to Period 1 harvest form a feasible harvest block. Had stands I and J been located several miles down the road however, Period 2 harvest the presence of the road would not have justified forming a harvest unit. Period 3 harvest Developing a viable harvest unit generally requires Period 4 harvest contiguous forest stands linked by a common boundary rather than a single point. Obtaining Period 5 harvest adjacency information that excludes single point adjacencies may be difficult from some geographic information systems. Furthermore, practical considerations such as the possibility of road or stream crossings permit the use of non-adjacent stands in the development of blocks, along with the obvious considerations of stand area to limit opening sizes. Period 1 harvest Scheduling harvest units Once the harvest units have been developed, the Period 2 harvest timing of harvest for each of them must be determined such that green-up requirements are met. Period 3 harvest Although one could simply implement buffer strips Period 4 harvest around each harvest block, there are drawbacks to doing so. Consider Figure 2. First, in the forest on the left, the residual forest in the buffer strips may not Figure 2. Alternative ways to comply with green-up yield desirable harvest blocks because they are both requirements in blocking. long and narrow, and they are not uniform in shape. Second, it requires 5 passes to harvest the entire For the scheduler to work, we must provide it with forest area (one block is half the area of the others). proximity information on harvest units. Since we In contrast, the arrangement on the right has uniform know which stands belong to each harvest unit, the harvest blocks and requires only 4 passes to harvest stand adjacency information we developed earlier the entire forest area (one block is also half the area can be used to determine adjacency among harvest of the others). units by eliminating selfs (adjacency relationships between 2 stands in the same block). Whereas the If harvest units are significantly smaller than the inclusion of single point adjacencies in the adjacency maximum opening size, combining 2 or more of list for the blocking tool was a disadvantage, these units to create a single harvest block can including those adjacencies in the scheduling process alleviate some problems with green-up delays. is desirable. However, as the harvest block increases in size, the
  • 4. one another. In a raster GIS, it is obvious that each cell will have four adjacent neighbors and four corner-point neighbors. In a vector based system, the number of corner-point proximate polygons depends on how many lines cross each other – a T- intersection generates true adjacencies, not single- point adjacencies. To determine whether the single Figure 3. The impact of line intersections on point point adjacencies are significant or not, we processed adjacencies. a Forest Development Survey map from New Consider the polygons illustrated in Figure 3. The Brunswick using our adjacency procedure and found equilateral triangles represent the situation where 3 that the number of adjacency records fell from lines cross at a given point. The red polygon has 9 24,720 to 18,738 when single point adjacencies were corner point adjacencies and just 3 common arc excluded from the list. adjacencies. The square grid represents the situation Since the tolerance for comparison can be set to any where 2 lines cross, and there are equal numbers of arbitrary distance, two polygons which have points common arc and corner point adjacencies. The separated by less than the comparison tolerance (x) hexagonal grid exhibits no corner point adjacencies are considered to be x-distance proximate to each at all. Now, if we were to create a harvest block other. Obviously, the larger the tolerance, the greater composed of the red polygon and one of its yellow the number of comparisons to be made – in fact, the neighbors we will violate the green-up requirements number of comparisons grows exponentially – and so if we do not recognize the single point adjacencies in practical limits on processing time require relatively the triangular and square grids, but the hexagonal small tolerances. For small tolerance limits, the grid will present no such difficulties. Furthermore, if procedure works quickly and we have used it to the length of one side of a hexagon is equal to the generate adjacency relationships among stands that minimum distance allowed between simultaneously border roads, streams and other line features. We harvested blocks, then it is guaranteed that all non- have also used it to establish adjacency relationships contiguous blocks will be sufficiently spaced from among stands on map boundaries which is very one another. useful if maps have not been properly edge-matched Some researchers have used centroids to determine or if the routines provided by the GIS are slow to run proximate blocks because almost all GIS vendors on a large number of maps. provide ready means of accessing this information. In the figures that follow, a uniform, square forest However, centroids are a poor substitute because the was subdivided into a 20 x 20 grid and our automated green-up restrictions require that all points on the blocking/scheduling tool was applied to maximize boundaries of two polygons be at least a given even flow harvest for four planning periods. The distance apart, not that the bulk of their area be more minimum harvest block size was one cell and no than a given distance apart. To determine this maximum size limit was established. A one period relationship for all polygons requires point-to-point harvest delay constraint was applied, such that a distance calculations for all the vertices in all arcs – a block adjacent to a block harvested in period one huge computational effort for a vector-based GIS; could be harvested no earlier than period three. The although the computational burden for a raster algorithm tries to make blocks as large as possible, system is considerably less, it is still not trivial. with shape controls applied to avoid very irregular shaped blocks. Some observations In Figure 4, you can readily determine that the Given that different GIS vendors use either the algorithm was quite successful in allocating the common point method or the common arc method for harvest to meet the green-up delay requirements. determining adjacency in vector-based systems, and Since corner point adjacencies were not included in that problems arise when either approach is used the algorithm’s adjacency list, it left cells exclusively for spatial harvest scheduling, we unharvested between the red block in the upper right developed a program that scans the nodes of an arc to corner and green block below it, to act as buffers determine both adjacency and proximity between the two harvest blocks. Similarly, the blue J- relationships. If two polygons share a common point, shaped block located in the lower middle of the forest they are proximate to each other; if they share two or is considered a separate block from the nearby larger more common points, they are considered adjacent to
  • 5. blue block. However, both of these instances clearly violate the intent of the adjacency restrictions.
  • 6. When the corner point adjacencies were included in their parent blocks with corridors would result in the adjacency list the blocking/scheduling algorithm adjacency violations as well. yielded a very different block pattern, as illustrated in If we extrapolate these results to real world Figure 5. Notice that in this block configuration there situations, we would expect to find that our are no instances where the adjacency restrictions are blocking/scheduling algorithm would perform well violated – cells are either left unharvested or there is on forests composed of relatively uniform stands of a minimum one period delay for the intervening cells fairly regular shape and with few intersecting lines between blocks. However, the harvest blocks (such as property boundaries) without corner point themselves are less desirable than those in Figure 4. adjacencies considered. The few adjacency violations For example, all of the blue cells constitute a single that resulted could likely be handled easily through large harvest block, but there are isolated pieces that manual intervention. Conversely, if the algorithm are problematic from an operational standpoint. Any were applied to a forest composed of many small attempt to connect these small islands with the main woodlots or other holdings and/or with highly portion of the block could mean completely severing irregular stand geometries, the number of adjacency another island from its parent block – for example, violations would increase dramatically, severely the blue and cyan blocks on the lower boundary of limiting the utility of an automated process. the forest. In other cases, connecting these islands to Summary Figure 4. Block configuration 1 - corner point adjacencies omitted.
  • 7. Figure 5. Block configuration 2 - corner point adjacencies included. Although we at Remsoft are by no means experts on implement. Many factors that influence the size and any GIS, we have been exposed to a number of shape of a feasible harvest block are patently obvious vector-based geographic information systems and we to a human observer, but these same factors can have yet to see a system that can readily provide confound an algorithm working under a complex set adjacency relationships for all stands across multiple of guidelines. In our approach, we use a strict map boundaries. Even those systems that provide definition of adjacency that omits corner-point adjacency information in a relatively accessible form, adjacencies to develop harvest blocks, but includes do not provide methods to differentiate common- proximate stands which are obvious candidates for point adjacencies from common-arc adjacencies inclusion (e.g., stands which are on either side of a without a significant programming effort. Being able road). Then, when harvest blocks are scheduled to access data structures directly allowed us to under opening size and adjacency constraints, we generate adjacency relationships, but the situation expand the adjacency list to include not only the would be vastly improved if system vendors provided corner point adjacent stands but proximate stands that these functions directly. Unfortunately, these very have nodes within a given distance away. basic functions are absolutely necessary to implement Admittedly, our proximate stands list is not perfect, automated blocking tools, but the inability to access but it is an improvement over proxies like centroids. data structures or system functions to provide the required information hampers deployment of spatial forest management tools. An automated procedure for developing harvest blocks and scheduling is not a trivial program to