How a CDCL SAT solver works
Upcoming SlideShare
Loading in...5
×
 

How a CDCL SAT solver works

on

  • 16,173 views

Demonstration of CDCL SAT solver working on a small example problem.

Demonstration of CDCL SAT solver working on a small example problem.

Statistics

Views

Total Views
16,173
Slideshare-icon Views on SlideShare
2,035
Embed Views
14,138

Actions

Likes
2
Downloads
18
Comments
0

18 Embeds 14,138

http://habrahabr.ru 12415
http://msakai.jp 1434
http://m.habrahabr.ru 117
http://savepearlharbor.com 64
http://feedly.com 37
https://twitter.com 27
http://gigamir.net 19
http://www.pvsm.ru 13
http://plus.url.google.com 2
http://www.docshut.com 2
http://webcache.googleusercontent.com 1
http://feeds.feedburner.com 1
http://translate.googleusercontent.com 1
http://flyffrus.dyndns.org 1
http://reader.aol.com 1
http://rss4kindle.com.ua 1
http://inoreader.com 1
http://deadlock.org.ua 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Apple Keynote

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n

How a CDCL SAT solver works How a CDCL SAT solver works Presentation Transcript

  • How a CDCL SAT Solver works Masahiro Sakai Twitter: @masahiro_sakai
  • Abstract• Demonstrating how a modern SAT solver works on a small example.• Target Algorithm • Conflict-Driven Clause Learning (CDCL) • 1-UIP learning + far-backtracking • details are omitted efficient data (decision heuristics, structure, etc.,)
  • An Example Problem• ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9• ω2: ¬x4 x6 • ω7: ¬x8 x9• ω3: ¬x5 ¬x6 x7• ω4: ¬x7 x8• ω5: ¬x2 ¬x7 x9
  • Decide Implication GraphClause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x1@1Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1x2 x2@2 x1@1Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3x2 x2@2 x1@1x3Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3x2 x2@2 x1@1x3 x4@4x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 x2@2 x1@1x3 x4@4x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω1 x4@4x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω1 x4@4x4 ω2 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω3 ω1 x4@4 x7@4x4 ω2 ω3 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω3 ω1 x4@4 x7@4x4 ω2 ω3 ω4 x6@4 x8@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 ω1 x2@2 ω5 x1@1 x5@4 x9@4x3 ω3 ω5 ω1 x4@4 x7@4x4 ω2 ω3 ω4 x6@4 x8@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 ω1 x2@2 ω5 x1@1 x5@4 x9@4x3 ω3 ω5 ω6 ω1 x4@4 x7@4x4 ω2 ω3 ω4 ω6 x6@4 x8@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3x2 ω1 x2@2 ω5 x1@1 x5@4 x9@4x3 ω3 ω5 ω6 ω1 x4@4 x7@4x4 ω2 ω3 ω4 ω6 x6@4 x8@4Clause DB Conflict • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph x3@3 ω1 x2@2 ω5 x1@1 x5@4 x9@4 ω3 ω5 ω6 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: x3@3 Side¬x8 ¬x9 ω1 x2@2 ω5 x1@1 x5@4 x9@4 ω3 ω5 ω6 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5 x1@1 x5@4 x9@4 ω3 ω5 ω6 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5 x1@1 x5@4 x9@4 ω3 ω5 ω6 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5¬x7 ¬x9 x1@1 x5@4 x9@4 ω3 ω5 ω6 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5¬x7 ¬x9 ω5: x1@1 ¬x2 ¬x7 x9 x5@4 x9@4 ω3 ω5 ω6 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5¬x7 ¬x9 ω5: x1@1 ¬x2 ¬x7 x9 x5@4 x9@4 ω3 ω5 ω6 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5¬x7 ¬x9 ω5: x1@1 ¬x2 ¬x7 x9 x5@4 x9@4 ω3 ω5 ω6 ¬x2 ¬x7 ω1 x4@4 x7@4 ω2 ω3 ω4 ω6 x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5¬x7 ¬x9 ω5: x1@1 ¬x2 ¬x7 x9 x5@4 x9@4 ω3 ω5 ω6 ¬x2 ¬x7 ω1 x4@4 x7@4 It contains one literal in the current ω3 ω6 ω2 ω4 decision level (i.e. 4). x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω6: ω4: x3@3 Side¬x8 ¬x9 ¬x7 x8 ω1 x2@2 ω5¬x7 ¬x9 ω5: x1@1 ¬x2 ¬x7 x9 x5@4 x9@4 ω3 ω5 ω6 ¬x2 ¬x7 ω1 x4@4 x7@4 It contains one literal in the current ω3 ω6 ω2 ω4 decision level (i.e. 4). x6@4 x8@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9 New clause is learnt !
  • Backtrack Implication Graph Learnt clause: ¬x2 ¬x7 x3@3 ω1 x2@2 ω5x2 was set at level 2 x1@1x7 was set at level 4 x5@4 x9@4 ω3 ω5 ω6Assertion level of thisclause (which is the ω1second highest level) x4@4 x7@4is 2. ω6 ω2 ω3 ω4 Backtrack to level 2! x6@4 x8@4 Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 ω1 x2@2 ω5 x1@1 x5@4 x9@4x3 ω3 ω5 ω6 ω1 x4@4 x7@4x4 ω2 ω3 ω4 ω6 x6@4 x8@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 ω1 x2@2 ω5 x1@1 x5@4 x9@4x3 ω3 ω5 ω1 x4@4 x7@4x4 ω2 ω3 ω4 x6@4 x8@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω3 ω1 x4@4 x7@4x4 ω2 ω3 ω4 x6@4 x8@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω3 ω1 x4@4 x7@4x4 ω2 ω3 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω1 x4@4x4 ω2 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 ω1 x2@2 x1@1 x5@4x3 ω1 x4@4x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 x2@2 x1@1x3 x4@4x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3x2 x2@2 x1@1x3x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1x2 x2@2 x1@1x3x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1x2 x2@2 x1@1x3x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 ω8x2 x2@2 ¬x7@2 x1@1x3x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 ω8x2 x2@2 ¬x7@2 x1@1x3x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1x3 x3x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1x3 x3 x4@4x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1x3 x3 x4@4x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 ω1 x2@2 ¬x7@2 x1@1 x5@4x3 x3 ω1 x4@4x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 ω1 x2@2 ¬x7@2 x1@1 x5@4x3 x3 ω1 x4@4x4 x4 ω2 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 ω1 x2@2 ¬x7@2 x1@1 x5@4x3 x3 ω3 ω3 ω1 x4@4x4 x4 ω2 ω3 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 ω1 x2@2 ¬x7@2 x1@1 x5@4x3 x3 ω3 ω3 ω1 x4@4x4 x4 ω2 ω3 x6@4Clause DB Conflict • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph x3@3 ω8 ω1 x2@2 ¬x7@2 x1@1 x5@4 ω3 ω3 ω1 x4@4 ω2 ω3 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: x3@3 Side¬x5 ¬x6 x7 ω8 ω1 x2@2 ¬x7@2 x1@1 x5@4 ω3 ω3 ω1 x4@4 ω2 ω3 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2 x1@1 x5@4 ω3 ω3 ω1 x4@4 ω2 ω3 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2 x1@1 x5@4 ω3 ω3 ω1 x4@4 ω2 ω3 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2¬x4 ¬x5 x7 x1@1 x5@4 ω3 ω3 ω1 x4@4 ω2 ω3 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2¬x4 ¬x5 x7 ω1: x1@1 ¬x1 ¬x4 x5 x5@4 ω3 ω3 ω1 x4@4 ω2 ω3 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2¬x4 ¬x5 x7 ω1: x1@1 ¬x1 ¬x4 x5 x5@4 ω3 ω3 ω1 x4@4 ω2 ω3 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2¬x4 ¬x5 x7 ω1: x1@1 ¬x1 ¬x4 x5 x5@4 ω3 ω3 ¬x1 ¬x4 x7 ω1 x4@4 ω2 ω3 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2¬x4 ¬x5 x7 ω1: x1@1 ¬x1 ¬x4 x5 x5@4 ω3 ω3 ¬x1 ¬x4 x7 ω1 x4@4 It contains one literal in the current ω3 decision level (i.e. 4). ω2 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph Reason ω3: ω2: x3@3 Side¬x5 ¬x6 x7 ¬x4 x6 ω8 ω1 x2@2 ¬x7@2¬x4 ¬x5 x7 ω1: x1@1 ¬x1 ¬x4 x5 x5@4 ω3 ω3 ¬x1 ¬x4 x7 ω1 x4@4 It contains one literal in the current ω3 decision level (i.e. 4). ω2 Conflict x6@4 Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 New clause is learnt !
  • Backtrack Implication Graph Learnt clause: ¬x1 ¬x4 x7 x3@3 ω8 ω1 x2@2 ¬x7@2x1 was set at level 1 x1@1x4 was set at level 4 x5@4x7 was set at level 2 ω3 ω3 ω1Assertion level of this x4@4clause is 2. ω2 ω3 Backtrack to level 2! x6@4 Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 x3@3 ω8x2 ω1 x2@2 ¬x7@2 x1@1 x5@4x3 x3 ω3 ω3 ω1 x4@4x4 x4 ω2 ω3 x6@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Backtrack Implication Graphx1 ω8x2 x2@2 ¬x7@2 x1@1x3 x3x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 ω8x2 x2@2 ¬x7@2 x1@1x3 x3x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 ¬x4@2x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 ¬x4@2x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 ¬x4@2x4 x4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 ¬x4@2x4 x4 x5 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 ¬x4@2x4 x4 x5 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 ω3 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 ω3 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Decide Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x8@5 ω3 x8 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x8@5 ω3 x8 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ω6 ¬x6@4x4 x4 x5 x8@5 ¬x9@5 ω3 x8 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ω6 ¬x6@4x4 x4 x5 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Deduce Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ω6 ¬x6@4x4 x4 x5 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4 x8Clause DB Conflict • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph x3@3 ω8 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3 ¬x4@2 ω6 ¬x6@4 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph ω7: x3@3¬x8 x9 ω8 x2@2 ¬x7@2 x1@1 ω9 Reason ω9 ω3 Side ¬x4@2 ω6 ¬x6@4 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph ω7: ω6: x3@3¬x8 x9 ¬x8 ¬x9 ω8 x2@2 ¬x7@2 x1@1 ω9 Reason ω9 ω3 Side ¬x4@2 ω6 ¬x6@4 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph ω7: ω6: x3@3¬x8 x9 ¬x8 ¬x9 ω8 x2@2 ¬x7@2 x1@1 ω9 Reason ω9 ω3 Side ¬x4@2 ω6 ¬x6@4 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph ω7: ω6: x3@3¬x8 x9 ¬x8 ¬x9 ω8 x2@2 ¬x7@2 ¬x8 x1@1 ω9 Reason ω9 ω3 Side ¬x4@2 ω6 ¬x6@4 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph ω7: ω6: x3@3¬x8 x9 ¬x8 ¬x9 ω8 x2@2 ¬x7@2 ¬x8 x1@1 ω9 Reason ω9 ω3 Side ¬x4@2It contains one literal ω6 ¬x6@4 in the current x8@5 ¬x9@5 ω3 decision level (i.e. 5). ω7 ω7 x5@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9
  • Diagnose Implication Graph ω7: ω6: x3@3¬x8 x9 ¬x8 ¬x9 ω8 x2@2 ¬x7@2 ¬x8 x1@1 ω9 Reason ω9 ω3 Side ¬x4@2It contains one literal ω6 ¬x6@4 in the current x8@5 ¬x9@5 ω3 decision level (i.e. 5). ω7 ω7 x5@4 Conflict Side Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 •New ¬x2 ¬x7 learnt ! ω8: clause is • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Backtrack Implication Graph Learnt clause: ¬x8 x3@3 ω8 x2@2 ¬x7@2x8 was set at level 5 x1@1 ω9 ω9 ω3Assertion level of this ¬x4@2clause (which is thesecond highest level) ω6 ¬x6@4is 0 by convention. x8@5 ¬x9@5 ω3 Backtrack to level 0 ω7 ω7 x5@4 (root level) Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Backtrack Implication Graphx1 x3@3 ω8x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 ¬x4@2 ω6 ¬x6@4x4 x4 x5 x8@5 ¬x9@5 ω3 ω7 ω7 x5@4 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Backtrack Implication Graphx1x2x3 x3 x3x4 x4 x5 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Deduce Implication Graphx1x2x3 x3 x3x4 x4 x5 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Deduce Implication Graphx1x2x3 x3 x3x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1x2x3 x3 x3x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1 x1x2 x1@1x3 x3 x3x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1 x1x2 x2 x2@2 x1@1x3 x3 x3x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Deduce Implication Graphx1 x1x2 x2 x2@2 x1@1x3 x3 x3x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Deduce Implication Graphx1 x1 ω8x2 x2 x2@2 ¬x7@2 x1@1x3 x3 x3x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Deduce Implication Graphx1 x1 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 ¬x4@2x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1 x1 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 ¬x4@2x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 x3 ¬x4@2x4 x4 x5 ¬x8@0 x8Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 x3 ¬x4@2x4 x4 x5 x5 ¬x8@0 x8 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Deduce Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9x3 x3 x3 x3 ¬x4@2x4 x4 x5 x5 ¬x8@0 x8 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Deduce Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Decide Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x9 x9@5 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x9 x9@5 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 All variables are ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x9 x9@5 x5@4assigned withoutClause DB • ω1: •¬x1 ¬x4 x5 ω6: ¬x8 ¬x9 • • conflict ω2: ω3: • • ¬x4 ¬x5 x6 ¬x6 x7 ω7: ¬x8 ω8: ¬x2 x9 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x9 x9@5 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x9 x9@5 x5@4Clause DB Satisfiable • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Implication Graphx1 x1 x3@3 ω8x2 x2 x2@2 ¬x7@2 x1@1 ω9 ω9 ω3x3 x3 x3 x3 ¬x4@2 ¬x6@4x4 x4 x5 x5 ¬x8@0 ω3 x8 x9 x9@5 x5@4Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • Implication GraphFound a model x3@3 ω8 M= x2@2 ¬x7@2 x1@1 ω9 { x1, x2, x3, ω9 ω3 ¬x4@2 ¬x4, x5, ¬x6 ¬x6@4 ¬x8@0 ω3¬x7, ¬x8, x9 } x9@5 x5@4 Clause DB • ω1: ¬x1 ¬x4 x5 • ω6: ¬x8 ¬x9 • ω2: ¬x4 x6 • ω7: ¬x8 x9 • ω3: ¬x5 ¬x6 x7 • ω8: ¬x2 ¬x7 • ω4: ¬x7 x8 • ω9: ¬x1 ¬x4 x7 • ω5: ¬x2 ¬x7 x9 • ω10: ¬x8
  • fin.
  • References• J. P. Marques-Silva and K. A. Sakallah, "GRASP: a search algorithm for propositional satisfiability," Computers, IEEE Transactions on, vol. 48, no. 5, pp. 506-521, May 1999.• Handbook of Satisfiability, A. Biere, M. Heule, H. Van Maaren, and T. Walsh, Eds. IOS Press, Feb. 2009.