SlideShare a Scribd company logo
1 of 5
Download to read offline
Research Inventy: International Journal Of Engineering And Science
Vol.2, Issue 8 (March 2013), Pp 06-10
Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com
6
On The Zeros of Analytic Functions
M. H. Gulzar
P. G. Department of Mathematics University of Kashmir, Srinagar 190006
Abstract : In this paper we consider a certain class of analytic functions whose coefficients are restricted to
certain conditions, and find some interesting zero-free regions for them. Our results generalize a number of
already known results in this direction.
Mathematics Subject Classification: 30C10, 30C15
Key-words and phrases: Analytic Function , Coefficients, Zeros
I. INTRODUCTION AND STATEMENT OF RESULTS
Regarding the zeros of a class of analytic functions , whose coefficients are restricted to certain
conditions, W. M. Shah and A. Liman [4] have proved the following results:
Theorem A: Let 0)(
0
 

j
j
j zazf be analytic in tz  . If for some 1k ,
......2
2
10  atatak .,
and for some  ,
,......,2,1,0,
2
arg  ja j


then f(z ) does not vanish in
2222
)1()1(
)1(





kM
Mt
kM
tk
z ,
where




10
sin
2)sin(cos
j
j
j ta
a
kM

 .
Theorem B: Let 0)(
0
 

j
j
j zazf be analytic in tz  . If for some 1k and 0 ,
............ 1
2
2
10  k
k
k
tatatatak .,
and for some  ,
,......,2,1,0,
2
arg  ja j


then f(z ) does not vanish in
22*
*
22
)1()1(*
)1(





kM
tM
kM
tk
z ,
where




100
* sin
2sincos)
2
(
j
j
j
kk
ta
a
kkt
a
a
M

 .
The aim of this paper is to generalize the above - mentioned results. In fact , we are going to prove the
following results:
On The Zeros Of Analytic Functions…
7
Theorem 1: Let 0)(
0
 

j
j
j zazf be analytic for tz  . If for some 0 ,
......2
2
10  atata .,
and for some real  and  ,
,......,2,1,0,
2
arg  ja j


then f(z ) does not vanish in
222
0
2
0
222
0
0






Ma
aMt
Ma
ta
z ,
where






100
0 sin
2)sin)(cos(
j
j
j ta
aa
a
M



.
Remark1: Taking 0)1( ak  , 1k , Theorem 1 reduces to Theorem A.
Also taking 0  , we get the following result, proved earlier by Aziz and Shah [2] :
Corollary 1: Let 0)(
0
 

j
j
j zazf be analytic for tz  such that for some 1k ,
......2
2
10  attaka .
Then f(z) does not vanish in
1212
)1(





k
kt
k
tk
z .
Taking 0  and 0 , we get the following result proved earlier by Aziz and Mohammad [1] :
Corollary 2: Let 0)(
0
 

j
j
j zazf be analytic for tz  such that 0ja and
,......3,2,1,01  jtaa jj .Then f(z) does not vanish in tz  .
Theorem 2: Let 0)(
0
 

j
j
j zazf be analytic for tz  . If for some 0 ,
0 ,
............ 1
1
2
2
10  





 atatatata .,
and for some real  and ,
,......,2,1,0,
2
arg  ja j


then f(z ) does not vanish in
22*2
0
2
0
*
22*2
0
0






Ma
atM
Ma
ta
z ,
where









10000
* sin2
sin1cos)12(
j
j
j ta
aaa
t
a
a
M




 
.
Remark2: Taking 0)1( ak  , 1k , Theorem 2 reduces to Theorem B.
The result of Aziz and Mohammad (Theorem 6 of [1]) follows from Theorem 2 by taking 0 .
On The Zeros Of Analytic Functions…
8
II. LEMMA
For the proofs of the above theorems , we need the following lemma, which is due to Govil and
Rahman [3]:
Lemma : If
2
arg

 ja and for some t>0, ,,......,1,0,1 njata jj   , then
]sin)(cos)[( 111    jjjjjj ataataata .
III. Proofs Of The Theorems
Proof of Theorem 1: Consider the function
)()()( zftzzF 
......)()(
......)()(
......))((
2
21100
2
21100
2
210



ztaaztaazta
ztaaztaata
zazaatz

)(0 zGzta   ,
where



 
2
110 )()()(
j
j
jj ztaaztaazG  .
Since ,......,2,1,0,
2
arg  ja j

 by using the lemma and the hypothesis, we have for tz  ,
 sin}){(cos})[{()( 1010 taataatzG 
......]}sin)(cos){( 2121   taataat
.
]
sin2
)sin)(cos1[(
0
100
0
Mat
ta
aa
at
j
j
j

 





Since G(z) is analytic for tz  , G(0)=0, it follows by Schwarz’s lemma that
zMatzG 0)(  for tz  .
Hence it follows that
)()( 0 zGztazF  
][
0
0 Mztt
a
z
a 

0
if
Mztt
a
z

0

i.e. if
t
a
z
Mzt 
0

.
Since the region defined by
t
a
z
Mzt 
0

is precisely the disk
On The Zeros Of Analytic Functions…
9
222
0
222
0
0






Ma
Mt
Ma
ta
z ,
we conclude that F(z) and therefore f(z) does not vanish in the disk
222
0
222
0
0






Ma
Mt
Ma
ta
z .
That completes the proof of Theorem 1.
Proof of Theorem 2: Consider the function
)()()( zftzzF 
1
1
2
21100
1
2
21100
2
210
)(......)()(
......)(......)()(
......))((






k
kk
n
nn
ztaaztaaztaazta
ztaaztaaztaata
zazaatz

......)(...... 1  
n
nn zaa
)(0 zGzta   .
Since ,......,2,1,0,
2
arg  ja j

 by using the lemma and the hypothesis, we have for tz  ,
1
1
2
2110 )(......)()()( 
 
 ztaaztaaztaazG
......)(...... 1
1  

n
nn zaa
 sin)(cos)[( 0101 ataatat 
......]
sin)(cos)(......
sin)(cos)(
sin)(cos)(
......sin)(cos)(
1
1
1
1
1
1
1
1
1
1
1
1
12
2
12
2

















n
n
n
n
n
n
n
n
n
n
at
atatatat
atatatat
atatatat
taattaat





























10000
0
sin2
sin1cos)12(
j
j
j ta
aaa
t
a
a
at




 
*
0 Mat ,
where









10000
* sin2
sin1cos)12(
j
j
j ta
aaa
t
a
a
M




 
.
Since G(z) is analytic for tz  , G(0)=0, it follows by Schwarz’s lemma that
zMatzG *
0)(  for tz  .
Hence it follows that
)()( 0 zGztazF  
][ *
0
0 Mztt
a
z
a 

0
On The Zeros Of Analytic Functions…
10
if
*
0
Mztt
a
z


i.e. if
t
a
z
Mzt 
0
* 
.
Since the region defined by
t
a
z
Mzt 
0
* 
is precisely the disk
22*2
0
*
22*2
0
0






Ma
tM
Ma
ta
z ,
we conclude that F(z) and therefore f(z) does not vanish in the disk
22*2
0
*
22*2
0
0






Ma
tM
Ma
ta
z .
That completes the proof of Theorem 2.
REFERENCES
[1] A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal.
ppl.75(1980), 495-502.
[2] A. Aziz and W. M. Shah, On the location of zeros of polynomials and related analytic functions, onlinear Studies 6 (1999), 91-
101.
[3] N. K. Govil and Q.I. Rahman, On the Enestrom-Kakeya Theorem II, Tohoku Math.J. 20 (1968), 126-136.
[4] W. M. Shah and A. Liman, On Enestrom-Kakeya Theorem and related analytic functions, Proc. Indian Acad. Sci. (Math. Sci.), Vol.
117, No.3, August 2007359-370.

More Related Content

What's hot

Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
olziich
 
00000070 1 20130107-130231
00000070 1 20130107-13023100000070 1 20130107-130231
00000070 1 20130107-130231
Niwat Namisa
 

What's hot (19)

Equations
EquationsEquations
Equations
 
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
 
A02402001011
A02402001011A02402001011
A02402001011
 
3rd Semester Civil Engineering Question Papers June/july 2018
3rd Semester Civil Engineering Question Papers June/july 2018 3rd Semester Civil Engineering Question Papers June/july 2018
3rd Semester Civil Engineering Question Papers June/july 2018
 
Formulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralFormulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-Integral
 
M Tech 2nd Semester (CMOS VLSI) Question papers
M Tech 2nd Semester (CMOS VLSI) Question papers M Tech 2nd Semester (CMOS VLSI) Question papers
M Tech 2nd Semester (CMOS VLSI) Question papers
 
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONSMa8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
 
Basic m4-2-chapter1
Basic m4-2-chapter1Basic m4-2-chapter1
Basic m4-2-chapter1
 
Integrales
IntegralesIntegrales
Integrales
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spaces
 
Further Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya TheoremFurther Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya Theorem
 
Complex variables
Complex variablesComplex variables
Complex variables
 
Integral table
Integral tableIntegral table
Integral table
 
formulas calculo integral y diferencial
formulas calculo integral y diferencialformulas calculo integral y diferencial
formulas calculo integral y diferencial
 
Tabela completa de derivadas e integrais
Tabela completa de derivadas e integraisTabela completa de derivadas e integrais
Tabela completa de derivadas e integrais
 
NVT MD
NVT MDNVT MD
NVT MD
 
00000070 1 20130107-130231
00000070 1 20130107-13023100000070 1 20130107-130231
00000070 1 20130107-130231
 

Viewers also liked

про зиму 1 часть
про зиму 1 частьпро зиму 1 часть
про зиму 1 часть
tatyana-khvaleva
 
презентация о здоровье
презентация о здоровьепрезентация о здоровье
презентация о здоровье
tatyana-khvaleva
 
сказочная зима
сказочная зимасказочная зима
сказочная зима
tatyana-khvaleva
 
Cte2014 15sesionmayo-150514010555-lva1-app6892
Cte2014 15sesionmayo-150514010555-lva1-app6892Cte2014 15sesionmayo-150514010555-lva1-app6892
Cte2014 15sesionmayo-150514010555-lva1-app6892
Antonio Mendoza
 

Viewers also liked (14)

F045032044
F045032044F045032044
F045032044
 
D045021025
D045021025D045021025
D045021025
 
WC420-K401 & 402
WC420-K401 & 402WC420-K401 & 402
WC420-K401 & 402
 
C028011017
C028011017C028011017
C028011017
 
Power Tools
Power ToolsPower Tools
Power Tools
 
про зиму 1 часть
про зиму 1 частьпро зиму 1 часть
про зиму 1 часть
 
Mona
MonaMona
Mona
 
про театр
про театрпро театр
про театр
 
PRACFTICA Nº 2
PRACFTICA Nº 2PRACFTICA Nº 2
PRACFTICA Nº 2
 
презентация о здоровье
презентация о здоровьепрезентация о здоровье
презентация о здоровье
 
сказочная зима
сказочная зимасказочная зима
сказочная зима
 
Building science 2 project 1
Building science 2 project 1Building science 2 project 1
Building science 2 project 1
 
Cte2014 15sesionmayo-150514010555-lva1-app6892
Cte2014 15sesionmayo-150514010555-lva1-app6892Cte2014 15sesionmayo-150514010555-lva1-app6892
Cte2014 15sesionmayo-150514010555-lva1-app6892
 
T-14
T-14T-14
T-14
 

Similar to B02806010

13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
nutkoon
 

Similar to B02806010 (20)

On the Zeros of A Polynomial Inside the Unit Disc
On the Zeros of A Polynomial Inside the Unit DiscOn the Zeros of A Polynomial Inside the Unit Disc
On the Zeros of A Polynomial Inside the Unit Disc
 
Zeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given CircleZeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given Circle
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Location of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a PolynomialLocation of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a Polynomial
 
D04302031042
D04302031042D04302031042
D04302031042
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...
 
Optimal control problem for processes
Optimal control problem for processesOptimal control problem for processes
Optimal control problem for processes
 
B02606010
B02606010B02606010
B02606010
 
C024015024
C024015024C024015024
C024015024
 
C04502009018
C04502009018C04502009018
C04502009018
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
 
C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
A05920109
A05920109A05920109
A05920109
 
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 Common fixed point theorems with continuously subcompatible mappings in fuzz... Common fixed point theorems with continuously subcompatible mappings in fuzz...
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
D024025032
D024025032D024025032
D024025032
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Recently uploaded (20)

TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 

B02806010

  • 1. Research Inventy: International Journal Of Engineering And Science Vol.2, Issue 8 (March 2013), Pp 06-10 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com 6 On The Zeros of Analytic Functions M. H. Gulzar P. G. Department of Mathematics University of Kashmir, Srinagar 190006 Abstract : In this paper we consider a certain class of analytic functions whose coefficients are restricted to certain conditions, and find some interesting zero-free regions for them. Our results generalize a number of already known results in this direction. Mathematics Subject Classification: 30C10, 30C15 Key-words and phrases: Analytic Function , Coefficients, Zeros I. INTRODUCTION AND STATEMENT OF RESULTS Regarding the zeros of a class of analytic functions , whose coefficients are restricted to certain conditions, W. M. Shah and A. Liman [4] have proved the following results: Theorem A: Let 0)( 0    j j j zazf be analytic in tz  . If for some 1k , ......2 2 10  atatak ., and for some  , ,......,2,1,0, 2 arg  ja j   then f(z ) does not vanish in 2222 )1()1( )1(      kM Mt kM tk z , where     10 sin 2)sin(cos j j j ta a kM   . Theorem B: Let 0)( 0    j j j zazf be analytic in tz  . If for some 1k and 0 , ............ 1 2 2 10  k k k tatatatak ., and for some  , ,......,2,1,0, 2 arg  ja j   then f(z ) does not vanish in 22* * 22 )1()1(* )1(      kM tM kM tk z , where     100 * sin 2sincos) 2 ( j j j kk ta a kkt a a M   . The aim of this paper is to generalize the above - mentioned results. In fact , we are going to prove the following results:
  • 2. On The Zeros Of Analytic Functions… 7 Theorem 1: Let 0)( 0    j j j zazf be analytic for tz  . If for some 0 , ......2 2 10  atata ., and for some real  and  , ,......,2,1,0, 2 arg  ja j   then f(z ) does not vanish in 222 0 2 0 222 0 0       Ma aMt Ma ta z , where       100 0 sin 2)sin)(cos( j j j ta aa a M    . Remark1: Taking 0)1( ak  , 1k , Theorem 1 reduces to Theorem A. Also taking 0  , we get the following result, proved earlier by Aziz and Shah [2] : Corollary 1: Let 0)( 0    j j j zazf be analytic for tz  such that for some 1k , ......2 2 10  attaka . Then f(z) does not vanish in 1212 )1(      k kt k tk z . Taking 0  and 0 , we get the following result proved earlier by Aziz and Mohammad [1] : Corollary 2: Let 0)( 0    j j j zazf be analytic for tz  such that 0ja and ,......3,2,1,01  jtaa jj .Then f(z) does not vanish in tz  . Theorem 2: Let 0)( 0    j j j zazf be analytic for tz  . If for some 0 , 0 , ............ 1 1 2 2 10         atatatata ., and for some real  and , ,......,2,1,0, 2 arg  ja j   then f(z ) does not vanish in 22*2 0 2 0 * 22*2 0 0       Ma atM Ma ta z , where          10000 * sin2 sin1cos)12( j j j ta aaa t a a M       . Remark2: Taking 0)1( ak  , 1k , Theorem 2 reduces to Theorem B. The result of Aziz and Mohammad (Theorem 6 of [1]) follows from Theorem 2 by taking 0 .
  • 3. On The Zeros Of Analytic Functions… 8 II. LEMMA For the proofs of the above theorems , we need the following lemma, which is due to Govil and Rahman [3]: Lemma : If 2 arg   ja and for some t>0, ,,......,1,0,1 njata jj   , then ]sin)(cos)[( 111    jjjjjj ataataata . III. Proofs Of The Theorems Proof of Theorem 1: Consider the function )()()( zftzzF  ......)()( ......)()( ......))(( 2 21100 2 21100 2 210    ztaaztaazta ztaaztaata zazaatz  )(0 zGzta   , where      2 110 )()()( j j jj ztaaztaazG  . Since ,......,2,1,0, 2 arg  ja j   by using the lemma and the hypothesis, we have for tz  ,  sin}){(cos})[{()( 1010 taataatzG  ......]}sin)(cos){( 2121   taataat . ] sin2 )sin)(cos1[( 0 100 0 Mat ta aa at j j j         Since G(z) is analytic for tz  , G(0)=0, it follows by Schwarz’s lemma that zMatzG 0)(  for tz  . Hence it follows that )()( 0 zGztazF   ][ 0 0 Mztt a z a   0 if Mztt a z  0  i.e. if t a z Mzt  0  . Since the region defined by t a z Mzt  0  is precisely the disk
  • 4. On The Zeros Of Analytic Functions… 9 222 0 222 0 0       Ma Mt Ma ta z , we conclude that F(z) and therefore f(z) does not vanish in the disk 222 0 222 0 0       Ma Mt Ma ta z . That completes the proof of Theorem 1. Proof of Theorem 2: Consider the function )()()( zftzzF  1 1 2 21100 1 2 21100 2 210 )(......)()( ......)(......)()( ......))((       k kk n nn ztaaztaaztaazta ztaaztaaztaata zazaatz  ......)(...... 1   n nn zaa )(0 zGzta   . Since ,......,2,1,0, 2 arg  ja j   by using the lemma and the hypothesis, we have for tz  , 1 1 2 2110 )(......)()()(     ztaaztaaztaazG ......)(...... 1 1    n nn zaa  sin)(cos)[( 0101 ataatat  ......] sin)(cos)(...... sin)(cos)( sin)(cos)( ......sin)(cos)( 1 1 1 1 1 1 1 1 1 1 1 1 12 2 12 2                  n n n n n n n n n n at atatatat atatatat atatatat taattaat                              10000 0 sin2 sin1cos)12( j j j ta aaa t a a at       * 0 Mat , where          10000 * sin2 sin1cos)12( j j j ta aaa t a a M       . Since G(z) is analytic for tz  , G(0)=0, it follows by Schwarz’s lemma that zMatzG * 0)(  for tz  . Hence it follows that )()( 0 zGztazF   ][ * 0 0 Mztt a z a   0
  • 5. On The Zeros Of Analytic Functions… 10 if * 0 Mztt a z   i.e. if t a z Mzt  0 *  . Since the region defined by t a z Mzt  0 *  is precisely the disk 22*2 0 * 22*2 0 0       Ma tM Ma ta z , we conclude that F(z) and therefore f(z) does not vanish in the disk 22*2 0 * 22*2 0 0       Ma tM Ma ta z . That completes the proof of Theorem 2. REFERENCES [1] A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. ppl.75(1980), 495-502. [2] A. Aziz and W. M. Shah, On the location of zeros of polynomials and related analytic functions, onlinear Studies 6 (1999), 91- 101. [3] N. K. Govil and Q.I. Rahman, On the Enestrom-Kakeya Theorem II, Tohoku Math.J. 20 (1968), 126-136. [4] W. M. Shah and A. Liman, On Enestrom-Kakeya Theorem and related analytic functions, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 117, No.3, August 2007359-370.