Pumps for Process Industries


Published on

This presentation will give a broad idea about selecting pumps in process industies. Design parameters are also discussed.

Published in: Career, Business, Technology
  • good useful to all mech engineers
    Are you sure you want to  Yes  No
    Your message goes here
  • Get a customised B2B digital marketing solutions from VALVE SOLUTIONS. visit us and drop us your valuable enquiries for a special promotional offer.
    Are you sure you want to  Yes  No
    Your message goes here
  • yr bohat achi presentation hy
    Engr Muhammad Usman + Engr Tanveer Abbas
    6th smester Bsc Agri Engg UAF
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Pumps for Process Industries

  1. 1. PUMPS for Process Industries Ranjeet Kumar M.Tech - Chemical
  2. 2. Equation of Energy <ul><li>A pump converts Electrical energy to Pressure Energy via Kinetic Energy. </li></ul><ul><li>Electric energy K.E. </li></ul><ul><li>K.E Pressure Energy </li></ul>Impeller Rotating Part Volute Static Part
  3. 3. Types of Pumps <ul><li>Centrifugal - Impeller & Volute </li></ul><ul><li>Reciprocating - Piston / Plunger </li></ul><ul><li>Rotary - Screw, Gear, Lobe, Progressive Cavity, Sliding Vane </li></ul><ul><li>Vertical - </li></ul><ul><li>Peristaltic - Series of rollers to push through tubing </li></ul>
  4. 4. Basis for selection of Pump <ul><li>Capacity – No. of pumps in parallel </li></ul><ul><li>Total Head – No. of stages </li></ul><ul><li>Physical, Chemical properties of Liquids </li></ul><ul><li>Viscosity @ Frictional Loss @ Power Required </li></ul><ul><li>Corrosive Fluid @ MOC </li></ul><ul><li>Site conditions </li></ul><ul><li>Source of Power </li></ul>>>>Capacity & Head required are most important selection criteria and define size of the pump.
  5. 5. Capacity <ul><li>Volume of liquid to be pumped in unit time </li></ul><ul><li>May vary as per Max, Min & Normal requirement </li></ul><ul><li>– design should be for Max capacity. </li></ul><ul><li>Its function of Impeller size and rotational speed for Centrifugal pump </li></ul><ul><li>Q = V * A : V = ω * r </li></ul>
  6. 6. Centrifugal Pump Design Problem <ul><li>Inability to deliver the desired flow & head </li></ul><ul><li>Seal problems (leakages, loss of flushing, cooling, quenching system, etc) </li></ul><ul><li>Pump & Motor bearings related problems (loss of lubrication, cooling, contamination of oil, abnormal noise, etc) </li></ul><ul><li>Leakages from pump casing, very high noise & vibration levels. </li></ul>Benefits of Centrifugal Pumps – low cost, easy maintenance, wide selection, & simple design.
  7. 7. Head of Pump <ul><li>Total Head = P discharge – P suction </li></ul><ul><li>Normal head test by vendor was done for water at 20°C. </li></ul><ul><li>Advantages of using Head-- </li></ul>
  8. 8. Physical Properties Consideration <ul><li>Specific Gravity  </li></ul><ul><li>1) Increases Power consumed directly. </li></ul><ul><li>2) Max suction lift inversely. </li></ul><ul><li>Viscosity  Pump efficiency decrease directly so Power required directly </li></ul><ul><li>Open or semi open impeller are better for highly viscose liquid. </li></ul><ul><li>Volatile liquid at boiling points require high NPSH. </li></ul><ul><li>Abrasive property of liquid or solid entrainment causes erosion and need specific MOC. </li></ul><ul><li>Corrosive liquid require specific MOC. </li></ul>
  9. 9. Solid content <ul><li>Centrifugal pump operation is most difficult when liquid handled contains solid particles. </li></ul><ul><li>Special attention required for selecting a centrifugal pump  </li></ul><ul><li>Open Impeller for solids > 2% </li></ul><ul><li>Large cross section in Impeller & Volute </li></ul><ul><li>Min No. of Vanes </li></ul><ul><li>Inspection holes in tha casing & suction passage </li></ul><ul><li>Abrasion resistant MOC </li></ul><ul><li>Smooth corners & edges in lines </li></ul><ul><li>Stuffing boxes sealed with clear fluid </li></ul>
  10. 10. Fig – Types of Impeller
  11. 11. <ul><li>Temperature of liquid  Direct Impact on physical properties of liquid & Vapor Pressure and MOC. </li></ul>
  12. 12. Site Conditions <ul><li>Altitude – P atm decreases with altitude & P atm has direct effect on NPSHa </li></ul><ul><li>Gas Dust Hazard – if the surrounding atmosphere is hazardous/inflammable  Flame proof & Dust proof MOC of Motor. </li></ul><ul><li>Stand by unit for vital application. </li></ul>
  13. 13. Selection of Pump – Capacity & Head < 200 cSt < 25 m Upto 1 m 3 /h Peristaltic > 2% < 25% < 600 cSt 10500 m < 300 m 3 /h Positive Displacement > 2% < 5% Max 1050 m < 350 m 3 /h Rotary < 2% Upto 20% < 200 cSt Upto 105 m Upto 7500 m 3 /h Centrifugal % Gas Solid Viscosity Head Capacity Type
  14. 14. Flow Rate Design <ul><li>Margins for rated/maximum capacity </li></ul>PFD indicates normal flow rate without any margin & the Maximum flow is Considered for sizing of the pump with margin 30% Waste Heat Boiler pump 25% Boiler Feed water pump 0% Recirculation pump 3-5% Large cooling water pump 0-5% Transfer pumps 0% Intermittent pumps 20-25% Reflux pumps 10% Continuous process pumps Margin Service
  15. 15. <ul><li>Minimum flow rate ???? </li></ul><ul><li>Under development…………. </li></ul>
  16. 16. Static Head <ul><li>Pump centre line as datum for Hydraulic calculation </li></ul><ul><li>Pump centre Line from ground (estimated) </li></ul><ul><li>Minimum level in Suction & Maximum level in Discharge tank. </li></ul>1.0 Above 200 0.9 100 – 200 0.7 0 – 100 Pump centre line above ground Flow Rate (m 3 /h)
  17. 17. Line Pressure Drop ? <ul><li>Under development </li></ul>
  18. 18. Pressure Drop for Control Valve <ul><li>The following criteria can be used for sizing the control valve </li></ul><ul><li>15~25% of the variable system drop is typically allowed. </li></ul><ul><li>On recycle and reflux pumps allow 1/3 of the variable system pressure with minimum of 0.7 bar. </li></ul><ul><li>For liquid system 0.7 bar </li></ul><ul><li>For system with large variable pressure drop ( >10 bar) ~15% of the variable pressure drop exclusive of control valve </li></ul>
  19. 19. Pressure Drop for Devices 0 Ultrasonic & electromagnetic Flow Meter 0.2 – 0.4 Corilolis Flow Meter 0.2 – 0.4 Vortex 0.02 – 0.05 Venturi Flow Meter 0.25 Orifice Flow meter 0.07 bar (continuous strainer) Y, T or Bucket type Strainer 1.0 bar Air cooler 0.35 – 0.5 bar per shell 0.7 bar per pass in tube side Shell & Tube type Heat Exchanger Press Drop (in bar) Devices in Flow Line
  20. 20. NPSH <ul><li>NPSHA = Suction Pressure – Vapor Pressure </li></ul><ul><li>NPSHA should be 2 – 3 ft more than NPSHR. </li></ul><ul><li>It is the pressure enough to prevent formation of vapor bubbles due to vaporization or release of dissolved gases in the Impeller. </li></ul><ul><li>Pressure increases along the impeller on collapse of vapors – Cavitation. </li></ul><ul><li>Cavitation – Noise, Vibration, Drop in performance curve, high wear & tear loss. </li></ul>
  21. 21. NPSHA optimization <ul><li>NPSHA can be increased by – </li></ul><ul><li>Raise the liquid level </li></ul><ul><li>Lower the pump </li></ul><ul><li>Reduce the friction losses in the suction line </li></ul><ul><li>Use a booster pump </li></ul><ul><li>Sub cool the liquid </li></ul><ul><li>NPSHR can be reduced by – </li></ul><ul><li>Slower speed </li></ul><ul><li>Double-suction impeller </li></ul><ul><li>Large impeller area </li></ul><ul><li>Oversize pump </li></ul><ul><li>Inducers ahead of conventional pump at suction side </li></ul><ul><li>Several smaller pumps </li></ul>NPSHR Rotary < NPSHR Centrifuge < NPSHR Reciprocating
  22. 22. Efficiency <ul><li>Efficiency = WHP/BHP </li></ul><ul><li>Overall efficiency reflects hydraulic, leakage & mechanical losses of pump. </li></ul><ul><li>η centrifugal < η reciprocating < η rotary </li></ul><ul><li>(50 – 80%) (50 – 90%) (70 – 90%) </li></ul>
  23. 23. Seals, pumps curves <ul><li>Under Development…….. </li></ul>