SlideShare a Scribd company logo
1 of 45
Chapter 5

The Mathematics of Diversification




                                 1
Introduction
The reason for portfolio theory
mathematics:
• To show why diversification is a good idea

• To show why diversification makes sense
  logically



                                     2
Introduction (cont’d)
Harry Markowitz’s efficient portfolios:
• Those portfolios providing the maximum return
  for their level of risk

• Those portfolios providing the minimum risk
  for a certain level of return



                                    3
Introduction
A portfolio’s performance is the result of
the performance of its components
• The return realized on a portfolio is a linear
  combination of the returns on the individual
  investments

• The variance of the portfolio is not a linear
  combination of component variances
                                       4
Return
The expected return of a portfolio is a
weighted average of the expected returns of
the components:
                      n
       E ( R p ) = ∑  xi E ( Ri ) 
           %
                     
                              %
                                   
                     i =1

     where xi = proportion of portfolio
                     invested in security i and
          n

        ∑x      i   =1
         i =1                                5
Variance
Introduction
Two-security case
Minimum variance portfolio
Correlation and risk reduction
The n-security case



                                 6
Introduction
Understanding portfolio variance is the
essence of understanding the mathematics
of diversification
• The variance of a linear combination of random
  variables is not a weighted average of the
  component variances



                                    7
Introduction (cont’d)
For an n-security portfolio, the portfolio
variance is:
            n    n
     σ = ∑∑ xi x j ρijσ iσ j
       2
       p
           i =1 j =1

where xi = proportion of total investment in Security i
     ρij = correlation coefficient between
           Security i and Security j

                                             8
Two-Security Case
For a two-security portfolio containing
Stock A and Stock B, the variance is:


σ = x σ + x σ + 2 x A xB ρ ABσ Aσ B
  2
  p
       2
       A
           2
           A
               2
               B
                   2
                   B




                                  9
Two Security Case (cont’d)
                          Example

Assume the following statistics for Stock A and Stock B:
                           Stock A          Stock B
Expected return             .015             .020
Variance                    .050             .060
Standard deviation          .224             .245
Weight                      40%              60%
Correlation coefficient               .50
                                                           10
Two Security Case (cont’d)
                  Example (cont’d)

Solution: The expected return of this two-security
portfolio is:        n
           E ( R p ) = ∑  xi E ( Ri ) 
               %
                         
                                  %
                                       
                       i =1

                    =  x A E ( RA )  +  xB E ( RB ) 
                      
                                %
                                      
                                                  %
                                                       
                    = [ 0.4(0.015) ] + [ 0.6(0.020) ]
                    = 0.018 = 1.80%
                                                           11
Two Security Case (cont’d)
                   Example (cont’d)

 Solution (cont’d): The variance of this two-security
 portfolio is:

σ 2 = x Aσ A + xBσ B + 2 x A xB ρ ABσ Aσ B
  p
        2 2     2 2


    = (.4) (.05) + (.6) (.06) + 2(.4)(.6)(.5)(.224)(.245)
          2             2


    = .0080 + .0216 + .0132
    = .0428
                                                        12
Minimum Variance Portfolio
The minimum variance portfolio is the
particular combination of securities that will
result in the least possible variance

Solving for the minimum variance portfolio
requires basic calculus


                                   13
Minimum Variance
       Portfolio (cont’d)
For a two-security minimum variance
portfolio, the proportions invested in stocks
A and B are:
              σ − σ Aσ B ρ AB
                 2
      xA = 2     B
          σ A + σ B − 2σ Aσ B ρ AB
                  2




      xB = 1 − x A
                                     14
Minimum Variance
              Portfolio (cont’d)
                     Example (cont’d)

 Solution: The weights of the minimum variance portfolios
 in the previous case are:

        σ B − σ Aσ B ρ AB
          2
                                .06 − (.224)(.245)(.5)
xA = 2                      =                              = 59.07%
    σ A + σ B − 2σ Aσ B ρ AB .05 + .06 − 2(.224)(.245)(.5)
            2




xB = 1 − x A = 1 − .5907 = 40.93%

                                                               15
Minimum Variance
                   Portfolio (cont’d)
                         Example (cont’d)
            1.2

             1

            0.8

            0.6
At hg e W




            0.4

            0.2
     i




             0
                  0   0.01   0.02   0.03   0.04   0.05   0.06

                             Portfolio Variance                 16
Correlation and
         Risk Reduction
Portfolio risk decreases as the correlation
coefficient in the returns of two securities
decreases
Risk reduction is greatest when the
securities are perfectly negatively correlated
If the securities are perfectly positively
correlated, there is no risk reduction

                                   17
The n-Security Case
For an n-security portfolio, the variance is:

             n    n
      σ = ∑∑ xi x j ρijσ iσ j
        2
        p
            i =1 j =1

 where xi = proportion of total investment in Security i
      ρij = correlation coefficient between
            Security i and Security j


                                              18
The n-Security Case (cont’d)
A covariance matrix is a tabular
presentation of the pairwise combinations
of all portfolio components
• The required number of covariances to compute
  a portfolio variance is (n2 – n)/2

• Any portfolio construction technique using the
  full covariance matrix is called a Markowitz
  model
                                     19
Example of Variance-Covariance
        Matrix Computation in Excel

       A       B         C         D         E         F         G        H         I         J
1    CALCULATING THE VARIANCE-COVARIANCE MATRIX FROM EXCESS RETURNS
2
3            AMR        BS        GE        HR        MO        UK
4     1974   -0.3505   -0.1154   -0.4246   -0.2107   -0.0758    0.2331
5     1975    0.7083   0.2472    0.3719    0.2227     0.0213    0.3569
6     1976    0.7329   0.3665    0.2550    0.5815     0.1276    0.0781
7     1977   -0.2034   -0.4271   -0.0490   -0.0938    0.0712   -0.2721
8     1978    0.1663   -0.0452   -0.0573   0.2751     0.1372   -0.1346
9     1979   -0.2659   0.0158    0.0898    0.0793     0.0215    0.2254
10    1980    0.0124   0.4751    0.3350    -0.1894    0.2002    0.3657
11    1981   -0.0264   -0.2042   -0.0275   -0.7427    0.0913    0.0479
12    1982    1.0642   -0.1493   0.6968    -0.2615    0.2243    0.0456
13    1983    0.1942   0.3680    0.3110    1.8682     0.2066    0.2640
14    Mean    0.2032   0.0531    0.1501    0.1529     0.1025    0.1210 <-- =AVERAGE(G4:G13)
                                                                          20
A          B         C         D         E         F         G         H            I      J         K
16          Excess return matrix
17           AMR        BS          GE        HR        MO        UK
18   1974    -0.5537   -0.1686     -0.5747   -0.3635   -0.1784    0.1121
19   1975     0.5051    0.1940     0.2218    0.0698    -0.0812    0.2359
20   1976     0.5297    0.3134     0.1049    0.4286    0.0250    -0.0429
21   1977    -0.4066   -0.4802     -0.1991   -0.2466   -0.0313   -0.3931
22   1978    -0.0369   -0.0984     -0.2074   0.1222    0.0347    -0.2555
23   1979    -0.4691   -0.0374     -0.0603   -0.0736   -0.0810    0.1044
24   1980    -0.1908    0.4220     0.1849    -0.3423   0.0977     0.2447
25   1981    -0.2296   -0.2574     -0.1777   -0.8956   -0.0112   -0.0731
26   1982     0.8610   -0.2024     0.5467    -0.4144   0.1217    -0.0754 <-- =G12-$G$14
27   1983    -0.0090    0.3149     0.1609    1.7154    0.1041     0.1430 <-- =G13-$G$14
28
29          Transpose of excess return matrix
30             1974     1975       1976       1977      1978       1979     1980      1981       1982     1983
31   AMR     -0.5537   0.5051     0.5297    -0.4066    -0.0369   -0.4691   -0.1908   -0.2296    0.8610   -0.0090
32    BS     -0.1686   0.1940     0.3134    -0.4802    -0.0984   -0.0374   0.4220    -0.2574   -0.2024   0.3149
33    GE     -0.5747   0.2218     0.1049    -0.1991    -0.2074   -0.0603   0.1849    -0.1777    0.5467   0.1609
34    HR     -0.3635   0.0698     0.4286    -0.2466    0.1222    -0.0736   -0.3423   -0.8956   -0.4144   1.7154
35    MO     -0.1784   -0.0812    0.0250    -0.0313    0.0347    -0.0810   0.0977    -0.0112    0.1217   0.1041
36    UK      0.1121   0.2359     -0.0429   -0.3931    -0.2555    0.1044   0.2447    -0.0731   -0.0754   0.1430
37                    Cells B31:K36 contain the array formula =TRANSPOSE(B18:G27). To
38                    enter this formula:
39                    1. Mark the area B31:K36
40                    2. Type =TRANSPOSE(B18:G27)
41                    3. Instead of [Enter], finish with [Ctrl]-[Shift]-[Enter]
42                    The formula will appear as {=TRANSPOSE(B18:G27)}
43
                                                                                     21
A        B          C        D          E          F         G             H
45       Product of transpose[excess return] times [excess return] / 10
46        AMR         BS        GE        HR         MO         UK
47   AMR   0.2060     0.0375   0.1077     0.0493     0.0208    0.0059
48    BS   0.0375     0.0790   0.0355     0.1028     0.0089    0.0406
49    GE   0.1077     0.0355   0.0867     0.0443     0.0194    0.0148
50    HR   0.0493     0.1028   0.0443     0.4435     0.0193    0.0274
51    MO   0.0208     0.0089   0.0194     0.0193     0.0083 -0.0015
52    UK   0.0059     0.0406   0.0148     0.0274 -0.0015 0.0392
53
      Cells B47:G52 contain the array formula =MMULT(B31:K36,B18:G27)/10 . To
54
      enter this formula:
55
      1. Mark the whole area
56
      2. Type =MMULT(B31:K36,B18:G27)/10
57
      3. Instead of [Enter], finish with [Ctrl]-[Shift]-[Enter]
58
      The formula will appear as {=MMULT(B31:K36,B18:G27)/10}
59

                                                              22
Portfolio Mathematics (Matrix Form)
 Define w as the (vertical) vector of weights on the
 different assets.
 Define µ the (vertical) vector of expected returns
 Let V be their variance-covariance matrix
 The variance of the portfolio is thus:
         σ = w 'Vw
           2
           p
 Portfolio optimization consists of minimizing this
 variance subject to the constraint of achieving a
 given expected return.
                                        23
Portfolio Variance in the 2-asset case
We have:
    wA              σ A σ AB 
                         2
 w=       and   V =        2 
    wB             σ AB σ B 

Hence:
                         σ A σ AB   wA 
                            2
σ p = w 'Vw = [ wA wB ] 
  2
                                 2 
                        σ AB σ B   wB 
σ p = wAσ A + wBσ B + 2wA wBσ AB
  2     2 2      2 2


σ p = wAσ A + wBσ B + 2wA wB ρ ABσ Aσ B
  2    2 2     2 2

                                              24
Covariance Between Two Portfolios
          (Matrix Form)
  Define w1 as the (vertical) vector of weights on the
  different assets in portfolio P1.
  Define w2 as the (vertical) vector of weights on the
  different assets in portfolio P2.
          µ
  Define the (vertical) vector of expected returns
  Let V be their variance-covariance matrix
  The covariance between the two portfolios is:
σ P1 , P2 = w1 'Vw2 = w2 'Vw1       (by symmetry)
                                         25
The Optimization Problem
  Minimize w 'Vw
       w

Subject to:      
                 
                 
                       1'
                        w =1
                 µ ' w = E ( Rp )
                 
  where E(Rp) is the desired (target) expected return on the
                1
  portfolio and is a vector of ones and the vector µ is
                   µ1   E ( R1 ) 
  defined as:
                µ= M = M 
                                 
                   µn   E ( Rn ) 
                                 
                                                26
Lagrangian Method
          1
Min    L = w 'Vw +  E ( R ) − w ' µ  λ + 1 − w '1 γ
                                                 
 w        2
                               p
                                                   
           1         E ( R ) − w ' µ , 1 − w '  λ 
Or: Min L = w 'Vw +                                       1
           2              p                     γ 
                                                 
     w


       w
             1
Thus: Min L = w 'Vw + ( E ( R p ),1) − w ' µ ,
             2        
                                                    ( 1)       λ 
                                                                γ 
                                                                
                                               µ1    1
                                              µ      1
                  ( 1)
where the notation µ ,   indicates the matrix  2
                                              M
                                                       
                                                      M
                                                      
                                               µn    1
                                                           27
Taking Derivatives
 ∂L

 ∂w
              ( 1) λ 
        = Vw − µ ,   = 0 ⇒ w = V µ ,  
                   γ 
                                     −1    λ 
                                           γ 
                                                ( 1)        (1)

          ∂L 
          
  0   ∂L                           ( 1)
  0  =  ∂λ  ⇒ E ( R ),1 − w ' µ , = 0, 0
                     ( p )              ( )                 (2)
   
          ∂γ 

Plugging (1) into (2) yields:
                           µ ' −1
                     1'    
                           
                               ( 1) = ( 0, 0)
( E ( Rp ),1) − [ λ , γ ]   V µ ,
                                                       28
And so we have:
                                             −1
                            µ ' −1    
                       1'
                          
                           
                           
                                 ( 1)
[ λ , γ ] = ( E ( Rp ),1)    V µ ,    
                                         
                                         
                                         
In other words:
λ  
        ( 1) ' ( 1)       E ( Rp )
                         −1

γ  =  µ , V µ ,   1 
                −1

                               
Plugging the last expression back into (1) finally yields:
                                                  −1
                                             
  { {       ( 1) ( 1) '
           −1            
  w = V × µ , × µ , ×{ × µ ,  ×
                               V   −1
                                        ( 1)    E (Rp )
                          1 3 ( n×n ) {  4 3      1 
( n×1) ( n× n ) {           2                   1 24
       1 24  (2×n ) 2444 
           4 ( n×3 1444
                      2)               ( n×2)
                                             3     (2×1)
               ( n×2)
       14444444 (2×2)         4 244444444                3
                               ( n×1)                29
The last equation solves the mean-variance
portfolio problem. The equation gives us
the optimal weights achieving the lowest
portfolio variance given a desired expected
portfolio return.
Finally, plugging the optimal portfolio
weights back into the variance    σ p = w 'Vw
                                    2



gives us the efficient portfolio frontier:

                    ( 1) 'V ( µ,1)     E ( Rp ) 
                                      −1
σ = ( E ( R p ),1)  µ ,
  2                        −1
  p
                   
                                      1 ÷
                                                
                                             30
Global Minimum Variance Portfolio
 In a similar fashion, we can solve for the global
 minimum variance portfolio:

        1'V µ                                         1
                        (1'V 1)
          −1                      −1
                                                   V −1
 µ*   =           σ =
                    2       −1
                                       with w*   =
        1'V 1
          −1
                    *
                                                   1'V 1
                                                      −1




 The global minimum variance portfolio is the
 efficient frontier portfolio that displays the
 absolute minimum variance.

                                            31
Another Way to Derive the Mean-
Variance Efficient Portfolio Frontier
 Make use of the following property: if two
 portfolios lie on the efficient frontier, any
 linear combination of these portfolios will
 also lie on the frontier. Therefore, just find
 two mean-variance efficient portfolios, and
 compute/plot the mean and standard
 deviation of various linear combinations of
 these portfolios.
                                     32
A               B         C         D         E        F         G         H          I         J    K
1                      EXAMPLE OF A FOUR-ASSET PORTFOLIO PROBLEM
2
3                     Variance-covariance                                      Mean returns
4                             0.10       0.01       0.03        0.05                   6%
5                             0.01       0.30       0.06       -0.04                   8%
6                             0.03       0.06       0.40        0.02                 10%
7                             0.05      -0.04       0.02        0.50                 15%
8 Assume you have found two portfolios on the mean-variance efficient frontier, having the following weights:
9                     Portfolio 1         0.2         0.3        0.4       0.1
10                    Portfolio 2         0.2         0.1        0.1       0.6
11 Thus
12                    Portfolio 1                         Portfolio 2
13                    Mean           9.10%                Mean        12.00% <-- =MMULT(C10:F10,$G$4:$G$7)
14                    Variance      12.16%                Variance 20.34% <-- =MMULT(C10:F10,MMULT(B4:E7,D21:D24))
15
16                    Covariance 0.0714 <-- =MMULT(C9:F9,MMULT(B4:E7,D21:D24))
17                    Correlation 0.4540 <-- =C16/SQRT(C14*F14)
18
19                    Transposes
20                     Portfolio 1            Portfolio 2
21                         0.2                   0.2
22                         0.3                   0.1
23                         0.4                   0.1
24                         0.1                   0.6
                                                                                      33
A                    B           C          D         E                  F         G         H           I           J   K
26   Calculating returns of combinations of Portfolio 1 and Portfolio 2
27   Proportion of Portfolio 1          0.3
28   Mean return                    11.13% <-- =B27*C13+(1-B27)*F13
29   Variance of return             14.06% <-- =B27^2*C14+(1-B27)^2*F14+2*B27*(1-B27)*C16
30   Stand. dev. of return          37.50% <-- =SQRT(B29)
31
32
33                               Table of returns (uses this example and Data|Table)
34
35                               Proportion Stand. dev.   Mean
36                                             37.50%     11.13% <--the content of these cells is given below:
37                                         0   45.10%     12.00%             <-- =B30
38                                       0.1   42.29%     11.71%             <-- =B28
39                                       0.2   39.74%     11.42%
40                                       0.3   37.50%     11.13%
41                                       0.4   35.63%     10.84%                 Four-Asset Portfolio Returns
42                                       0.5   34.20%     10.55%            13.0%
43                                       0.6   33.26%     10.26%
44                                       0.7   32.84%      9.97%            12.0%


                                                                          Mean return
45                                       0.8   32.99%      9.68%            11.0%
46                                       0.9   33.67%      9.39%
                                                                            10.0%
47                                         1   34.87%      9.10%
48                                       1.1   36.53%      8.81%             9.0%
49                                       1.2   38.60%      8.52%             8.0%
50                                                                                      30.0%   35.0%   40.0%    45.0%       50.0%
51                                                                                                Standard deviation
52

                                                                                                            34
Some Excel Tips
To give a name to an array (i.e., to name a
matrix or a vector):
• Highlight the array (the numbers defining the
  matrix)
• Click on ‘Insert’, then ‘Name’, and finally
  ‘Define’ and type in the desired name.



                                     35
Excel Tips (Cont’d)
To compute the inverse of a matrix
previously named (as an example) “V”:
• Type the following formula: ‘=minverse(V)’
  and click ENTER.
• Re-select the cell where you just entered the
  formula, and highlight a larger area/array of the
  size that you predict the inverse matrix will
  take.
• Press F2, then CTRL + SHIFT + ENTER
                                       36
Excel Tips (end)
To multiply two matrices named “V” and
“W”:
• Type the following formula: ‘=mmult(V,W)’
  and click ENTER.
• Re-select the cell where you just entered the
  formula, and highlight a larger area/array of the
  size that you predict the product matrix will
  take.
• Press F2, then CTRL + SHIFT + ENTER
                                       37
Single-Index Model
  Computational Advantages
The single-index model compares all
securities to a single benchmark
• An alternative to comparing a security to each
  of the others

• By observing how two independent securities
  behave relative to a third value, we learn
  something about how the securities are likely to
  behave relative to each other
                                      38
Computational
      Advantages (cont’d)
A single index drastically reduces the
number of computations needed to
determine portfolio variance
• A security’s beta is an example:
                      % %
                COV ( Ri , Rm )
           βi =
                    σm2


           %
     where R = return on the market index
            m

          σ m = variance of the market returns
            2


           %
           Ri = return on Security i
                                            39
Portfolio Statistics With the
    Single-Index Model
Beta of a portfolio:
                    n
            β p = ∑ xi β i
                   i =1

Variance of a portfolio:
           σ 2 = β pσ m + σ ep
             p
                   2 2      2


               ≈ β pσ m
                   2 2



                                 40
Proof
 Ri = R f + βi ( Rm − R f ) + ei
       n                   n                      n
R p = ∑ xi Ri =R f + ∑ xi β i ( Rm − R f ) + ∑ xi ei
      i =1           i =1                    i =1
                     123
                     4 4                     1 32
                               βp                     ep

              n                     n        n
R p = R f + ∑ xi β i Rm − ∑ xi β i R f + ∑ xi ei
            i =1          i =1           i =1
            123
            4 4           123
                          4 4            1 32
                  βp                    βp       ep

                       2
                
       n         2 n 2 2
σ p =  ∑ xi β i  σ m + ∑ xi σ ie = β pσ m + σ ep ≈ β pσ m
  2                                    2 2      2      2 2

       123 
        i =1
        4 4              i =1
       βp 
                                                  41
Portfolio Statistics With the
Single-Index Model (cont’d)
Variance of a portfolio component:
          σ = β σ +σ
            i
             2
                  i
                   2   2
                       m
                                2
                                ei


Covariance of two portfolio components:
            σ AB = β A β Bσ m
                            2




                                     42
Proof
Ri = R f + β i Rm − β i R f + ei
σ i2 = β i2σ m + σ ei
             2     2




σ A, B = Cov( RA , RB ) = Cov( R f + β A Rm − β A R f + eA , R f + β B Rm − β B R f + eB )
σ A, B = Cov( β A Rm + eA , β B Rm + eB )
σ A, B = Cov( β A Rm , β B Rm ) + Cov(eA , β B Rm ) + Cov( β A Rm , eB ) + Cov(eA , eB )
σ A, B = β A β B Cov( Rm , Rm ) = β A β Bσ m
                                           2




                                                                     43
Multi-Index Model
A multi-index model considers independent
variables other than the performance of an
overall market index
• Of particular interest are industry effects
   – Factors associated with a particular line of business

   – E.g., the performance of grocery stores vs. steel
     companies in a recession

                                            44
Multi-Index Model (cont’d)
The general form of a multi-index model:
       %              %          %          %                %
       Ri = ai + β im I m + β i1 I1 + β i 2 I 2 + ... + β in I n
 where ai = constant
       %
      I m = return on the market index
       %
       I = return on an industry index
         j

      β ij = Security i's beta for industry index j
      β im = Security i's market beta
        %
       Ri = return on Security i
                                                         45

More Related Content

What's hot

Long term care insurance with markovchain package
Long term care insurance with markovchain packageLong term care insurance with markovchain package
Long term care insurance with markovchain packageGiorgio Alfredo Spedicato
 
Chap 4.pdf beta
Chap 4.pdf betaChap 4.pdf beta
Chap 4.pdf betaJaved Riza
 
Comparing Performance of Decision Diagrams vs. Case Retrieval Nets
Comparing Performance of Decision Diagrams vs. Case Retrieval NetsComparing Performance of Decision Diagrams vs. Case Retrieval Nets
Comparing Performance of Decision Diagrams vs. Case Retrieval NetsUniversity of Hildesheim, Germany
 
V Communication Error Detection And Correction
V  Communication Error Detection And CorrectionV  Communication Error Detection And Correction
V Communication Error Detection And CorrectionDon Bosco BSIT
 
Chapter16 valuationofrealoptions
Chapter16 valuationofrealoptionsChapter16 valuationofrealoptions
Chapter16 valuationofrealoptionsAKSHAYA0000
 
7 - Model Assessment and Selection
7 - Model Assessment and Selection7 - Model Assessment and Selection
7 - Model Assessment and SelectionNikita Zhiltsov
 
Risk and Risk Aversion FM
Risk and Risk Aversion FMRisk and Risk Aversion FM
Risk and Risk Aversion FMFellowBuddy.com
 
More Stochastic Simulation Examples
More Stochastic Simulation ExamplesMore Stochastic Simulation Examples
More Stochastic Simulation ExamplesStephen Gilmore
 

What's hot (12)

Long term care insurance with markovchain package
Long term care insurance with markovchain packageLong term care insurance with markovchain package
Long term care insurance with markovchain package
 
Pointers
PointersPointers
Pointers
 
Risk aversion
Risk aversionRisk aversion
Risk aversion
 
Chap 4.pdf beta
Chap 4.pdf betaChap 4.pdf beta
Chap 4.pdf beta
 
Comparing Performance of Decision Diagrams vs. Case Retrieval Nets
Comparing Performance of Decision Diagrams vs. Case Retrieval NetsComparing Performance of Decision Diagrams vs. Case Retrieval Nets
Comparing Performance of Decision Diagrams vs. Case Retrieval Nets
 
V Communication Error Detection And Correction
V  Communication Error Detection And CorrectionV  Communication Error Detection And Correction
V Communication Error Detection And Correction
 
Chapter16 valuationofrealoptions
Chapter16 valuationofrealoptionsChapter16 valuationofrealoptions
Chapter16 valuationofrealoptions
 
7 - Model Assessment and Selection
7 - Model Assessment and Selection7 - Model Assessment and Selection
7 - Model Assessment and Selection
 
Risk and Risk Aversion FM
Risk and Risk Aversion FMRisk and Risk Aversion FM
Risk and Risk Aversion FM
 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
More Stochastic Simulation Examples
More Stochastic Simulation ExamplesMore Stochastic Simulation Examples
More Stochastic Simulation Examples
 
Venture financeproject1
Venture financeproject1Venture financeproject1
Venture financeproject1
 

Similar to Ch05

Chapter7PortfolioTheory.ppt
Chapter7PortfolioTheory.pptChapter7PortfolioTheory.ppt
Chapter7PortfolioTheory.pptrekhabawa2
 
CAPM-3-Nt.ppt
CAPM-3-Nt.pptCAPM-3-Nt.ppt
CAPM-3-Nt.pptSafriR
 
S9 10 risk return contd (1)
S9  10 risk  return contd (1)S9  10 risk  return contd (1)
S9 10 risk return contd (1)nasheefa
 
Risk and Return: Portfolio Theory and Assets Pricing Models
Risk and Return: Portfolio Theory and Assets Pricing ModelsRisk and Return: Portfolio Theory and Assets Pricing Models
Risk and Return: Portfolio Theory and Assets Pricing ModelsPANKAJ PANDEY
 
Portfolio management
Portfolio managementPortfolio management
Portfolio managementAshwini Das
 
Sharpe index model
Sharpe index modelSharpe index model
Sharpe index modelAshwini Das
 
Financial Management Slides Ch 05
Financial Management Slides Ch 05Financial Management Slides Ch 05
Financial Management Slides Ch 05Sayyed Naveed Ali
 
Chapter 12.Risk and Return
Chapter 12.Risk and ReturnChapter 12.Risk and Return
Chapter 12.Risk and ReturnZahraMirzayeva
 
MBA 8480 - Portfolio Theory and Asset Pricing
MBA 8480 - Portfolio Theory and Asset PricingMBA 8480 - Portfolio Theory and Asset Pricing
MBA 8480 - Portfolio Theory and Asset PricingWildcatSchoolofBusiness
 
Chapter 06 - Efficient DiversificationChapter 06Efficient Di.docx
Chapter 06 - Efficient DiversificationChapter 06Efficient Di.docxChapter 06 - Efficient DiversificationChapter 06Efficient Di.docx
Chapter 06 - Efficient DiversificationChapter 06Efficient Di.docxtidwellveronique
 
Risk and return relationship shows in historically
Risk and return relationship shows in historicallyRisk and return relationship shows in historically
Risk and return relationship shows in historicallyssusera9d1141
 
Lecture%204.ppt
Lecture%204.pptLecture%204.ppt
Lecture%204.pptTeyKaiyun
 

Similar to Ch05 (20)

1635 variance portfolio
1635 variance portfolio1635 variance portfolio
1635 variance portfolio
 
Chapter7PortfolioTheory.ppt
Chapter7PortfolioTheory.pptChapter7PortfolioTheory.ppt
Chapter7PortfolioTheory.ppt
 
CAPM-3-Nt.ppt
CAPM-3-Nt.pptCAPM-3-Nt.ppt
CAPM-3-Nt.ppt
 
S9 10 risk return contd (1)
S9  10 risk  return contd (1)S9  10 risk  return contd (1)
S9 10 risk return contd (1)
 
Risk and Return: Portfolio Theory and Assets Pricing Models
Risk and Return: Portfolio Theory and Assets Pricing ModelsRisk and Return: Portfolio Theory and Assets Pricing Models
Risk and Return: Portfolio Theory and Assets Pricing Models
 
Portfolio management
Portfolio managementPortfolio management
Portfolio management
 
Sharpe index model
Sharpe index modelSharpe index model
Sharpe index model
 
Financial Management Slides Ch 05
Financial Management Slides Ch 05Financial Management Slides Ch 05
Financial Management Slides Ch 05
 
Chapter 12.Risk and Return
Chapter 12.Risk and ReturnChapter 12.Risk and Return
Chapter 12.Risk and Return
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Capm
CapmCapm
Capm
 
1bb
1bb1bb
1bb
 
MBA 8480 - Portfolio Theory and Asset Pricing
MBA 8480 - Portfolio Theory and Asset PricingMBA 8480 - Portfolio Theory and Asset Pricing
MBA 8480 - Portfolio Theory and Asset Pricing
 
Risk and return
Risk and returnRisk and return
Risk and return
 
CreditRisk+.pdf
CreditRisk+.pdfCreditRisk+.pdf
CreditRisk+.pdf
 
Portfolio Risk and Return
Portfolio Risk and ReturnPortfolio Risk and Return
Portfolio Risk and Return
 
Chapter 06 - Efficient DiversificationChapter 06Efficient Di.docx
Chapter 06 - Efficient DiversificationChapter 06Efficient Di.docxChapter 06 - Efficient DiversificationChapter 06Efficient Di.docx
Chapter 06 - Efficient DiversificationChapter 06Efficient Di.docx
 
Fm5
Fm5Fm5
Fm5
 
Risk and return relationship shows in historically
Risk and return relationship shows in historicallyRisk and return relationship shows in historically
Risk and return relationship shows in historically
 
Lecture%204.ppt
Lecture%204.pptLecture%204.ppt
Lecture%204.ppt
 

Ch05

  • 1. Chapter 5 The Mathematics of Diversification 1
  • 2. Introduction The reason for portfolio theory mathematics: • To show why diversification is a good idea • To show why diversification makes sense logically 2
  • 3. Introduction (cont’d) Harry Markowitz’s efficient portfolios: • Those portfolios providing the maximum return for their level of risk • Those portfolios providing the minimum risk for a certain level of return 3
  • 4. Introduction A portfolio’s performance is the result of the performance of its components • The return realized on a portfolio is a linear combination of the returns on the individual investments • The variance of the portfolio is not a linear combination of component variances 4
  • 5. Return The expected return of a portfolio is a weighted average of the expected returns of the components: n E ( R p ) = ∑  xi E ( Ri )  %  %  i =1 where xi = proportion of portfolio invested in security i and n ∑x i =1 i =1 5
  • 6. Variance Introduction Two-security case Minimum variance portfolio Correlation and risk reduction The n-security case 6
  • 7. Introduction Understanding portfolio variance is the essence of understanding the mathematics of diversification • The variance of a linear combination of random variables is not a weighted average of the component variances 7
  • 8. Introduction (cont’d) For an n-security portfolio, the portfolio variance is: n n σ = ∑∑ xi x j ρijσ iσ j 2 p i =1 j =1 where xi = proportion of total investment in Security i ρij = correlation coefficient between Security i and Security j 8
  • 9. Two-Security Case For a two-security portfolio containing Stock A and Stock B, the variance is: σ = x σ + x σ + 2 x A xB ρ ABσ Aσ B 2 p 2 A 2 A 2 B 2 B 9
  • 10. Two Security Case (cont’d) Example Assume the following statistics for Stock A and Stock B: Stock A Stock B Expected return .015 .020 Variance .050 .060 Standard deviation .224 .245 Weight 40% 60% Correlation coefficient .50 10
  • 11. Two Security Case (cont’d) Example (cont’d) Solution: The expected return of this two-security portfolio is: n E ( R p ) = ∑  xi E ( Ri )  %  %  i =1 =  x A E ( RA )  +  xB E ( RB )   %   %  = [ 0.4(0.015) ] + [ 0.6(0.020) ] = 0.018 = 1.80% 11
  • 12. Two Security Case (cont’d) Example (cont’d) Solution (cont’d): The variance of this two-security portfolio is: σ 2 = x Aσ A + xBσ B + 2 x A xB ρ ABσ Aσ B p 2 2 2 2 = (.4) (.05) + (.6) (.06) + 2(.4)(.6)(.5)(.224)(.245) 2 2 = .0080 + .0216 + .0132 = .0428 12
  • 13. Minimum Variance Portfolio The minimum variance portfolio is the particular combination of securities that will result in the least possible variance Solving for the minimum variance portfolio requires basic calculus 13
  • 14. Minimum Variance Portfolio (cont’d) For a two-security minimum variance portfolio, the proportions invested in stocks A and B are: σ − σ Aσ B ρ AB 2 xA = 2 B σ A + σ B − 2σ Aσ B ρ AB 2 xB = 1 − x A 14
  • 15. Minimum Variance Portfolio (cont’d) Example (cont’d) Solution: The weights of the minimum variance portfolios in the previous case are: σ B − σ Aσ B ρ AB 2 .06 − (.224)(.245)(.5) xA = 2 = = 59.07% σ A + σ B − 2σ Aσ B ρ AB .05 + .06 − 2(.224)(.245)(.5) 2 xB = 1 − x A = 1 − .5907 = 40.93% 15
  • 16. Minimum Variance Portfolio (cont’d) Example (cont’d) 1.2 1 0.8 0.6 At hg e W 0.4 0.2 i 0 0 0.01 0.02 0.03 0.04 0.05 0.06 Portfolio Variance 16
  • 17. Correlation and Risk Reduction Portfolio risk decreases as the correlation coefficient in the returns of two securities decreases Risk reduction is greatest when the securities are perfectly negatively correlated If the securities are perfectly positively correlated, there is no risk reduction 17
  • 18. The n-Security Case For an n-security portfolio, the variance is: n n σ = ∑∑ xi x j ρijσ iσ j 2 p i =1 j =1 where xi = proportion of total investment in Security i ρij = correlation coefficient between Security i and Security j 18
  • 19. The n-Security Case (cont’d) A covariance matrix is a tabular presentation of the pairwise combinations of all portfolio components • The required number of covariances to compute a portfolio variance is (n2 – n)/2 • Any portfolio construction technique using the full covariance matrix is called a Markowitz model 19
  • 20. Example of Variance-Covariance Matrix Computation in Excel A B C D E F G H I J 1 CALCULATING THE VARIANCE-COVARIANCE MATRIX FROM EXCESS RETURNS 2 3 AMR BS GE HR MO UK 4 1974 -0.3505 -0.1154 -0.4246 -0.2107 -0.0758 0.2331 5 1975 0.7083 0.2472 0.3719 0.2227 0.0213 0.3569 6 1976 0.7329 0.3665 0.2550 0.5815 0.1276 0.0781 7 1977 -0.2034 -0.4271 -0.0490 -0.0938 0.0712 -0.2721 8 1978 0.1663 -0.0452 -0.0573 0.2751 0.1372 -0.1346 9 1979 -0.2659 0.0158 0.0898 0.0793 0.0215 0.2254 10 1980 0.0124 0.4751 0.3350 -0.1894 0.2002 0.3657 11 1981 -0.0264 -0.2042 -0.0275 -0.7427 0.0913 0.0479 12 1982 1.0642 -0.1493 0.6968 -0.2615 0.2243 0.0456 13 1983 0.1942 0.3680 0.3110 1.8682 0.2066 0.2640 14 Mean 0.2032 0.0531 0.1501 0.1529 0.1025 0.1210 <-- =AVERAGE(G4:G13) 20
  • 21. A B C D E F G H I J K 16 Excess return matrix 17 AMR BS GE HR MO UK 18 1974 -0.5537 -0.1686 -0.5747 -0.3635 -0.1784 0.1121 19 1975 0.5051 0.1940 0.2218 0.0698 -0.0812 0.2359 20 1976 0.5297 0.3134 0.1049 0.4286 0.0250 -0.0429 21 1977 -0.4066 -0.4802 -0.1991 -0.2466 -0.0313 -0.3931 22 1978 -0.0369 -0.0984 -0.2074 0.1222 0.0347 -0.2555 23 1979 -0.4691 -0.0374 -0.0603 -0.0736 -0.0810 0.1044 24 1980 -0.1908 0.4220 0.1849 -0.3423 0.0977 0.2447 25 1981 -0.2296 -0.2574 -0.1777 -0.8956 -0.0112 -0.0731 26 1982 0.8610 -0.2024 0.5467 -0.4144 0.1217 -0.0754 <-- =G12-$G$14 27 1983 -0.0090 0.3149 0.1609 1.7154 0.1041 0.1430 <-- =G13-$G$14 28 29 Transpose of excess return matrix 30 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 31 AMR -0.5537 0.5051 0.5297 -0.4066 -0.0369 -0.4691 -0.1908 -0.2296 0.8610 -0.0090 32 BS -0.1686 0.1940 0.3134 -0.4802 -0.0984 -0.0374 0.4220 -0.2574 -0.2024 0.3149 33 GE -0.5747 0.2218 0.1049 -0.1991 -0.2074 -0.0603 0.1849 -0.1777 0.5467 0.1609 34 HR -0.3635 0.0698 0.4286 -0.2466 0.1222 -0.0736 -0.3423 -0.8956 -0.4144 1.7154 35 MO -0.1784 -0.0812 0.0250 -0.0313 0.0347 -0.0810 0.0977 -0.0112 0.1217 0.1041 36 UK 0.1121 0.2359 -0.0429 -0.3931 -0.2555 0.1044 0.2447 -0.0731 -0.0754 0.1430 37 Cells B31:K36 contain the array formula =TRANSPOSE(B18:G27). To 38 enter this formula: 39 1. Mark the area B31:K36 40 2. Type =TRANSPOSE(B18:G27) 41 3. Instead of [Enter], finish with [Ctrl]-[Shift]-[Enter] 42 The formula will appear as {=TRANSPOSE(B18:G27)} 43 21
  • 22. A B C D E F G H 45 Product of transpose[excess return] times [excess return] / 10 46 AMR BS GE HR MO UK 47 AMR 0.2060 0.0375 0.1077 0.0493 0.0208 0.0059 48 BS 0.0375 0.0790 0.0355 0.1028 0.0089 0.0406 49 GE 0.1077 0.0355 0.0867 0.0443 0.0194 0.0148 50 HR 0.0493 0.1028 0.0443 0.4435 0.0193 0.0274 51 MO 0.0208 0.0089 0.0194 0.0193 0.0083 -0.0015 52 UK 0.0059 0.0406 0.0148 0.0274 -0.0015 0.0392 53 Cells B47:G52 contain the array formula =MMULT(B31:K36,B18:G27)/10 . To 54 enter this formula: 55 1. Mark the whole area 56 2. Type =MMULT(B31:K36,B18:G27)/10 57 3. Instead of [Enter], finish with [Ctrl]-[Shift]-[Enter] 58 The formula will appear as {=MMULT(B31:K36,B18:G27)/10} 59 22
  • 23. Portfolio Mathematics (Matrix Form) Define w as the (vertical) vector of weights on the different assets. Define µ the (vertical) vector of expected returns Let V be their variance-covariance matrix The variance of the portfolio is thus: σ = w 'Vw 2 p Portfolio optimization consists of minimizing this variance subject to the constraint of achieving a given expected return. 23
  • 24. Portfolio Variance in the 2-asset case We have:  wA   σ A σ AB  2 w=  and V = 2   wB  σ AB σ B  Hence:  σ A σ AB   wA  2 σ p = w 'Vw = [ wA wB ]  2 2  σ AB σ B   wB  σ p = wAσ A + wBσ B + 2wA wBσ AB 2 2 2 2 2 σ p = wAσ A + wBσ B + 2wA wB ρ ABσ Aσ B 2 2 2 2 2 24
  • 25. Covariance Between Two Portfolios (Matrix Form) Define w1 as the (vertical) vector of weights on the different assets in portfolio P1. Define w2 as the (vertical) vector of weights on the different assets in portfolio P2. µ Define the (vertical) vector of expected returns Let V be their variance-covariance matrix The covariance between the two portfolios is: σ P1 , P2 = w1 'Vw2 = w2 'Vw1 (by symmetry) 25
  • 26. The Optimization Problem Minimize w 'Vw w Subject to:    1' w =1 µ ' w = E ( Rp )  where E(Rp) is the desired (target) expected return on the 1 portfolio and is a vector of ones and the vector µ is  µ1   E ( R1 )  defined as: µ= M = M       µn   E ( Rn )      26
  • 27. Lagrangian Method 1 Min L = w 'Vw +  E ( R ) − w ' µ  λ + 1 − w '1 γ     w 2 p   1  E ( R ) − w ' µ , 1 − w '  λ  Or: Min L = w 'Vw +  1 2  p  γ    w w 1 Thus: Min L = w 'Vw + ( E ( R p ),1) − w ' µ , 2   ( 1)  λ   γ     µ1 1 µ 1 ( 1) where the notation µ , indicates the matrix  2 M  M    µn 1 27
  • 28. Taking Derivatives  ∂L   ∂w ( 1) λ  = Vw − µ ,   = 0 ⇒ w = V µ ,   γ  −1 λ  γ  ( 1) (1)   ∂L       0   ∂L  ( 1)   0  =  ∂λ  ⇒ E ( R ),1 − w ' µ , = 0, 0 ( p ) ( ) (2)       ∂γ  Plugging (1) into (2) yields:  µ ' −1 1'     ( 1) = ( 0, 0) ( E ( Rp ),1) − [ λ , γ ]   V µ , 28
  • 29. And so we have: −1   µ ' −1  1'      ( 1) [ λ , γ ] = ( E ( Rp ),1)    V µ ,     In other words: λ   ( 1) ' ( 1)   E ( Rp ) −1 γ  =  µ , V µ ,   1  −1       Plugging the last expression back into (1) finally yields: −1   { { ( 1) ( 1) ' −1  w = V × µ , × µ , ×{ × µ ,  × V −1 ( 1)   E (Rp )  1 3 ( n×n ) {  4 3 1  ( n×1) ( n× n ) { 2 1 24 1 24  (2×n ) 2444  4 ( n×3 1444 2) ( n×2) 3 (2×1) ( n×2) 14444444 (2×2) 4 244444444 3 ( n×1) 29
  • 30. The last equation solves the mean-variance portfolio problem. The equation gives us the optimal weights achieving the lowest portfolio variance given a desired expected portfolio return. Finally, plugging the optimal portfolio weights back into the variance σ p = w 'Vw 2 gives us the efficient portfolio frontier: ( 1) 'V ( µ,1)   E ( Rp )  −1 σ = ( E ( R p ),1)  µ , 2 −1 p     1 ÷    30
  • 31. Global Minimum Variance Portfolio In a similar fashion, we can solve for the global minimum variance portfolio: 1'V µ 1 (1'V 1) −1 −1 V −1 µ* = σ = 2 −1 with w* = 1'V 1 −1 * 1'V 1 −1 The global minimum variance portfolio is the efficient frontier portfolio that displays the absolute minimum variance. 31
  • 32. Another Way to Derive the Mean- Variance Efficient Portfolio Frontier Make use of the following property: if two portfolios lie on the efficient frontier, any linear combination of these portfolios will also lie on the frontier. Therefore, just find two mean-variance efficient portfolios, and compute/plot the mean and standard deviation of various linear combinations of these portfolios. 32
  • 33. A B C D E F G H I J K 1 EXAMPLE OF A FOUR-ASSET PORTFOLIO PROBLEM 2 3 Variance-covariance Mean returns 4 0.10 0.01 0.03 0.05 6% 5 0.01 0.30 0.06 -0.04 8% 6 0.03 0.06 0.40 0.02 10% 7 0.05 -0.04 0.02 0.50 15% 8 Assume you have found two portfolios on the mean-variance efficient frontier, having the following weights: 9 Portfolio 1 0.2 0.3 0.4 0.1 10 Portfolio 2 0.2 0.1 0.1 0.6 11 Thus 12 Portfolio 1 Portfolio 2 13 Mean 9.10% Mean 12.00% <-- =MMULT(C10:F10,$G$4:$G$7) 14 Variance 12.16% Variance 20.34% <-- =MMULT(C10:F10,MMULT(B4:E7,D21:D24)) 15 16 Covariance 0.0714 <-- =MMULT(C9:F9,MMULT(B4:E7,D21:D24)) 17 Correlation 0.4540 <-- =C16/SQRT(C14*F14) 18 19 Transposes 20 Portfolio 1 Portfolio 2 21 0.2 0.2 22 0.3 0.1 23 0.4 0.1 24 0.1 0.6 33
  • 34. A B C D E F G H I J K 26 Calculating returns of combinations of Portfolio 1 and Portfolio 2 27 Proportion of Portfolio 1 0.3 28 Mean return 11.13% <-- =B27*C13+(1-B27)*F13 29 Variance of return 14.06% <-- =B27^2*C14+(1-B27)^2*F14+2*B27*(1-B27)*C16 30 Stand. dev. of return 37.50% <-- =SQRT(B29) 31 32 33 Table of returns (uses this example and Data|Table) 34 35 Proportion Stand. dev. Mean 36 37.50% 11.13% <--the content of these cells is given below: 37 0 45.10% 12.00% <-- =B30 38 0.1 42.29% 11.71% <-- =B28 39 0.2 39.74% 11.42% 40 0.3 37.50% 11.13% 41 0.4 35.63% 10.84% Four-Asset Portfolio Returns 42 0.5 34.20% 10.55% 13.0% 43 0.6 33.26% 10.26% 44 0.7 32.84% 9.97% 12.0% Mean return 45 0.8 32.99% 9.68% 11.0% 46 0.9 33.67% 9.39% 10.0% 47 1 34.87% 9.10% 48 1.1 36.53% 8.81% 9.0% 49 1.2 38.60% 8.52% 8.0% 50 30.0% 35.0% 40.0% 45.0% 50.0% 51 Standard deviation 52 34
  • 35. Some Excel Tips To give a name to an array (i.e., to name a matrix or a vector): • Highlight the array (the numbers defining the matrix) • Click on ‘Insert’, then ‘Name’, and finally ‘Define’ and type in the desired name. 35
  • 36. Excel Tips (Cont’d) To compute the inverse of a matrix previously named (as an example) “V”: • Type the following formula: ‘=minverse(V)’ and click ENTER. • Re-select the cell where you just entered the formula, and highlight a larger area/array of the size that you predict the inverse matrix will take. • Press F2, then CTRL + SHIFT + ENTER 36
  • 37. Excel Tips (end) To multiply two matrices named “V” and “W”: • Type the following formula: ‘=mmult(V,W)’ and click ENTER. • Re-select the cell where you just entered the formula, and highlight a larger area/array of the size that you predict the product matrix will take. • Press F2, then CTRL + SHIFT + ENTER 37
  • 38. Single-Index Model Computational Advantages The single-index model compares all securities to a single benchmark • An alternative to comparing a security to each of the others • By observing how two independent securities behave relative to a third value, we learn something about how the securities are likely to behave relative to each other 38
  • 39. Computational Advantages (cont’d) A single index drastically reduces the number of computations needed to determine portfolio variance • A security’s beta is an example: % % COV ( Ri , Rm ) βi = σm2 % where R = return on the market index m σ m = variance of the market returns 2 % Ri = return on Security i 39
  • 40. Portfolio Statistics With the Single-Index Model Beta of a portfolio: n β p = ∑ xi β i i =1 Variance of a portfolio: σ 2 = β pσ m + σ ep p 2 2 2 ≈ β pσ m 2 2 40
  • 41. Proof Ri = R f + βi ( Rm − R f ) + ei n n n R p = ∑ xi Ri =R f + ∑ xi β i ( Rm − R f ) + ∑ xi ei i =1 i =1 i =1 123 4 4 1 32 βp ep n n n R p = R f + ∑ xi β i Rm − ∑ xi β i R f + ∑ xi ei i =1 i =1 i =1 123 4 4 123 4 4 1 32 βp βp ep 2    n  2 n 2 2 σ p =  ∑ xi β i  σ m + ∑ xi σ ie = β pσ m + σ ep ≈ β pσ m 2 2 2 2 2 2  123  i =1 4 4 i =1  βp    41
  • 42. Portfolio Statistics With the Single-Index Model (cont’d) Variance of a portfolio component: σ = β σ +σ i 2 i 2 2 m 2 ei Covariance of two portfolio components: σ AB = β A β Bσ m 2 42
  • 43. Proof Ri = R f + β i Rm − β i R f + ei σ i2 = β i2σ m + σ ei 2 2 σ A, B = Cov( RA , RB ) = Cov( R f + β A Rm − β A R f + eA , R f + β B Rm − β B R f + eB ) σ A, B = Cov( β A Rm + eA , β B Rm + eB ) σ A, B = Cov( β A Rm , β B Rm ) + Cov(eA , β B Rm ) + Cov( β A Rm , eB ) + Cov(eA , eB ) σ A, B = β A β B Cov( Rm , Rm ) = β A β Bσ m 2 43
  • 44. Multi-Index Model A multi-index model considers independent variables other than the performance of an overall market index • Of particular interest are industry effects – Factors associated with a particular line of business – E.g., the performance of grocery stores vs. steel companies in a recession 44
  • 45. Multi-Index Model (cont’d) The general form of a multi-index model: % % % % % Ri = ai + β im I m + β i1 I1 + β i 2 I 2 + ... + β in I n where ai = constant % I m = return on the market index % I = return on an industry index j β ij = Security i's beta for industry index j β im = Security i's market beta % Ri = return on Security i 45